Exame de Proficiência de Pré-Cálculo
|
|
|
- Ana Laura Anjos
- 7 Há anos
- Visualizações:
Transcrição
1 +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti dqur sus disiplins d form ornt. Portnto, não s sint prssiondo durnt o m, voê só tm gnhr om l (indpndntmnt do rsultdo).. O m inii às hors trmin às hors. O tmpo mínimo d prmnêni m sl é d minutos. S voê prisr ir o bnhiro, omuniqu o plidor.. Sobr ms, di pns lápis ou lpisir, nt (zul ou prt), borrh doumnto. Gurd su mohil bio d ms ou dir (não no orrdor). Não é prmitido o uso d luldors ou d qulqur dispositivo ltrônio. Su lulr dv sr dsligdo gurddo. Em hipóts lgum, m no lulr ou onvrs om lgum olg durnt o m.. Su m é possui ino folhs, sndo qutro folhs d qustõs um folh d rsposts. Voê pod usr o vrso ds folhs d qustõs omo rsunho (nun us o vrso d folh d rsposts). O m é omposto por qustõs d múltipl solh. Apns um ds ltrntivs é orrt m d qustão. Mrqu ltrntiv solhid no qudro d rsposts qu stá n folh d rsposts ( últim folh do m) prnhndo nt todo o spço dntro do qudrdo. S voê mrr mis d um ltrntiv m um msm qustão, st srá nuld. Rsurs n folh d rsposts for dos spços dtrmindos rrtrão o nulmnto do m.. Ao trminr o m, lvnt mão gurd o plidor rolhr folh d rsposts. Somnt st srá ntrgu, s outrs voê lv pr s. Pr não dsonntrr os olgs, qundo prisr s omunir om o plidor, não o hm. Erg mão spr qu l vá té su ms.. Artndo doz ou mis qustõs, voê srá mtriuldo n disiplin d Cálulo (MTM). Artndo mnos qu doz, voê srá mtriuldo n disiplin d Pré-álulo (MTM). Voê podrá onfrir o rsultdo n srtri do su urso prtir d sgund-fir (//). Não squç d s informr sobr os lois horários ds uls. Bom m! Fórmuls informçõs útis Abio, listmos lgums fórmuls informçõs qu podm sr útis pr voê no dorrr do m. O domínio d um função f é o onjunto d todos os númros ris pr os quis prssão f() tm tods s sus oprçõs bm dfinids rsultndo m númro rl. log rprsnt o logritmo d n bs. π rd =. tg = sn os otg = os sn. s = os oss = sn. sn + os =. sn( + b) = sn os b + os sn b os( + b) = os os b sn sn b. sn sn b = os( b) os( + b) os os b = os( + b) + os( b). sn os b = sn( + b) + sn( b). rsn :, ] π/, π/] é função invrs do sno. ros :, ], π] é função invrs do ossno.
2 +//+ Qustão. S é um númro rl difrnt d, ntão prssão é igul + ; b ; + ; d + ; + +. Qustão. O onjunto solução d inqução + é igul (, ], ); b (, ] (, );, ) (, ) (, ); d, ) (, ); (, ] (, ) (, ). Qustão. A úni solução d qução + + = é um númro qu prtn o intrvlo (, ]; b (, ]; (, ]; d (, ]; (, ). Qustão. Sj f : R R função dfinid por +, s f() = +, +, s < <. Podmos firmr qu: f é sobrjtor ms não é injtor; b f é injtor ms não é sobrjtor; f é bijtor; d f ( f ( )) = ; nnhum ds firmçõs ntriors é vrddir. Qustão. Sjm f g funçõs dds por f() = { +, s <, s g() = {, s +, s >. Pr (, ), ompost (f g)() é dd por + ; b + ; ; d ; +. Qustão. Sj b um númro rl onsidr função f() = +. Esolhndo o ontrdomínio d f d form + b qu l possu invrs, ntão f () = f() pr b igul ; b ; ; d ;. Qustão. O domínio d função f() = + + é igul, ); b, ); (, ], ); d, ]; R. Qustão. Sjm funçõs f, g : R R om f pr g ímpr. Considr s firmçõs: I. f g é ímpr; II. f g é pr; III. g f é ímpr. São vrddirs: somnt I; b somnt II; somnt III; d somnt I II; somnt II III. Qustão. S f : R R é um função ímpr priódi om príodo igul, ntão f() é igul ; b ; ; d ;.
3 +//+ Qustão. O onjunto imgm d função f() = é igul, ]; b, ];, ]; d, ]; R. Qustão. Qul itm mlhor rprsnt o gráfio d função f() = log ( + )? b d Obsrvção. As linhs pontilhds rprsntm um sl d um unidd. Qustão. A qução / + = não possui solução rl; b possui pns um solução rl; possui pns dus soluçõs ris; d possui pns qutro soluçõs ris; possui infinits soluçõs ris. Qustão. A onjunto imgm d função f() = log ( ) é igul (, ]; b (, ]; (, ); d (, ]; (, ). Qustão. ( ) + O onjunto solução d inqução log é igul + (, ); b (, ); (, ]; d (, );, ]. Qustão. Aproimndo log =,, úni solução d qução + = + é ; b ; ; d ;.
4 +//+ Qustão. S π, π] sn =, ntão sn + os = ; b sn + os = ; s = ; d tg os = ; otg tg =. Qustão. O númro d soluçõs d qução otg + sn = no intrvlo, π] é + os ; b ; ; d ;. Qustão. Um prssão quivlnt pr otg os é otg os ; b otg + os ; tg s ; d sn(); tg s. Qustão. Qul itm mlhor rprsnt o gráfio d função f() = os( π)? b d Obsrvção. As linhs pontilhds rprsntm um sl d um unidd n vrtil π/ unidds n horizontl. Qustão. O onjunto imgm d função f() = π ros é igul, π]; b π, π ] ; π, π ] ; d, π ] ; π, π ]. Finl d Prov Não squç d pssr s sus rsposts pr o qudro d rsposts n próim folh.
5 +//+ Em d Profiiêni d Pré-Cálulo - Folh d rsposts ATENÇÃO! O m srá orrigido por litur óti. Não rsur st folh. Prnh os qudrdos por omplto (não bst fzr um X ) utilizndo nt prt ou zul. Su mtríul Prnh o qudro o ldo om o su númro d mtríul srv d mnir lgívl o su nom omplto bio. Nom omplto: Qudro d rsposts. As rsposts dvm sr mrds nst qudro! Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d Qustão : b d
= 1, independente do valor de x, logo seria uma função afim e não exponencial.
6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0
Cálculo Diferencial II Lista de Exercícios 1
Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto
Geometria Espacial (Exercícios de Fixação)
Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo
PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.
+1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão
Adição dos antecedentes com os consequentes das duas razões
Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como
Lista de Exercícios 9 Grafos
UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst
Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.
GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá
Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto
Qustõs Objtivs. Ds firmçõs: I., y R \ Q, com y, ntão + y R \ Q; II. Q y R \ Q, ntão y R \ Q; III. jm, b, c R, com < b < c. f: [, c] [, b] é sobrjtor, ntão f não é injtor, é (são) vrddir(s) n log log n
MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*
MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m
10. EXERCÍCIOS (ITA-1969 a ITA-2001)
. EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito
Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.
Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)
Lista de Matemática ITA 2012 Trigonometria
List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão
a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=
Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A
Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante
Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
A Função Densidade de Probabilidade
Prof. Lorí Vili, Dr. [email protected] http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd
Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1
Tst Intmédio d Mtmátic A Vsão Tst Intmédio Mtmátic A Vsão Dução do Tst: 9 minutos.5..º Ano d Escolidd Dcto-Li n.º 7/ d d mço????????????? RESOLUÇÃO GRUPO I. Rspost (B) A função f é contínu logo é contínu
ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.
LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m
UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
MATRIZES E DETERMINANTES LISTA 5
RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Expressão Semi-Empírica da Energia de Ligação
Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos
log5 log 5 x log 2x log x 2
mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.
Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE
C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO
Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo
1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?
Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo
10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.
0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,
CAPÍTULO 9 COORDENADAS POLARES
Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El
MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:
MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:
MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328
MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,
Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação /08/0 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp
RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES
RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o
Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir
LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2
LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano
AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv
Associação de Resistores e Resistência Equivalente
Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos
TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis
UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis
Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29
Sumário Volt às uls. Vmos recordr?... 7 1 Números... 10 Números... ej como tudo começou... 11 Os números de 0 10... 13 A dezen... 18 Os números de 0 1... 1 Números e dinheiro... 23 Ordem nos números...
COLÉGIO NAVAL 2016 (1º dia)
COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel
( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ
Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r
Módulo 03. Determinantes. [Poole 262 a 282]
Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:
NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt
Derivada Escola Naval
Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =
Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling
Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn
Extrapolação de Richardson
Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
