Aprendizagem Estatística de Dados. Francisco Carvalho

Tamanho: px
Começar a partir da página:

Download "Aprendizagem Estatística de Dados. Francisco Carvalho"

Transcrição

1 Aprendzagem Esaísca de Dados Francsco Carvalho

2 A função de Densdade Normal Valor Esperado Caso conínuo [ f ] Caso dscreo f p d [ f ] f p D

3 A função de Densdade Normal Caso Unvarado função de densdade p ep Méda [ ] p d

4 A função de Densdade Normal Caso Unvarado Varânca [ ] A fdp normal un-varada é compleamene especfcada pelos parâmeros: a méda e a varânca : p d p ~ N,

5 A função de Densdade Normal Caso Unvarado

6 A função de Densdade Normal Caso Mulvarado função de densdade normal mul-varada em d dmensões p d ep

7 A função de Densdade Normal Caso Mulvarado onde é um veor coluna com d componenes é o veor de médas de d componenes é a marz de covarâncas dd é o deermnane de - é a nversa de - é a ransposa de -

8 A função de Densdade Normal Caso Mulvarado produo nerno Novamene a b d a b p ~ N, Méda [ ] p d

9 A função de Densdade Normal Caso Mulvarado [ Varânca ] O valor esperado de um veor ou de uma marz é calculado a parr do valor esperado dos seus componenes p d

10 A função de Densdade Normal Caso Mulvarado Se é o -ésmo componene de, o - ésmo componene de e j o j-ésmo componene de [ ] j [ j j ] Os elemenos da dagonal = são as respecvas varâncas de Os ouros elemenos j são as covarâncas enre e j

11 A função de Densdade Normal Caso Mulvarado Se e j são esascamene ndependenes, j = 0 Se odos os elemenos fora da dagonal são nulos, p se reduz ao produo de densdades normas un-varadas dos componenes de Se p~n,, A é uma marz dk e y=a é um veor de k componenes, enão py~na, A A

12 A função de Densdade Normal Caso Mulvarado

13 A função de Densdade Normal Caso Mulvarado Se k= A é um veor a, y = a é um escalar que represena a projeção de em uma lnha na dreção de a Nesse caso a a é a varânca da projeção de em a Dsanca de Mahalanobs enre e r

14 A função de Densdade Normal Caso Mulvarado Os ponos de densdade consane são aqueles para os quas é consane

15 A função de Densdade Normal Caso Mulvarado

16 Classfcação com aa de erro mínma Função dscrmnane Se Funções dscrmn. para a Densdade Normal ln ln P p g, N ~ p ln P ln ln d g

17 Funções dscrmn. para a Densdade Normal Caso : = I Os arbuos são esascamene ndependenes e cada arbuo em a mesma varânca Nesse caso, = I, = d e - = / I

18 Funções dscrmn. para a Densdade Normal Caso : = I e d/ ln são ndependenes de consanes advas que podem ser gnoradas Assm g ln P

19 Funções dscrmn. para a Densdade Normal Caso : = I Norma Eucldana Se as probabldades a pror são dferenes e se esá gualmene prómo de dos dferenes veores méda a decsão óma favorecerá a classe de maor probabldade a pror

20 Caso : = I Epandndo-se a forma quadráca Assm O ermo quadráco é o mesmo para odo e pode ser gnorado Funções dscrmn. para a Densdade Normal ln P g

21 Caso : = I Funções Dscrmnanes Lneares onde w 0 é o lmar ou o vés da -ésma classe Funções dscrmn. para a Densdade Normal ln P g 0 w g w w ln P w 0

22 Funções dscrmn. para a Densdade Normal Caso : = I Máquna lnear: classfcador que usa funções dscrmnanes lneares Superfíces de decsão para uma máquna lnear: pedaços de hperplanos defndos pelas equações lneares g = g j para as duas classes de maor probabldade a pror

23 Funções dscrmn. para a Densdade Normal Caso : = I Nesse caso w 0 0 onde w j P ln 0 j P j j j

24 Funções dscrmn. para a Densdade Normal

25 Funções dscrmn. para a Densdade Normal

26 Funções dscrmn. para a Densdade Normal Caso : = I Essas equações defnem um hperplano aravés do pono 0 que é orogonal ao veor w. w = - j mplca que o hperplano que separa e j é orogonal a lnha que lga as médas

27 Funções dscrmn. para a Densdade Normal Caso : = I Se P = P j, 0 j Se P P j, o pono 0 se afasa da méda mas verossíml

28 Funções dscrmn. para a Densdade Normal Caso : = I Se as probabldades a pror P são as mesmas para as c classe, enão o ermo ln P pode ser gnorado Classfcador baseado na dsanca mínma: Para classfcar calcule - para cada veor de médas e afee a classe c al que - é mínmo

29 Funções dscrmn. para a Densdade Normal Caso : = I

30 Funções dscrmn. para a Densdade Normal Caso : = As marzes de covarâncas de odas as classes são dêncas Geomercamene: as observações se enconram em hperelpsódes de mesmo amanho e forma e d/ ln são ndependenes de e podem ser gnorados

31 Funções dscrmn. para a Densdade Normal Caso : = Função dscrmnane: g ln P Se as probabldades a pror são odas dêncas, o ermo lnp pode ser gnorado

32 Funções dscrmn. para a Densdade Normal Caso : = Classfcador baseado na dsanca mínma: Para classfcar calcule para cada veor de médas e afee a classe c al que é mínmo Se as probabldades a pror são desguas a decsão será vesada em favor da classe mas provável

33 Funções dscrmn. para a Densdade Normal Caso : = A epansão da forma quadráca - j - - j resula no ermo - que é ndependene de e pode ser elmnado As funções dscrmnanes são novamene lneares: g w w 0

34 Funções dscrmn. para a Densdade Normal Caso : = onde w w 0 ln P Como os dscrmnanes são lneares, as froneras de decsões são hperplanos Se e j são coníguos, a equação da fronera enre elas é w 0 0

35 Caso : = onde Como w = - - j geralmene não esá na dreção de - j o hper-plano que separa e j geralmene não é orogonal a lnha que lga as médas Funções dscrmn. para a Densdade Normal j w P P ln j j j j j 0

36 Funções dscrmn. para a Densdade Normal Caso : = No enano, o hper-plano nercepa esa lnha em 0 ; se as probabldades a pror são guas 0 esá no meo dessa lnha Senão, o hper-plano se desloca na dreção oposa da méda cuja classe em maor probabldade a pror

37

38 Funções dscrmn. para a Densdade Normal Caso 3: arbráro Nesse caso, somene o ermo d/ ln pode ser gnorado As funções dscrmnanes são quadrácas g W w w 0

39 Caso 3: arbráro onde Funções dscrmn. para a Densdade Normal W w ln P ln w 0

40 Funções dscrmn. para a Densdade Normal Caso 3: arbráro No caso de duas classes as superfíces de decsão são hper-quádrcas: hperplanos, hper-esferas, hper-elpsódes, hper-parabolódes, hper-hperbolódes

41 Funções dscrmn. para a Densdade Normal Caso 3: arbráro No caso undmensonal, as regões de decsão podem ser não conecadas:

42

43

44

45 Funções dscrmn. para a Densdade Normal Eemplo

46 Arbuos Dscreos Fórmula de Bayes Nesse caso, as componenes de são bnáras 0,, ernáras 0,, ou m-áras 0,,,m- onde P P j c j P j P P P P j j j

47 Arbuos Dscreos Rsco Condconal A defnção de rsco condconal R não muda A regra de decsão de Bayes permanece a mesma: para mnmzar o rsco global selecone a ação para a qual R é mínmo * arg mn R

48 Arbuos Dscreos Rsco Condconal A regra básca para mnmzar a aa de erro pela mamzação da probabldade a poseror ambém não muda Ns equações das funções dscrmnanes é necessáro apenas rocar as densdades p pelas probabldades P

49 Arbuos Dscreos Arbuos Bnáros Independenes Seja =,, d onde as componenes são 0 ou, com probabldades p Pr[ ] e q Pr[ ]

50 Arbuos Bnáros Independenes Supondo-se ndependênca condconal pode-se escrever P como os produos das probabldades das componenes de : Arbuos Dscreos d d p p P P d d q q P P

51 Arbuos Bnáros Independenes A razão de verossmlhança é Arbuos Dscreos d d d q p q p q q p p P P

52 Arbuos Dscreos Arbuos Bnáros Independenes Função dscrmnane g g g g ln P Função dscrmnane, onde ln P g d ln p q ln p q ln P P

53 Arbuos Dscreos Arbuos Bnáros Independenes A função dscrmnane é lnear em : g w 0 d d w p ln q w 0 ln onde P P w ln p q q p,,d

54 Arbuos Dscreos Arbuos Bnáros Independenes Decde-se se g > 0 e se g 0 Se p = q, w = 0, como esperado, pos nesse caso não nforma sobre as classes Se p > q, enão - p < - q e w é posvo. Assm = conrbu com w voos para

55 Arbuos Dscreos Arbuos Bnáros Independenes Além dsso, fado q <, w é ano maor quano p é grande Se p < q, w é negavo e = conrbu com w voos para Aumenando P aumena-se w 0 e a decsão é envesada em favor de, enquano decrescer P em o efeo oposo

56 Eemplo 3 Arbuos Dscreos

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt Modulaçõe dga Epaço de nal e regõe de decão Funçõe orogona Orogonalzação de Gram-Schmd Uma perpecva geomérca do na e ruído (Koelnkov) Um epaço orogonal de dmenõe é caracerzado por um conjuno de ψ () funçõe

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

5 Sistemas Lineares com Coecientes Periódicos

5 Sistemas Lineares com Coecientes Periódicos 5 Ssemas Lneares com Coecenes Peródcos Ese capíulo raa de forma suscna do esudo da esabldade de soluções peródcas de ssemas dnâmcos não-lneares. Segundo Rand [83], a eora de Floque é a eora mas geral que

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

PCA e IMPCA. Capítulo. 5.1 Considerações Iniciais

PCA e IMPCA. Capítulo. 5.1 Considerações Iniciais Capíulo 5 PCA e IMPCA 5. Consderações Incas A análse de componenes prncpas (PCA) [URK, M. A. & PENLAND, A. P. (99)] é uma ransformação lnear orogonal de um espaço q-dmensonal para um espaço n-dmensonal,

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

AGG-232 SÍSMICA I 2011 SÍSMICA DE REFLEXÃO ANÁLISE DE VELOCIDADES

AGG-232 SÍSMICA I 2011 SÍSMICA DE REFLEXÃO ANÁLISE DE VELOCIDADES AGG-3 SÍSMICA I 0 SÍSMICA DE REFLEXÃO AÁLISE DE ELOCIDADES O objevo da análse de velocdades é deermnar as velocdades sísmcas das camadas geológcas em subsuperfíce. As velocdades sísmcas são ulzadas em

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

5 Programação Matemática Princípios Básicos

5 Programação Matemática Princípios Básicos 5 Programação Maemáca Prncípos Báscos 5. Consderações Geras Ese capíulo em por objevo apresenar os conceos báscos de Programação Maemáca (PM), necessáros à compreensão do processo de omzação de dmensões,

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /07 Obs.: Esa lsa deve ser enregue resolvda no da da prova de recuperação. Valor: 5,0

Leia mais

Iluminação e FotoRealismo: Radiosidade

Iluminação e FotoRealismo: Radiosidade Ilumnação e oorealsmo: Radosdade Luís Paulo Pexoo dos Sanos hp://gec.d.umnho.p/mcgav/fr Premssas Todas as neracções dos obecos com a luz são dfusas L( x Θ) = L( x), Θ Ω Podemos enão quanfcar a radosdade

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

5 Avaliação da Eficiência Computacional

5 Avaliação da Eficiência Computacional 5 Avalação da fcênca Compuaconal 5.1 Inrodução É desejado ncorporar o cálculo dos índces de adequação de ações de conrole de ensão ao programa SAN. O programa SAN esá sendo mplemenado com a esruura aual

Leia mais

Cap. 5 Classificação Temática

Cap. 5 Classificação Temática Prncípos e Aplcações da Deteção Remota Cap. 5 Classfcação Temátca 5.1 O Processo de Classfcação 5. Classfcação de Máxma Verosmlhança (supervsonada paramétrca) 5..1 Classes multvaradas normas 5.. Lmtes

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12 Traaeno de Dados º Seesre 5/6 Tópcos de Resolução do Trabalho Quesão a Para agrupar os dados e classes ora consderados os valores das rendas aé 5. ua vez que a parr dese valor os dados se enconra basane

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

F-128 Física Geral I. Aula exploratória-10a UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10a UNICAMP IFGW F-8 Físca Geral I Aula exploraóra-a UNICAMP IFGW username@f.uncamp.br Varáves roaconas Cada pono do corpo rígdo execua um movmeno crcular de rao r em orno do exo. Fgura: s=r Deslocameno angular: em radanos

Leia mais

3.2 Processo de Wiener

3.2 Processo de Wiener 3. Proceo de Wener Proceo de Wener, ou Movmeno Brownano, é um po parcular de Proceo de Markov, muo ulzado na fíca para decrever o movmeno de uma parícula que eá ujea a um grande número de pequeno choque

Leia mais

EN3604 FILTRAGEM ADAPTATIVA

EN3604 FILTRAGEM ADAPTATIVA EN3604 FILTRAGEM ADAPTATIVA Processameno de Snas em Arranjos Técncas de processameno consderando snas provenenes de um grupo de sensores espacalmene dsrbuídos. Poencal para melhorar SNR/ Cancelameno de

Leia mais

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

11 Apêndice A Estrutura a termo e risco de taxa de juros

11 Apêndice A Estrutura a termo e risco de taxa de juros 70 pêndce.. Esruura a ermo e rsco de aa de juros s aplcações de munzação esão nmamene lgadas ao rsco de aa de juros. Por sso, remos eplcar mas dealhadamene o que é ese rsco. Para se enender o rsco de aa

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

Iluminação e FotoRealismo: Radiosidade

Iluminação e FotoRealismo: Radiosidade Ilumnação e oorealsmo: Radosdade Luís Paulo Pexoo dos Sanos hp://gec.d.umnho.p/mcgav/fr Premssas Todas as neracções da luz com os obecos são dfusas L x Θ L x, Θ Ω Expressa em ermos de radosdade W/m 2 r

Leia mais

CAPÍTULO 9 MODELOS DE REGRESSÃO COM VARIÁVEIS BINÁRIAS

CAPÍTULO 9 MODELOS DE REGRESSÃO COM VARIÁVEIS BINÁRIAS Economera Semesre 200.0 40 CAPÍTULO 9 MODELOS DE REGRESSÃO COM VARIÁVEIS BINÁRIAS OBJETIVOS Consderar modelos em que uma ou mas varáves explcavas são varáves nomnas (ambém chamadas de ndcadores, varáves

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

Solução numérica de equações diferenciais ordinárias. Problema de valor inicial (PVI)

Solução numérica de equações diferenciais ordinárias. Problema de valor inicial (PVI) Solução numérca de equações derencas ordnáras Problema de valor ncal PVI 4 5 Inrodução 4 5 Uma equação derencal ordnára é denda como uma equação que envolve uma unção ncógna e algumas das suas dervadas

Leia mais

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES NOTAS DE AULA DA DISCIPLINA CE76 3 DISTRIBUIÇÃO NORMAL MULTIVARIADA 3 DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES A densdade normal multvarada é uma generalação da densdade normal unvarada ara dmensões

Leia mais

Matemática Financeira e Instrumentos de Gestão

Matemática Financeira e Instrumentos de Gestão Lcencaura em Gesão Maemáca Fnancera e Insrumenos de Gesão [] Carlos Francsco Alves 2007-2008. Insrumenos Báscos de Análse de Dados. Conceos Inroduóros População ou Unverso: Uma população (ou um unverso)

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina:

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Deparameno de Informáca Dscplna: Modelagem Analíca do Desempenho de Ssemas de Compuação Fluxos de Enrada Fluxos de Saída Le de Lle Faor de Ulzação rof. Sérgo Colcher colcher@nf.puc-ro.br rocesso de Chegada

Leia mais

REDUÇÃO DE DIMENSIONALIDADE

REDUÇÃO DE DIMENSIONALIDADE Análise de componenes e discriminanes REDUÇÃO DE DIMENSIONALIDADE Uma esraégia para abordar o problema da praga da dimensionalidade é realizar uma redução da dimensionalidade por meio de uma ransformação

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

FACULDADE IBMEC SÃO PAULO Programa de Mestrado Profissional em Economia

FACULDADE IBMEC SÃO PAULO Programa de Mestrado Profissional em Economia FACULDADE IBMEC SÃO PAULO Programa de Mesrado Profssonal em Economa ANTONIO ARTHUR PITANGUY SAMPAIO ALOCAÇÃO DE ATIVOS COM MODELOS DE VOLATILIDADE MULTIVARIADA EVIDÊNCIAS COM DADOS BRASILEIROS São Paulo

Leia mais

Henrique M. J. Barbosa Instituto de Física USP

Henrique M. J. Barbosa Instituto de Física USP Henrque M. J. Barbosa Insuo de Físca USP hbarbosa@f.usp.br Amosfera Esem odas as freqüêncas e odas podem ser mporanes devdo as nerações não lneares E.: vórces urbulenos e convecção aconecem em escalas

Leia mais

Henrique M. J. Barbosa Instituto de Física USP

Henrique M. J. Barbosa Instituto de Física USP Henrque M. J. Barbosa Insuo de Físca USP hbarbosa@f.usp.br Conservação A equação de conservação de massa é semelhane a conservação de momeno: S F D v q q q S F q D q q v g v v v v P Equações Dferencas

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Plano de Aula Aprendzagem de Máquna Aprendzagem Baseada em Instâncas Alessandro L. Koerch Introdução Espaço Eucldano Aprendzagem Baseada em Instâncas (ou Modelos Baseados em Dstânca) Regra knn (k vznhos

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendzagem de Máquna Alessandro L. Koerch Programa de Pós-Graduação em Informátca Pontfíca Unversdade Católca do Paraná (PUCPR) Máqunas de Vetor de Suporte Introdução Support Vector Machnes SVM Método

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

ELECTROMAGNETISMO. EXAME 1ª Chamada 22 de Junho de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 1ª Chamada 22 de Junho de 2009 RESOLUÇÕES ELECTROMAGNETISMO EXAME 1ª Chamada de Junho de 00 RESOLUÇÕES As esposas à mao pae das pegunas devem se acompanhada de esquemas lusavos, que não são epoduzdos aqu. 1. a. As ês paículas e o pono (.00, 0.00)

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Parte III. Objetivo: estudar o deslocamento de um corpo quando esta rolando

Parte III. Objetivo: estudar o deslocamento de um corpo quando esta rolando Pare Objevo: esudar o deslocameno de um corpo quando esa rolando 1 Coneúdo programáco: 6. Movmeno de Roação Varáves da roação, Relação enre Cnemáca Lnear e Cnemáca Angular, Energa cnéca de roação, nérca

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

2 Estabilidade de Tensão

2 Estabilidade de Tensão Esabldade de Tensão. Inrodução O objevo desa seção é mosrar a possbldade de exsênca de fenômenos que se possa assemelhar a aqueles observados na operação de ssemas elércos, e assocados ao colapso de ensão.

Leia mais

DICAS PARA RESOLUÇÃO - LISTA 5 ÁLGEBRA LINEAR (MATRIZES E DETERMINANTES) t

DICAS PARA RESOLUÇÃO - LISTA 5 ÁLGEBRA LINEAR (MATRIZES E DETERMINANTES) t DICAS PARA RESOLUÇÃO - LISTA 5 ÁLGEBRA LINEAR (MATRIZES E DETERMINANTES) 0. a, a, a, A a, a, a,,,, a a a 0 5 4 0. + 6 4 + 4 7 + 8 5 8 5 a) A + B + 8 9 + 0 6 + 6 5 9 B 7 4 6 5 7 b)a 9 7 8 9 5 8 8 0 0. s,

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Instituto de Física USP. Física V - Aula 34. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 34. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 34 Professora: Mazé Bechara Aula 34 Soluções da equação de Schroedinger para auo-esados de energia não ligados.. A parícula livre. As auo-funções de energia e de momeno

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Modelagem de Curvas. Prof. Márcio Bueno Fonte: Material do Prof. Jack van Wijk

Modelagem de Curvas. Prof. Márcio Bueno Fonte: Material do Prof. Jack van Wijk Modelagem de Curvas Prof. Márco Bueno {cgarde,cgnoe}@marcobueno.com Fone: Maeral do Prof. Jack van Wjk Coneúdo Curvas Paramércas Requsos Conceos Ineolação Lnear Inerolação de Lagrange Curva de Bézer 2

Leia mais

2. FUNDAMENTOS DE CORRENTE ALTERNADA

2. FUNDAMENTOS DE CORRENTE ALTERNADA Fundamenos de CA 14. FUNDAENTOS DE CORRENTE ALTERNADA Aé o momeno nos preocupamos somene com ensões e correnes conínuas, ou seja, aquelas que possuem módulo e sendo consanes no empo, conforme exemplos

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendzagem de Máquna Aprendzado baseado em nstâncas Aprendzado não-paramétrco Quando as suposções fetas por métodos paramétrcos não são váldas para todo o espaço de entrada, provocando erros predtvos

Leia mais

2. VARIÁVEIS ALEATÓRIAS

2. VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS 0 Varável aleatóra Ω é o espaço amostral de um epermento aleatóro Uma varável aleatóra é uma função que atrbu um número real a cada resultado em Ω Eemplo Retra- ao acaso um tem produzdo

Leia mais

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear clássco com erros heterocedástcos O método de mínmos quadrados ponderados 1 Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

Curso Gabarito Macroeconomia Desinflação e Curva de Phillips. Prof.: Antonio Carlos Assumpção

Curso Gabarito Macroeconomia Desinflação e Curva de Phillips. Prof.: Antonio Carlos Assumpção Curso Gabario Macroeconomia Desinflação e Curva de Phillips Prof.: Anonio Carlos Assumpção Produo, Desempreo e Inflação Ese exemplo (capíulo 7 Blanchard) baseia-se em rês relações: A lei de Okun, que relaciona

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012 Físca Geral I - F -8 Aula Cnemáca e Dnâmca das oações º semesre, 0 Movmeno de um corpo rígdo Vamos abandonar o modelo de parícula: passamos a levar em cona as dmensões do corpo, nroduzndo o conceo de corpo

Leia mais

UFGD 2015 DANIEL KICHESE

UFGD 2015 DANIEL KICHESE Quesão 59: º) Deermnação dos ponos de nerseção: 5 5 º Pono : B 5 5 º Pono : C 5 5 º Pono : B C C º) Deermnação da Área: B 5 5 5 / e 0 e 5 5 5 5 e 0 5 5/ 5 5 0 0 0 5 5 Resposa: E Quesão 60: Número de blhees

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

Adriana da Costa F. Chaves

Adriana da Costa F. Chaves Máquna de Vetor Suporte (SVM) para Regressão Adrana da Costa F. Chaves Conteúdo da apresentação Introdução Regressão Regressão Lnear Regressão não Lnear Conclusão 2 1 Introdução Sejam {(x,y )}, =1,...,,

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Exame final de Estatística 2ª Época - 24 de Junho de 2004

Exame final de Estatística 2ª Época - 24 de Junho de 2004 xame fnal de statístca ª Época - de Junho de Faculdade de conoma José Antóno nhero Unversdade Nova de Lsboa Mara Helena Almeda Note bem:. Resolva grupos dferentes em folhas dferentes;. IDNTIFIQU todas

Leia mais

4 Teste do Modelo CAPM considerando o pagamento de impostos

4 Teste do Modelo CAPM considerando o pagamento de impostos 4 Tee do Modelo CAPM conderando o pagameno de mpoo Com o objevo de emar o CAPM depo de mpoo, remo ulzar a meodologa propoa por Lzenberger e Ramawamy (979. A eqüênca do méodo egue rê pao para emação do

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

5.1 O Processo TAR. é definida como um processo limiar auto-regressivo com h. regimes se puder ser representada por (5) ). Os termos ,...

5.1 O Processo TAR. é definida como um processo limiar auto-regressivo com h. regimes se puder ser representada por (5) ). Os termos ,... 5 O Modelo Não-Lnear Como vso no capíulo aneror, há espaço para uma análse mas profunda da função de reação do Banco Cenral do Brasl. Auores como Clarda, Gal e Gerler (2000) e Cogley e Sargen (2001) examnam

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

Programação Não Linear Irrestrita

Programação Não Linear Irrestrita EA 044 Planejameno e Análse de Ssemas de Produção Programação Não Lnear Irresra DCA-FEEC-Uncamp Tópcos -Inrodução -Busca undmensonal 3-Condções de omaldade 4-Convedade e omaldade global 5-Algormos DCA-FEEC-Uncamp

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

3 Dados e Modelo Econométrico 3.1. A amostra de funcionários públicos

3 Dados e Modelo Econométrico 3.1. A amostra de funcionários públicos 3 Dados e Modelo Economérco 3.1. A amosra de funconáros públcos Os dados usados nese esudo êm como fone a Pesqusa Naconal de Amosra por Domcílo (PNAD, uma pesqusa domclar realzada anualmene no Brasl pelo

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

CARTAS DE CONTROLE MULTIVARIADAS

CARTAS DE CONTROLE MULTIVARIADAS UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO DANILO MARCONDES FILHO CARTAS DE CONTROLE MULTIVARIADAS BASEADAS NO MÉTODO KERNEL-STATIS

Leia mais

4 Reconhecimento de Padrões

4 Reconhecimento de Padrões 46 4 Reconhecmento de Padrões Este capítulo apresenta de forma lustrada os concetos báscos do Reconhecmento de Padrões e vsa mostrar o potencal desta ferramenta em dversas aplcações. Trata-se de um texto

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Camadas intermediárias ... Figura 3.1: Exemplo de arquitetura de uma rede neural de múltiplas camadas

Camadas intermediárias ... Figura 3.1: Exemplo de arquitetura de uma rede neural de múltiplas camadas 3 EDES NEUAIS E SVM Nesse caíulo serão nroduzdos conceos de edes Neuras e Máquna de Veores Suore (SVM) necessáros ara comreensão da meodologa desenvolvda. 3. edes Neuras As redes neuras são modelos maemácos

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais