Integração Numérica. Cálculo Numérico
|
|
|
- Walter Dreer Aldeia
- 9 Há anos
- Visualizações:
Transcrição
1 Cálculo Nuérico Integração Nuérica Pro. Jorge Cavalcanti MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG -
2 Integração Nuérica E deterinadas situações, integrais são diíceis, ou eso ipossíveis de se resolver analiticaente. Eeplo: o valor de é conecido apenas e alguns pontos, nu intervalo [a, b]. Coo não se conece a epressão analítica de, não é b possível calcular a d Fora de obtenção de ua aproiação para a integral de nu intervalo [a, b] Métodos Nuéricos.
3 Integração Nuérica Idéia básica da integração nuérica substituição da unção por u polinôio que a aproie razoavelente no intervalo [a, b]. Integração nuérica de ua unção nu intervalo [a,b] cálculo da área deliitada por essa unção, recorrendo à interpolação polinoial, coo, ora de obtenção de u polinôio p n. 3
4 Integração Nuérica Fórulas de Newton-Cotes São órulas de integração do tipo: b a i d [a,b],i A,,...,n Fórulas de integração órulas de quadratura: I n n i A,..., n - pontos conecidos, pertencentes ao intervalo [a, b] nós de integração. A,..., A n - coeicientes a deterinar, independentes da unção pesos. i A i... A n n,
5 Integração Nuérica O uso desta técnica decorre do ato de: por vezes, ser ua unção uito diícil de integrar, contrariaente a u polinôio; conecer-se o resultado analítico do integral, as, seu cálculo é soente aproiado; a única inoração sobre ser u conjunto de pares ordenados. 5
6 Integração Nuérica Métodos de integração nuérica ais utilizados Fórulas de Newton-Cotes Fecadas Regra dos Trapézios, a e n b. Regra /3 de Sipson Fórulas de Newton-Cotes Abertas os i tê de pertencer ao intervalo aberto de a até b 6
7 Regra dos Trapézios Regra dos Trapézios Siples - consiste e considerar u polinôio de prieiro grau que aproia ua unção, ou seja, n. Este polinôio terá a ora ya a e trata-se da equação que une dois pontos: a e b. 7
8 Regra dos Trapézios Siples Área do trapézio: A. Tt / - altura do trapézio t - base enor T - base aior p De acordo co a igura: b a t b T a P a b-a b Logo, d [ ] 8
9 Regra dos Trapézios Eercício: Estiar o valor de: Pela regra dos trapézios siples e depois veriicar o valor eato da integral. a Pela Regra dos Trapézios Siples: I / [ ] - 3,6 3,,6 /, /3 e /3,6 I,6/ /3 /3, b Pelo Cálculo Integral: 3,6 I 3,6 d 3, d I ln ln 3,6 ln 3,,83 3, 3,6 3, 9
10 Regra dos Trapézios Siples Intervalo [a, b] relativaente pequeno aproiação do valor do integral é aceitável. Intervalo [a, b] de grande aplitude aproiação deasada. pode-se subdividi-lo e n sub-intervalos, e e cada u a unção é aproiada por ua unção linear. A aplitude dos sub-intervalos será b-a/n. A integral no intervalo é dado pela soa dos integrais deinidos pelos sub-intervalos. Regra dos trapézios siples aplicada aos sub-intervalos. Uso da Regra dos Trapézios Coposta Repetida: soa da área de n trapézios, cada qual deinido pelo seu sub-intervalo.
11 Regra dos Trapézios Coposta Repetida Intervalo [a, b] de grande aplitude. Soa da área de n trapézios, cada qual deinido pelo seu sub-intervalo.
12 A Regra aproia pequenos trecos da curva y ƒ por segentos de reta. Para azer ua aproiação para a integral de de a até b, soaos as áreas assinaladas dos trapézios obtidos pela união do inal de cada segento co o eio. É interessante observar que aproiar a área sob a unção pela soa de áreas de trapézios é o equivalente a: realizar interpolação linear de, ou seja, ligar os pontos n, y n co retas.
13 3 Fórula: Só os teros e n não se repete, assi, esta órula pode ser sipliicada e: [ ] [ ] [ ]... N N d [ ] { } N N N d... Regra dos Trapézios Coposta Repetida
14 Regra dos Trapézios Coposta Repetida Eercício: Estiar o valor de: Pela regra dos trapézios repetida, subdividindo o intervalo e 6 subintervalos. I 3,6 d 3, / 3., ,35 3., ,33 a3,; b3,6; / b-a/n 3,6 3,/6,6/6. I TR / [ [ 3 5 ] 6 ] I TR,835 3.,9 3.5, ,778
15 Regra dos Trapézios Eeplo: Estiar o valor de para pontos Trapézio Siples, 3 e 9 pontos Repetida / d Regra dos Trapézios Siples - pontos. e., I/yy Regra dos Trapézios Coposta - 3 pontos A aproiação.,., para 9 pontos., é elor, ba/n que o valor real é.97. dado I/y y y. y² -/
16 Regra de /3 de Sipson b d Seja I. Para este caso vaos considerar a novaente ua subdivisão do intervalo [a,b] e u núero de subintervalos n par. A Regra de Sipson az aproiações para pequenos trecos de curvas usando arcos parabólicos. 6
17 Regra de /3 de Sipson Novaente, podeos usar a órula de Lagrange para estabelecer a órula de integração resultante da aproiação de por u polinôio interpolador de grau. Seja p que interpola nos pontos: a b 7
18 8 O Polinôio de Lagrange de grau que estabelece a unção de interpolação de nos pontos [ i, i ] será: Regra de /3 de Sipson P L L L L L L a; ; b - a a - a a - a - a a a - a-a a-a
19 9 O Polinôio será: Regra de /3 de Sipson P S b a I d d d d p d Então se p :
20 Regra de /3 de Sipson As integrais pode ser resolvidas, por eeplo, usando a udança das variáveis z. Assi, d dz, z, então z z z z e, para, z ;, z ;, z ; Após essas udanças: I S z z dz z z dz z z dz
21 Regra de /3 de Sipson Resolvendo as integrais, obteos a Regra de /3 de Sipson: d [ ] 3 I s [ ] 3
22 Regra de /3 de Sipson Eercício: Estiar o valor de: Pela Regra de /3 de Sipson co dois intervalos e coparar co o valor eato da integral. a Pela Regra de /3 de Sipson: I S /3 [ ] - / 3,6 3,,6/,3 /; /3,; /3,3 e /3,6; I S,3/3 /3 */3,3 /3,6.83 b Pelo Cálculo Integral: 3,6 I 3,6 d 3, d I ln ln 3,6 ln 3,,83 3, 3,6 3,
23 Regra de /3 de Sipson Repetida Pela Regra de Sipson, ora necessários 3 pontos para a interpolação de Lagrange, o que signiicou a divisão do intervalo de integração e subintervalos. A Regra de Sipson Repetida consiste e subdividiros o intervalo [a, b] e n subintervalos de aplitude, onde é u núero par de subintervalos, pois cada parábola utilizará 3 pontos consecutivos. 3
24 Regra de /3 de Sipson Repetida Aplica-se então a regra para cada 3 pontos, isto é, a cada subintervalos obtendo: k b a k k d d d {[ ] [ ] [ ]} 3 3 K [ ] { [ ] [ ]} SR I d 3 3 K K
25 5 Eeplo Calcular usando a regra de Sipson, usando sub-intervalos. 5 lnd 6,,56,6,76,38 3, 5,3,335 3,8,87,35,,39,986 3,,69,69 5,,9,9555,6 3,538,7885,,756,5878,8,359,3365,,,, A A 3,35 A 5,,7 3,35 3 A 3 d, {[ ] [ ] [ ]} 3 3 d K K
26 Eercício Calcular 3 e d Sipson, para, e 6 sub-intervalos. usando a regra de 6
Integração Numérica. Cálculo Numérico
Cálculo Numérico Integração Numérica Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnum/ Integração Numérica
CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes
CCI- CCI- Mateática Coputacional 7 Integração Nuérica Carlos Alberto Alonso Sances Fórulas de Newton-Cotes, Quadratura Adaptativa CCI- Fórulas de Newton-Cotes Regra de Sipson Fórula geral stiativas de
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Nuérico Faculdade de ngenhari Arquiteturas e Urbaniso FAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronoia) VI Integração Nuérica Objetivos: O objetivo desta aula é apresentar o étodo de integração
Resolução Numérica de Equações Parte I
Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
Aula 3 11/12/2013. Integração Numérica
CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas
2.2 Alguns Exemplos de Funções Elementares
Capítulo II: Fuções Reais de Variável Real 3. Algus Eeplos de Fuções Eleetares Fução afi (liear) São as fuções ais siples que aparece: os us gráficos repreta rectas. y + b f () y + b b y declive b ordeada
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções
MODULAÇÃO EM FREQUÊNCIA E FASE
MODULAÇÃO EM FREQUÊNCIA E FASE 1. Introdução Existe várias aneiras de se odular u sinal senoidal. De ua ora geral esse sinal senoidal a ser odulado é chaado de portadora, e pode ser expresso por : e (
A integral indefinida
A integral indefinida Introdução Prof. Méricles Thadeu Moretti MTM/CFM/UFSC. A integração é uma operação fundamental na resolução de problemas de matemática, física e outras disciplinas, além de fazer
Integração Numérica. Regra do 1/3 de Simpson (1ª regra) Regra dos 3/8 de Simpson (2ª regra)
ntegração Nérica Regra do / de Sipson (ª regra) Regra dos /8 de Sipson (ª regra) ntrodção Seja f() a fnção contína do intervalo [a,b]. Seja F() a priitiva de f(), tal qe F () f(). Então a integral definida
Série 3 Movimento uniformemente variado
Resoluções Segento: Pré-vestibular Coleção: Alfa, Beta e Gaa. Disciplina: Física Caderno de Exercícios 1 Unidade I Cineática Série 3 Moviento uniforeente variado 1. D Substituindo o valor de t = 4 s, na
Aula 19 06/2014. Integração Numérica
CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas
Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno
Aula 1. Introdução Hoje e dia teos a educação presencial, sei-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontra sepre nu local, chaado sala
GUIDG.COM PG. 1. Exercícios iniciais: Determine o conjunto solução das inequações: i) x 2 + 1< 2x 2 @ 3 @ 5x: Solução: Resolvendo em partes: y1)
5/7/011 CDI-1: Inequações, passo à passo, exercícios resolvidos. TAGS: Exercícios resolvidos, Inequações, passo à passo, soluções, cálculo 1, desigualdades, matemática básica. GUIDG.COM PG. 1 Exercícios
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Álgebra Linear I - Aula 1. Roteiro
Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação
Propagação de erros. independentes e aleatórios
TLF 010/11 Capítulo V Propagação de erros independentes e aleatórios 5.1. Propagação da Incerteza na Soa ou Dierença. Liite superior do Erro. 50 5.. Propagação da Incerteza no Produto ou Diisão. Liite
Semana 7 Resolução de Sistemas Lineares
1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam
Aula 16. Integração Numérica
CÁLCULO NUMÉRICO Aula 16 Integração Numérica Integração Numérica Cálculo Numérico 3/41 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.
Interpolação Polinomial
Cálculo Numérico Interpolação Polinomial Parte I Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG www.dsc.ucg.edu.br/~cnum/ Interpolação
AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4
MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções
Aula 10. Integração Numérica
CÁLCULO NUMÉRICO Aula Integração Numérica Integração Numérica Cálculo Numérico 3/4 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.
Aula 20. Introdução ao cálculo de fluxo de potência em sistemas de energia elétrica
Aula 20 Introdução ao cálculo de fluxo de potência e sisteas de energia elétrica Cálculo de Fluxo de Potência O cálculo do fluxo de potência (ou de carga) e ua rede de energia consiste na deterinação da
Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade
Teste Intermédio de Matemática A Entrelinha,5 Teste Intermédio Matemática A Entrelinha,5 (Versão única igual à Versão ) Duração do Teste: 90 minutos 8.0.03.º Ano de Escolaridade Decreto-Lei n.º 74/004,
Valter B. Dantas. Geometria das massas
Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação
A soma de dois números pares, obtém um resultado que também é par. Sendo, p=2q e r=2n, temos p+r = 2q+2n = 2(q+n) = 2k.
Teoria dos Núeros Resuo do que foi estudado nas aulas de Teoria dos Núeros, inistradas pelo Prof. Dr. Antonio Sales. Acadêica: Sabrina Aori Araujo 20939 Núeros pares e ípares Coo saber se u núero é par
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração
Funções de varias variáveis ou Funções reais de variável vetorial
Funções de varias variáveis ou Funções reais de variável vetorial F : R n R (1,,..., n ) w F( 1,,.., 3 ) n R Dom( F) S S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio
Regressão, Interpolação e Extrapolação Numéricas
, e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de
Microeconomia Tópicos para Discussão
Microeconoia Tópicos para iscussão Elasticidades da eanda Elasticidades Elasticidades da Oferta PINYCK, R. e RUBINFEL,. Microeconoia. São Paulo: Prentice Hall. 2008. Capítulo 2: Os fundaentos da oferta
Quinto roteiro de exercícios no Scilab Cálculo Numérico
Quinto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 4 de maio de 2012 1 Equações Diferenciais Ordinárias Equação diferencial é uma equação que contém derivadas de uma função desconhecida.
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex
INVESTIGAÇÃO OPERACIONAL Programação Linear Eercícios Cap. III Método Simple António Carlos Morais da Silva Professor de I.O. INVESTIGAÇÃO OPERACIONAL (MS edição de 006) i Cap. III - Método Simple - Eercícios
Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais
Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.
2 Ruído de Fase em Osciladores
Ruído de Fase e Osciladores.. Introdução Ao longo do presente capítulo serão introduzidos os conceitos básicos que deterina o coportaento de osciladores e teros de ruído, aplitude e ase. A utilização de
a = q b + r, com0 r b 1.
Mateática e Estatística Lic. Adinistração Pública Departaento de Mateática da Universidade de Coibra Ano lectivo 2006/200 1 Teoria dos Núeros O resultado da divisão de dois núeros inteiros, dividendo e
Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira
Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras
Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada
Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Sistema de equações lineares e não lineares Tiago de Souza Farias
Capítulo 15 Oscilações
Capítulo 15 Oscilações Neste capítulo vaos abordar os seguintes tópicos: Velocidade de deslocaento e aceleração de u oscilador harônico siples Energia de u oscilador harônico siples Exeplos de osciladores
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Geometria Analítica e Álgebra Linear
Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br [email protected] 0 de fevereiro de 00 Geoetria Analítica e Álgebra
COLÉGIO NOSSA SENHORA DE LOURDES 9º ANO Ensino Fundamental -2015. Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos
COLÉGIO NOSSA SENHORA DE LOURDES 9º ANO Ensino Fundaental -2015 Disciplina: Professor (a): Roteiro de estudos para recuperação triestral Mateática Ticiano Azevedo Bastos Conteúdo: Referência para estudo:
As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal.
Equações literais Observa as equações seguintes: 7 1 7z 7 0 As equações 1 e são equações literais, enquanto que, a equação não é uma equação literal. Então, qual será a definição de equação literal? Equações
Aplicações de integração. Cálculo 2 Prof. Aline Paliga
Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar
A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:
As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais
Sistemas de equações do 1 grau com duas variáveis LISTA 1
Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12
GEOMETRIA ANALÍTICA II
Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo
Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo
Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio
Prova Escrita de Matemática
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade A PREENCHER PELO ALUNO Nome completo do aluno Duração da Prova: 90
Movimento oscilatório forçado
Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais
1 Exercícios de Aplicações da Integral
Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu
Geometria Analítica e Álgebra Linear
NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Do ponto de vista analítico existem diversas regras, que podem ser utilizadas na prática. Porém, técnicas de integração
CÁLCULO DE MATRIZ PARA ELEMENTOS FINITOS
CÁCUO DE MATRIZ PARA EEMENTOS FINITOS Sistemas de equações algébricas que relacionam Forças, Deslocamentos e Coeicientes de Rigidez podem ser representados e resolvidos de orma compacta e elegante com
Resolução de sistemas de equações lineares: Método de eliminação de Gauss
Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)
Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.
Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses
PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33
PROV MTMÁTI _ VSTIBULR FUVST- 005 _ FS Professora MRI NTONI ONIÇÃO GOUVI 0) Um supermercado adquiriu detergentes nos aromas limão e coco. compra foi entregue, embalada em 0 caias, com frascos em cada caia.
CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P
63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
A ÁLISE TITRIMÉTRICA
A ÁLISE TITRIMÉTRICA Análise titrimétrica - O termo análise titrimétrica refere-se à análise química quantitativa feita pela determinação do volume de uma solução, cuja concentração é conhecida com exatidão,
MEDIDAS DE TENDÊNCIA CENTRAL II
MEDIDAS DE TENDÊNCIA CENTRAL II 8. MÉDIA, MEDIANA E MODA 8. Mediana 8 7 A mediana divide um conjunto de dados pré-ordenados em duas porções iguais, ou seja, duas partes de 50% cada. Nesta divisão, 50%
FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.
PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO
Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010
1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para
Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis,
0/0/0 Máio divisor cou e ínio últiplo cou: Dados dois núeros naturais e n, chaareos de aior divisor cou entre n e o núero natural dc (,n) que é otido pelo produto dos fatores couns entre e n. Assi podeos
Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.
Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO
APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana
TOPOGRAFIA. Poligonais
TOPOGRAFIA Poligonais COORDENADAS RECTANGULARES Quando se pretende representar numa superfície plana zonas extensas da superfície terrestre, é necessário adoptar sistemas de representação plana do elipsóide,
DETERMINAÇÃO DA FÓRMULA DE UM SAL HIDRATADO
Escola Secundária do Padre António Martins Oliveira de Laoa Técnicas Laboratoriais de Quíica DETERMINAÇÃO DA FÓRMULA DE UM SAL HIDRATADO Pedro Pinto Nº 14 11ºA 11/1/003 Objectivo do Trabalho O objectivo
CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Pro. Gabriel Pires CDI-II Derivadas de Ordem Superior. Extremos 1 Derivadas de Ordem Superior Seja : D R n R, deinida num
Por que as antenas são parabólicas?
Por que as antenas são parabólicas? Adaptado do artigo de Eduardo Wagner A palavra parábola está, para os estudantes do ensino médio, associada ao gráfico da função polinomial do segundo grau. Embora quase
LFEB notas de apoio às aulas teóricas
LFEB notas de apoio às aulas teóricas 1. Resolução de equações diferenciais lineares do segundo grau Este tipo de equações aparece frequenteente e sisteas oscilatórios, coo o oscilador harónico (livre
Como calcular sua área?
TRAPÉZIO Vamos tentar preencher o trapézio com os quadradinhos. Somente 40 pequenos quadrados de 1 u.a. estão na superfície interna. Os outros estão parte dentro e parte fora. Como calcular sua área? TRAPÉZIO
GERAÇÃO DE CURVAS DE NÍVEL
GUIA PRÁTICO DataGeosis Versão 2.3 GERAÇÃO DE CURVAS DE NÍVEL Paulo Augusto Ferreira Borges Engenheiro Agrimensor Treinamento e Suporte Técnico 1. INTRODUÇÃO O DataGeosis permite o cálculo das curvas de
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de
2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3).
ROTEIRO DE ESTUDOS 3 NOME Nº 8 ANO MATEMÁTICA - 3º BIMESTRE Profs. Yuri, Marcello e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma revisão dos
a, em que a e b são inteiros tais que a é divisor de 3
Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A
Resolução de Sistemas de duas Equações do 1º grau a duas incógnitas. Método de Adição Ordenada/ Gauss
Resolução de Sistemas de duas quações do º grau a duas incógnitas Método de Adição Ordenada/ Gauss Tema: Sistemas de quações / 9º ano Actividade de enriquecimento No programa do 9º ano encontramos os seguintes
F 105 Física da Fala e da Audição
F 105 Física da Fala e da Audição Prof. Dr. Marcelo Knobel Instituto de Física Gleb Wataghin (IFGW) Universidade Estadual de Capinas (UNICAMP) [email protected] Vibrações e Ondas Variações teporais
Movimentos oscilatórios
30--00 Movientos oscilatórios Prof. Luís C. Perna Moviento Periódico U oviento periódico é u oviento e que u corpo: Percorre repetidaente a esa trajectória. Passa pela esa posição, co a esa velocidade
CIRCUITOS MAGNÉTICOS COM ENTREFERROS
135 0 CIRCUITO MAGNÉTICO COM ENTREFERRO Alus dispositivos eletroaéticos, tais coo istruetos de edidas, otores, relés etc, possue u espaço de ar a sua estrutura aética Este espaço é chaado de ëtreferro"
Aula 1 Variáveis aleatórias contínuas
Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição
Equivalente de produção. Equivalente de produção. Equivalente de produção. Para se fazer o cálculo, é necessário o seguinte raciocínio:
Custos Industriais Custeio por processo Prof. M.Sc. Gustavo Meireles 1 Na apuração de Custos por Processo, os gastos da produção são acumulados por período para apropriação às unidades feitas. Exemplo:
Considere as situações:
Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo
Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação
Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação À seguir eemplificaremos e analisaremos cada uma dessas três situações. : A X B Podemos
Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas
