GUIDG.COM PG. 1. Exercícios iniciais: Determine o conjunto solução das inequações: i) x 2 + 1< 2x 5x: Solução: Resolvendo em partes: y1)

Tamanho: px
Começar a partir da página:

Download "GUIDG.COM PG. 1. Exercícios iniciais: Determine o conjunto solução das inequações: i) x 2 + 1< 2x 2 @ 3 @ 5x: Solução: Resolvendo em partes: y1)"

Transcrição

1 5/7/011 CDI-1: Inequações, passo à passo, exercícios resolvidos. TAGS: Exercícios resolvidos, Inequações, passo à passo, soluções, cálculo 1, desigualdades, matemática básica. GUIDG.COM PG. 1 Exercícios iniciais: Determine o conjunto solução das inequações: i) x + 1< 5x: Resolvendo em partes: y1) x + 1 < x + < 0 > 0 x =Fp =F y) 5x x + 5x@ 3 5F 5@ ` a ` a 3 x 5F 7 x = = x i = 1 e xii =@ 3 Logo o conjunto solução é a interseção de y1 e y, então montamos o diagrama: R S B c S = x <@ ou por intervalos S =@ 3,@ Exercício para o leitor: 5 < 3 < 1 R S S = < x < ou por intervalos S

2 TAGS: Exercícios resolvidos. Livro: Calculo A Funções, Limite, Derivação, Noções de integração (5ª Edição, revista e ampliada). Diva Marília Flemming, Mirian Buss Gonçalves GUIDG.COM PG. (Números reais, pg. 15) Exercícios. (Inequações) 1. Determinar todos os intervalos de números que satisaçam as desigualdades abaixo. Fazer a representação gráica. a a 3@ x < 5 + 3x b a x@ 5 < x c a >@ 3@ 7 d a 5 x 3 < e a x 9 a 3x + > 0 g a 1@ x@x 0 h a x + 1 x x 3 + x i a x > x + x j a x ` 1 x + 0 1@ x + 3 l a x x m a x < x@ 3 n a 1 x@ 3 > 1 + x o a 3 x@ 5 p a x x@ > 0 q a x 3x + 0 r a 1 3 x + 1 x@ s a 8x x + 1 < 0 t a 1x 11x + k a x + 1 x@ x@ Soluções: a a 3@ x < 5 + 3x Por tratar-se de uma desigualdade simples, podemos resolver da seguinte maneira: 3@x < 5 + 3x 3@x@ 5@ 3x < x@ < 0 x + > 0 x>@ x >@ x >@ 1 S 1 g, +1

3 GUIDG.COM PG. 3 b a x@ 5 < x 1@ x + 3 x 1 < 3x + 1@ x ma ma c 1,3, = 1 x@ 60 < + 9x x 1 x@ + x < 0 19x@ 68 < 0 x < S 68 g 19 c a >@ 3@ 7 >@ 3@ < 5 < x 3 3 S 5, G 3 3 d a 5 x 3 < 5 < 0 x 0@ 3x + 0 < 0 ou < 0 inequação quociente x x Análise do comportamento de sinais das unções. Pela última desigualdade queremos a parte menor que zero (negativa): a y 3x + 0 < 3x + 0 = 3x =@ 0 x = 0 3 y a x< 0 x = 0 Então montamos o diagrama de sinais: Logo, vemos que os valores que tornam a desigualdade verdadeira é a união de dois intervalos: S S 0 g, +1 3

4 GUIDG.COM PG. e a x produto notavel, dierença de quadrados ` a` a x + 3 A x@ 3 0 inequação produto Análise do comportamento de sinais das unções: y 1 a x x + 3 = 0[x =@ 3 y a x@ 3 0 x@ 3 = 0[x = 3 E assim montamos o diagrama de sinais: Portanto encontramos os valores que tornam esta inequação verdadeira: R S B C S = x 3 ou por intervalos S =@ 3,3

5 GUIDG.COM PG. 5 a 3x + > 0 3x + = 0 Para resolver, precisamos comparar com a equação do segundo grau: ax² + bx + c = 0, assim identiicamos os valores de a = 1, b = -3, c =. Isso se repetirá sempre, é importante saber! x bf q A aa c a Agora substituímos nessa órmula, que é conhecida como órmula de Bhaskara, daqui pra rente será muito útil, portanto você deve memorizar! Substituindo os valores na órmula temos: x ` 3 a ` a A `a 1A ` q a `a 3Fp9@ 8 3Fp 1 3F 1 = = = 1 Resolvendo, encontramos os valores de x : S = { 1, } Mas o exercícios não quer os valores de x, e sim os valores de x para os quais a unção é maior que zero (símbolo >), então azemos o gráico para melhor visualizar: O sotare Geogebra gera esse gráico acilmente, mas você também deve aprender a azer o gráico sem a ajuda do computador, veja que só precisamos dos valores de x e do sinal de a, que identiica se a parábola esta para cima (positivo) ou para baixo (negativo). Agora podemos responder a pergunta. Para que valores a unção é maior que zero? A resposta é a parte cinza do gráico, ou R S S S, +1 ou ainda S = xr x6 1 < x < g a 1@ x@x 0 Este ica como exercício para o leitor. O processo de resolução é o mesmo, mas veja que o sinal de a é negativo, então a parábola esta para baixo. V S = x x 1 W F ou por intervalos:@ 1, 1 G

6 GUIDG.COM PG. 6 h a x + 1 x x 3 + x Veja que x e 3 (veja que o denominador não pode ser zero)... então: ` a` a ` a x x < x ` a` x 3 + x x + x + 3 < x + 6 Inequação quociente, resolvendo o numerador: y 1 a x + x + 3< 0 x + x + 3 = ` a` q 3 F p@ 0 x = = Como vemos deu raiz negativa e isso implica que não existem raízes Reais tais que tornem a equação verdadeira, isto é, as raízes são números complexos. Logo a unção é positiva para todo x pertencente aos reais. Resolvendo o denominador: y x + 6 < x + 6 = 0 ` a`a 1 6 1F 5 x x i =@ 3 e x ii = Logo, temos os valores que satisazem a inequação e podemos ver neste esboço. (em vermelho os valores de x): A solução é dada após montarmos o diagrama de sinais: Então os valores que tornam a inequação verdadeira é o conjunto: R S S = x R x<@ 3 e x> ou por intervalos S 3 S, +1

7 GUIDG.COM PG. 7 i a x > x + x x 3 + 1@ x > 0 x ` a ` a x@ 1 x@ 1 > 0 x ` 1 x@ 1 > 0 y 1 a 1> 0 1 = 0 x =Fp1 =F 1 y a x@ 1 > 0 x@ 1 = 0 x = 1 Montamos o diagrama de sinais de y1 com y : Portanto o conjunto de números que satisazem a inequação: R S S = < x < 1 e x >1 ou por intervalos S 1,1 S 1, +1 j a x ` 1 x + 0 Inequação produto, resolvendo: y 1 a = 0 y a x + 0 x + = 0 x =@ Montando o diagrama de sinais temos: Portanto o conjunto de números que satisazem a inequação: R S b C B C S = xr 1 x 1 S@ 1,1

8 GUIDG.COM PG. 8 k a x + 1 x@ x@ Resolvendo cada inequação separadamente, com x : x + x@ x@ 0 x@ z~ y 1 ~x ` x ` a 0 {~ x@ }~y y b c passando ao lado esquerdo e simpliicando ineqa proda Pelo gráico das unções podemos concluir, visualizando o digrama de sinais: b C Logo S 1 U, +1 Agora, resolvendo o lado direito: x + 1 x@ x 1 0 mmc e simpliicação x@ 0 x@ Pelo gráico da unção do denominador, concluímos: S

9 GUIDG.COM PG. 9 Comparado as soluções: b C S 1 U, +1 S Visualizando por intervalos, lembrando que x para não zerar no denominador: A única solução (ou o domínio) que satisaz simultaneamente as duas inequações é a interseção das soluções: R S S = xr x 0 b C ou S 0 l a x x Solução x x x 0 x + x x 0 y 1 a x + x 0 x + x = 0 x 1F q A 1A 1F 1 = x i = 0 x ii =@ 1 y a x 0 x = 0 x = 1F q 1 A 1A 0 1F 1 = x i = 1 e x ii = 0 Montando o diagrama de sinais: E assim: b C B S 1S 1, +1 c S PQ 0

10 GUIDG.COM PG. 10 m a x < x@ 3 Fica como exercício para o leitor. S U, +1 n a 1 x@3 > 1 + x 1 x@ 3 + x = 1 x@ 1>0 + x x@ 1>0 + x x@ 6 1 1>0 + x x@ 1>0 8 + x x@ >0 8 + x 8 + x x@ 6@ 8@x >0 8 + x@ 1 >0 8 + x Da última desigualdade temos: y1) -x-1 > 0 -x -1 = 0 -x = 1 x = -1 y) 8+x > 0 x +8 = 0 x = -8/ = - Logo, os valores de x que tornam a desigualdade verdadeira é o intervalo aberto: S 1,@. Isto é, a inequação é verdadeira para todo x pertencente a este intervalo, exceto as bordas x = -1 e x = -.

11 o a 3 F g 13 Fica como exercício para o leitor. S 5 U, +1 x@ 5 p a x x@ > 0 x x@ = 0 GUIDG.COM PG. 11 O método para encontrar as raízes de polinômios como este se chama Pesquisa de raízes, e é assim: (-) é o coeiciente d, e 1 é o coeiciente a da unção polinomial. As possíveis raízes são os divisores inteiros de d, e de a, na ração d/a. Divisores de d(-): {±1, ±} Divisores de a(1): {±1} Possíveis raízes: d P Q :F 1,F a Agora utiliza-se o dispositivo de Briot-Ruini para dividir o polinômio pelas possíveis raízes e achar a primeira que reduza o grau: F F V E re-escrevemos a unção polinomial como: x ` a + x + 1 A x@ = 0 Mas estamos procurando por valores tais que: x ` a + x + 1 A x@ > 0 y 1 a x@ > 0 x@ = 0[x = a y x + x + 1>0 x + x + 1 = 1Fp1@A 1A 1 x = logo9+ xr as raízes são números complexos Como y é maior que zero para todo x pertencente aos Reais, temos que: S =, +1

12 GUIDG.COM PG. 1 q a x 3x + 0 Neste caso a soma dos coeicientes resulta num valor igual a zero: a = 1, b = -3, c = a+b+c = 0 Conclui-se que 1 é raiz da equação, para mais inormações consulte o exercício t. Prosseguimos realizando a divisão de polinômios. Divisão de polinômios, método da chave: x³ - 3x + x - 1 -x³ + x² x² + x - = 0 + x² -3x + -x² + x = 0-x + +x - = 0+0 Então 1 é raiz. Logo podemos escrever: x³ -3x + = (x -1)(x² + x -) 0 y1) x-1 0 x -1 = 0 x = 1 y) x² + x - 0 x² + x = 0 x 1F ` q 1F 3 = x i = 1 e x ii =@ b C P Q Portanto o intervalo que satisaz a inequação é: S U 1

13 GUIDG.COM PG. 13 r a 1 3 x + 1 x@ Veriicando o denominador vemos que: x -1 e x. 1 0 x + 1 x@ ` a ` a 3 x + 1 ` a` a 0 x + 1 x@ 3x@ 3 0 x + x@ 5 0 x@ Resolvendo a última desigualdade: y1) -x x -5 = 0 -x = 5 x = -5 x = -5/ y) x² -x - 0 x² -x - = 0 Vamos resolver esta equação de segundo grau usando Soma e Produto, isto é dois números somados que são iguais à S, e dois números multiplicados que são iguais à P: S =@ 1 =@ = 1 a 1 P = c =@ =@ a 1 x i =@ 1 e x ii = ` a Pois S:@ 1 + = 1 e P: 1A@ =@ Logo, as raízes são x i =@ 1 e x ii = Com isso montamos o diagrama: Logo os valores de x que satisazem a inequação é o intervalo S 5 G S@ 1,.

14 GUIDG.COM PG. 1 s a 8x x + 1 < 0 Uma das ormas de resolver este exercício é atorando o polinômio: 8x x + 1 = x ` a ` a x@ x@ 1 <0 ` a x@ 1 1 <0 Resolvendo a última desigualdade: y1) x-1< 0 x-1= 0 x= 1 x=1/ y) x² -1 < 0 x²-1 = 0 x² = 1 x² = ¼ s x = ± 1 =F 1 então: x i =@ 1 e xii = 1 Então montamos o diagrama: Logo, os valores que tornam a desigualdade verdadeira é o intervalo: S = (-, -1/)

15 GUIDG.COM PG. 15 t a 1x 11x + O procedimento já oi visto na resolução do exercício ( p ), chama-se Pesquisa de raízes, inelizmente são poucos os alunos que tenham estudado este assunto no ensino médio, portanto se você não entender deverá estudar Polinômios e equações polinomiais. 1x 0x + 11x@ 0 1x 0x + 11x@ = 0 Agora devemos atorar o polinômio e precisamos das raízes. O procedimento é um pouco longo, mas unciona. Pesquisa de raízes: (-) é o coeiciente d, e 1 é o coeiciente a da unção polinomial. As possíveis raízes são os divisores inteiros de d, e de a, na ração d/a. Divisores de d(-): {±1, ±} Divisores de a(1): {±1, ±, ±3, ±, ±6, ±1} Possíveis Raízes: d a V 1 : F 1,F 1,F 3 1,F 1,F 1,F 6 1,F,F,F,F 3 Percebemos que algumas são equivalentes, e resumimos o conjunto em: V d 1 : F 1,F 1,F a 3 1,F 1,F 1,F 6 1 W,F,F 3,F 6 W,F 1 Agora utiliza-se o dispositivo de Briot-Ruini para dividir o polinômio pelas possíveis raízes e achar a primeira que reduza o grau: F F 1/ V Logo podemos re-escrever a unção polinomial como um produto: g 1 1x + A x@ = 0 Mas estamos procurando por valores tais que: g 1 1x + A x@ 0

16 GUIDG.COM PG. 16 g 1 1x + A x@ 0 Resolvendo a última desigualdade: a 1 y 1 x@ 0 x@ 1 = 0 x = 1 y a 1x + 0 1x + = 0 7x + = 0 7Fp9@A 6A 7F 1 x = = 1 1 x i = 8 = e xii = 6 1 = Então, montamos o diagrama: Logo, os valores de x que tornam a inequação verdadeira é o intervalo: S = {1/} U [/3, + ) Encontrou erros? Envie sua sugestão, ajude-nos a melhorar este manual de soluções. guilhermedg@hotmail.com.guidg.hd1.com.br

FUNÇÃO QUADRÁTICA. Resumo

FUNÇÃO QUADRÁTICA. Resumo 01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma

Leia mais

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010 1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa

Leia mais

Aula 4 Função do 2º Grau

Aula 4 Função do 2º Grau 1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x)

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x) Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares Anteriormente, vimos que um dos problemas no cálculo de ites surge quando desejamos f() calcular a. A estratégia incial é calcular

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos. Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: Prof. Dr. Daniel Cordeiro de Morais Filho BOLSISTA: Tiago Alves

Leia mais

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 1... Francisco A. M. Gomes UNICAMP - IMECC Março de 016 1 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 8 Francisco A.

Leia mais

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número MatemáticaI Gestão ESTG/IPB Departamento de Matemática 1. Números Números inteiros 0 10 1 1 10 10 2 10 100 3 10 1000 6 10 1000000 10 10 12 18 Uma unidade (um) Uma dezena (dez) Uma centena (cem) Um milhar

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. , 6 ; 4, 86 ; (A); (D); 4 permite resolver o problema é 0 problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 6 = 7, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 0/0 ; 4 ; [ 0, [ 9º

Leia mais

2 - Generalidades sobre funções reais de variável real

2 - Generalidades sobre funções reais de variável real Análise Matemática I - 006/007 - Generalidades sobre unções reais de variável real.-deinição e Propriedades De.. Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar

Leia mais

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02 1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n.

CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Pro. Gabriel Pires CDI-II Derivadas de Ordem Superior. Extremos 1 Derivadas de Ordem Superior Seja : D R n R, deinida num

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Ivete Maria Baraldi Unidade Faculdade de Ciências Departamento Departamento

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Maria Edneia Martins Salandim Unidade Faculdade de Ciências Departamento

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

a, em que a e b são inteiros tais que a é divisor de 3

a, em que a e b são inteiros tais que a é divisor de 3 Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. 11, 6 ; 1 4, 86 ; (A); (D); 41 permite resolver o problema é problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 16 = 17, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 11/1 ; 4 1; 1 [,

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Plano de Aula. O Winplot é um programa que permite criar gráficos de duas dimensões (2D) e três dimensões (3D), através de equações.

Plano de Aula. O Winplot é um programa que permite criar gráficos de duas dimensões (2D) e três dimensões (3D), através de equações. Plano de Aula Aluno(a): Escola: Colégio Estadual Dona Isabel Disciplina: Matemática Conteúdo: Funções Assunto: Funções do 1º e 2º Graus Público alvo: 1º Ano EM Duração: 4 a 6 h/a Objetivo: Ao final da

Leia mais

FRACÇÕES DEFINIÇÃO & OPERAÇÕES. Frações. onde a é o numerador; e b o denominador. O significado de uma fração

FRACÇÕES DEFINIÇÃO & OPERAÇÕES. Frações. onde a é o numerador; e b o denominador. O significado de uma fração Frações O símbolo a significa a b, sendo a e b números naturais e b diferente de zero. b Chamamos: a b fracção; onde a é o numerador; e b o denominador. Se a é múltiplo de b, então a é um número natural.

Leia mais

Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br

Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br Matemática Divisão Proporcional Professor: Dudan www.acasadoconcurseiro.com.br Matemática DIVISÃO PROPORCIONAL Existem problemas que solicitam a divisão de um número em partes diretamente proporcionais

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

14/4/2010 ALGA-1: Exercícios Resolvidos Superfícies Quádricas

14/4/2010 ALGA-1: Exercícios Resolvidos Superfícies Quádricas 1//010 ALGA-1: Exercícios Resolvidos Superfícies Quádricas * Do Livro de Geometria Analítica - Alfredo Steinbruch, Paulo Winterle. GUIDG.COM PG. 1 1 Revisão de conteúdo. Veja alguns exemplos gráficos de

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

AMEI Escolar Matemática 9º Ano Sistemas de Equações

AMEI Escolar Matemática 9º Ano Sistemas de Equações AMEI Escolar Matemática 9º Ano Sistemas de Equações Equações do 1º grau com duas incógnitas Uma equação do 1º grau com duas incógnitas tem um número infinito de soluções. Para determinar se um par ordenado

Leia mais

Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55

Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 IX Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 Solução dos exercícios... 29 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 Solução dos exercícios... 64 3. conjuntos...77

Leia mais

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,

Leia mais

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens.

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens. Atividade de fixação(2º semestre) 1-O retângulo abaixo tem a medida de um dos lados e a área representada por polinômio. Determine o polinômio que representa a medida do outro lado. A=4x +12x +4x² x 4x

Leia mais

Exercícios de Matemática Equações de Terceiro Grau

Exercícios de Matemática Equações de Terceiro Grau Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09 Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira e Samuel Barbosa Aula 1 Divisibilidade 1 Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Lista de Exercícios - Radiciação

Lista de Exercícios - Radiciação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 15 - Radiciação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=x6fw1eeqs2w Gabaritos nas últimas páginas!

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

Árvores de Decisão Matemática Discreta

Árvores de Decisão Matemática Discreta Bruno Duarte Eduardo Germano Isolino Ferreira Vagner Gon Árvores de Decisão Matemática Discreta 28/04/2011 Serra IFES Definição de Árvores de Decisão: Arvore de Decisão é uma árvore em que seus nós internos

Leia mais

VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA

VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA GERAL DOS PROFESSORES DO CURSO POSITIVO VESTIBULAR UFPR 009 (ª FASE) PROVA DE MATEMÁTICA Estamos diante de um exemplo de prova! A afirmação acima, feita pelo prof. Adilson, sintetiza a nossa impressão

Leia mais

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var.

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var. PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ 6. ASSUNTO: MATEMÁTICA BÁSICA gotas ml 1 0, 5 5 ml em um minuto ml minutos 5 1 y 4 60 y 700 ml 7, litros 60per 7. ASSUNTO: MATEMÁTICA BÁSICA 60

Leia mais

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite

Leia mais

A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4

A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4 A UA UL LA A raiz quadrada Introdução Qual é o número positivo que elevado ao quadrado dá 16? Basta pensar um pouco para descobrir que esse número é 4. 4 2 = 4 4 = 16 O número 4 é então chamado raiz quadrada

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Sistema de equações lineares e não lineares Tiago de Souza Farias

Leia mais