Programação Não Linear Irrestrita

Tamanho: px
Começar a partir da página:

Download "Programação Não Linear Irrestrita"

Transcrição

1 EA 044 Planejameno e Análse de Ssemas de Produção Programação Não Lnear Irresra DCA-FEEC-Uncamp

2 Tópcos -Inrodução -Busca undmensonal 3-Condções de omaldade 4-Convedade e omaldade global 5-Algormos DCA-FEEC-Uncamp

3 -Inrodução Modelos de programação não lnear (PNL ma (mn ( sa D R n resro ma (mn ( sa D R n rresro 3 DCA-FEEC-Uncamp

4 Eemplo: regressão não lnear número cuso número cuso número cuso p q p q p q Número de undades Cuso unáro 50 cuso unáro número 4 DCA-FEEC-Uncamp

5 Hpóese: q r( p ( p Modelo PNL:, m [ q ( p ] mn ( cuso unáro Número de Undades Cuso Unáro número m 40.69; q r( p p DCA-FEEC-Uncamp

6 Funções suaves e dervadas ( ( ( suave não conínua não derencável 6 DCA-FEEC-Uncamp

7 ( suaveconínua e derencável no domímo D R n Modelos PNL com unções suaves são mas raáves Funções suaves: possuem dervadas busca mas ecene Dervada: orma analíca pode ser dícl/mpossível de ser obda 7 DCA-FEEC-Uncamp

8 -Busca undmensonal ( ( lo h lo h lo h lo h h lo α ( + α ( h h lo lo ( unmodal [ h, lo ] coném * α 0.68 número de ouro 8 DCA-FEEC-Uncamp

9 Busca undmensonal com número de ouro Passo 0 Incalzação:escolher lo, h e olerânca ε > 0; α 0.68; deermnar h α ( h lo h + α ( h lo calcular valor da unção ( para os quaro ponos; 0; Passo Parada: se ( h lo ε,parar: solução óma apromada * /( h lo ; senão r para Passo, se ( ésuperor a ( ; caso conráro r para o Passo 3; Passo Esquerdo: esrear lado esquerdo do nervalo; h ; h α ( h lo avalar ( ; + ; r para Passo ; Passo 3 Dreo: esrear lado dreo do nervalo; lo ; lo + α ( h lo avalar ( ; + ; r para Passo ; 9 DCA-FEEC-Uncamp

10 Inervalo ncal para busca undmensonal Inervalo ncal deve ser al que * [ lo, h ] padrão 3 ponos Padrão 3 ponos: { lo, md, h }, lo < md < h, ( md melhor que ( h e( lo { lo, md, h } * [ h, lo ] ( ( lo ( h ( md lo md * h 0 DCA-FEEC-Uncamp

11 Algormo padrão rês ponos Passo 0 Incalza: escolher lmane neror lo para * e passo δ > 0; Passo Esquerda ou Drea: se ( lo + δ ésuperor à ( lo enão md lo + δ; r para o Passo para busca àdrea; caso conráro ómo esáà esquerda; azer h lo + δ; r para Passo 3; Passo Epande: amenar δ δ; se ( md ésuperor à ( md + δ enão h md + δe parar; { lo, md, h } ornece padrão 3 ponos; senão lo md ; md md + δ; reper Passo ; Passo 3 Reduz: dmnur δ δ/; se ( lo + δ ésuperor à ( lo enão md lo + δe parar; { lo, md, h } ornece padrão 3 ponos; senão h lo + δ; reper Passo 3; DCA-FEEC-Uncamp

12 DCA-FEEC-Uncamp 3-Condções de omaldade Veor gradene ( ( n j /... /... / Marz Hessana ( n n n H L M O M L : R n Rderencávelem (,,..., n

13 3 DCA-FEEC-Uncamp ln( ( ( ] ( [, (, ( m m m p p p q p p q p q Eemplo: regressão não lnear

14 4 ] ln( ( ( ln( ( [( ] ( ( [( ( ln m m m p p p p p p q p p p q p p DCA-FEEC-Uncamp

15 5 DCA-FEEC-Uncamp (33, , (, ( (33, 0.5 (33,, ( ˆ ˆ ˆ H / /

16 Apromação va sére de Taylor ( + λ ( + λ ( ( + λ ( + λ n j j j a ordem ( + λ ( + λ ( + λ H ( ( + λ ( + λ n n n λ j + j j j j j a ordem 6 DCA-FEEC-Uncamp

17 Gradenes e ómos locas Pono esaconáro de em : ( 0 Pono esaconáro: ómo local de uma unção objevo suave Condção necessára de a ordem ( + λ ( + λ ( ± ( [ + ma, mn ] ( + λ ( ± λ ( ( unção objevo melhora (a não ser que ( 0 7 DCA-FEEC-Uncamp

18 Hessanas e ómos locas Condções de a ordem se éum pono esaconáro de enão ( 0; logo ( + λ ( ( + λ + Condção necessára ( 0 λ + λ + H ( H ( mínmo local de H( sem-posva denda mámo local de H( sem-negava denda Condção sucene dreção que melhora em pono esaconáro de e H( posva denda mínmo local de pono esaconáro de e H( negava denda mámo local de 8 DCA-FEEC-Uncamp

19 Eemplos de ponos esaconáros mámo mínmo sela 9 DCA-FEEC-Uncamp

20 4-Convedade e omaldade global Funções conveas ( ( ( ( ( + λ( ( + λ[ ( ( ];, D; λ [0,] 0 DCA-FEEC-Uncamp

21 Funções côncavas ( ( ( ( ( + λ( ( + λ[ ( ( ];, D; λ [0,] DCA-FEEC-Uncamp

22 Funções conveas e côncavas - Se ( é convea enão ( é côncava - ( com segundas dervadas connuas é convea se e somene se a marz Hessana H( é sem-posva denda em um domíno conveo (abero; ( é côncava se e somene se H( é sem-negava denda. 3- Funções lneares são conveas e côncavas 4-Se ( écôncava, g( / ( éconvea ( > 0 se ( éconvea, g( / ( écôncava ( < 0 5-Se g (y éuma unção convea não decrescene e h ( éconvea, enão ( g(h( é convea; se g(y é uma unção côncava não decrescene e h( é côncava, enão ( g(h( é côncava DCA-FEEC-Uncamp

23 6- ( éconvea se, para α 0e g ( convea,,.., k ( k α g ( 7- ( ormada a parr de mámos de unções conveas é convea ( ormada a parr do mínmo de unções côncavas é côncava ( ma { g (;, L, k } ( mn { g (;, L, k } 8- Funções conveas (côncavas são unmodas (o conráro não 3 DCA-FEEC-Uncamp

24 Omaldade global: condções sucenes Se ( éuma unção convea, enão odo mínmo local émínmo global Se ( éuma unção côncava, enão odo mámo local émámo global Consderando o caso de mínmo: seja * mínmo global e * (* < ( λ[ (* ( ] < 0; λ > 0 [ + λ(* ] ( + λ[ (* ( ] < ( ; λ [0,] ( * dreção que melhora em, D * ómo global 4 DCA-FEEC-Uncamp

25 Todo pono esaconáro de uma unção convea suave éum mínmo global Todo pono esaconáro de uma unção côncava suave éum mámo global Por eemplo, se ( é convea, enão: [ * + λ ( * ] ( * + λ[ ( ( * ] λ (0,] denção convedade [ * + λ ( * ] ( * + λ (( * Taylor ( ( * ( * ( * ( * 0 ( ( * 0 * é mínmo global 5 DCA-FEEC-Uncamp

26 5-Algormos Algormo do gradene Passo 0 Incalzação:com solução ncal 0 ; olerânca ε > 0; 0; Passo Gradene: calcular ( em ; Passo Pono Esaconáro:se ( ε enão parar; é ómo; Passo 3 Dreção: + ± ( [+ para ma, para mn]; Passo 4 Busca Undmensonal:deermnar λ + resolvendo ma λ (mn ( + λ + ; Passo 5 Aualza: + + λ + ; Passo 6 Incremena: + ; r para Passo ; 6 DCA-FEEC-Uncamp

27 Algormo do gradene ( * 3 o ( o 7 DCA-FEEC-Uncamp

28 8 DCA-FEEC-Uncamp

29 9 DCA-FEEC-Uncamp

30 30 Algormode Newon Ulza normação de segunda ordem j n n j j j n j j H λ + + λ + λ λ + + λ + λ ( ( ( ( ( ( azendo λ e dervando com relação à ( ( (,,, + + j n j j H n L ( ( 0 ( H DCA-FEEC-Uncamp

31 Newon o ( 3 DCA-FEEC-Uncamp

32 Gradene o ( DCA-FEEC-Uncamp

33 Algormo Newonano converge para ómo local se ncalzação é sucenemene próma do ómo local Não hágarana de que a marz Hessana seja não sngular em odo domíno de neresse Idea: combnar gradene + Newon Méodos quase Newonanos: + D ( Marz Daproma da nversa da Hessana H duranea busca Hessana: relaconada com a varação do gradene: ( + + ( H ( [ ] 33 DCA-FEEC-Uncamp

34 34 Broyden, Flecher, Goldarb, Shanno: BFGS ma mn, ( ( ( g d g d dg gd g d dd g d g g 0 + ± I D D D D D D T T T T T T T ( λ D DCA-FEEC-Uncamp

35 BFGS o 35 DCA-FEEC-Uncamp

36 Algormo de Nelder-Mead Não ulza dervadas Maném (n + soluções canddaas Basea-se nos conceos de: releão epansão conração encolhmeno y n+ y n+ por solução enre as (n + canddaas y n n (y y y, K, n + cenróde dos nmelhores encolhmeno 36 DCA-FEEC-Uncamp

37 y 3 y o y releão λ conração λ / ou / epansão λ y n + + λ 37 DCA-FEEC-Uncamp

38 y encolhmeno novo y 3 y 3 y novo y y (y y, K, n + 38 DCA-FEEC-Uncamp

39 Observação Ese maeral reere-se às noas de aula do curso EA 044 Planejameno e Análse de Ssemas de Produção da Faculdade de Engenhara Elérca e de Compuação da Uncamp. Não subsu o lvro eo, as reerêncas recomendadas e nem as aulas eposvas. Ese maeral não pode ser reproduzdo sem auorzação préva dos auores. Quando auorzado, seu uso é eclusvo para avdades de ensno e pesqusa em nsuções sem ns lucravos. 39 ProFernandoGomde DCA-FEEC-Uncamp

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Análise Discriminante: classificação com 2 populações

Análise Discriminante: classificação com 2 populações Análse Dscrmnane: classcação com oulações Eemlo : Proreáros de coradores de rama oram avalados seundo duas varáves: Renda U$ ; Tamanho da roredade m. Eemlo : unção dscrmnane unvarada ~ ama4 4 3 e ~ ama8.5

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

FEEC - UNICAMP. O Sistema Interligado Nacional: Políticas de Operação e suas Consequências

FEEC - UNICAMP. O Sistema Interligado Nacional: Políticas de Operação e suas Consequências FEEC - UNICAMP Campnas, mao de 28 O Ssema Inerlgado Naconal: Polícas de Operação e suas Consequêncas Secundno Soares Flho APRESENTAÇÃO 2 Ssema Elérco Braslero Geração Hdrelérca Geração Termelérca Dsponbldade

Leia mais

O díodo. Dispositivo de dois terminais

O díodo. Dispositivo de dois terminais eparameno de Engenhara Elecroécnca (EE) sposvo de dos ermnas Ânodo O díodo Cáodo Componene elemenar não-lnear ulzado em crcuos muo varados Aplcações: conversores de poênca AC/C recfcadores, processameno

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

CálculoDiferencialem R n Limites

CálculoDiferencialem R n Limites ROSÁRIO LAUREANO 1 CálculoDiferencialem R n Limites [Elaborado por Rosário Laureano] [2012/13] Esteficheirocontém: 1. Tópicosdeteoria-ites(p. 1) 2. Exercícios resolvidos(p. 5) 1 Tópicosdeteoria-ites DistânciaEuclidiana

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09 Teoria da Comuniação Pro. Andrei Piinini Legg Aula 09 Inrodução Sabemos que a inormação pode ser ransmiida aravés da modiiação das araerísias de uma sinusóide, hamada poradora do sinal de inormação. Se

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Projeções: leitura recomendada. Aulas 3, 4 e 10 da apostila Telecurso 2000

Projeções: leitura recomendada. Aulas 3, 4 e 10 da apostila Telecurso 2000 Projeções Projeções: leitura recomendada Aulas 3, 4 e 10 da apostila Telecurso 2000 Projeções: conceitos A projeção transforma pontos 3D (X, Y, Z) em 2D (xi,yi) Projeções: conceitos Raios de projeção emanam

Leia mais

CONTROLO DE SISTEMAS

CONTROLO DE SISTEMAS UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação

Leia mais

Equilíbrio e Estabilidade com Manche Livre

Equilíbrio e Estabilidade com Manche Livre Equilíbrio e Estabilidade com Manche Livre João Oliveira ACMAA, DEM, Instituto Superior Técnico, MEAero (Versão de 30 de Setembro de 2011) Superfícies de controlo longitudinal Momento de charneira Leme

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre

Leia mais

x As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas.

x As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas. Å 6pULHV GH SRWrQFLDV As VpULHVGHSRWrQFLDV são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas. Um eemplo típico é a série, O cálculo do valor

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS 2 ME262 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 8) Recife - PE

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: [email protected] Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

Circuitos Eletrónicos Básicos

Circuitos Eletrónicos Básicos Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 3: Fontes de corrente 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico Setembro

Leia mais

Introdução à Programação. João Manuel R. S. Tavares

Introdução à Programação. João Manuel R. S. Tavares Introdução à Programação João Manuel R. S. Tavares Sumário 1. Ciclo de desenvolvimento de um programa; 2. Descrição de algoritmos; 3. Desenvolvimento modular de programas; 4. Estruturas de controlo de

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática Equações Diferenciais RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM HOMOGÊNEAS, COM COEFICIENTES CONSTANTES FORMA

Leia mais

AGES FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS DIRETORIA DE ENSINO CÁLCULOS PARA 100%

AGES FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS DIRETORIA DE ENSINO CÁLCULOS PARA 100% AGES FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS DIRETORIA DE ENSINO CÁLCULOS PARA 100% 1. CÁLCULO PARA SABER A MÉDIA FINAL DO ALUNO 1.1. DISCIPLINAS EMINENTEMENTE TEÓRICAS São consideradas disciplinas eminentemente

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Análise no Domínio do Tempo de Sistemas em Tempo Discreto

Análise no Domínio do Tempo de Sistemas em Tempo Discreto Análise no Domínio do Tempo de Sistemas em Tempo Discreto Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln [email protected] Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

ALP Algoritmos e Programação

ALP Algoritmos e Programação ALP Algoritmos e Programação Estruturas de Seleção. Motivação. Conceito. Exemplos.Exercícios 1 Motivação Ex: Algoritmo para o cálculo de raízes reais de equações de 2º grau. - E se o delta ( ) for negativo?

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

Documento Auxiliar do Conhecimento de Transporte Eletrônico

Documento Auxiliar do Conhecimento de Transporte Eletrônico Documento Auxiliar do Conhecimento de Transporte Eletrônico 8338 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8339 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8340 Documento

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

UMA ANÁLISE DA CONCORRÊNCIA BANCÁRIA NA ECONOMIA BRASILEIRA

UMA ANÁLISE DA CONCORRÊNCIA BANCÁRIA NA ECONOMIA BRASILEIRA UMA ANÁLISE DA CONCORRÊNCIA BANCÁRIA NA ECONOMIA BRASILEIRA José Angelo Divino Universidade Católica de Brasília. Mestrado e Doutorado em Economia. SGAN 916, Sala A-118, Zip: 70790-160, Brasília - DF,

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

ao ouvido de um reclamante, em I,a 1, 65m do piso, é dado pela fórmula dba=20log( );

ao ouvido de um reclamante, em I,a 1, 65m do piso, é dado pela fórmula dba=20log( ); CALCULO DE ATENUAÇÃO SONORA, RESULTANTE DA CONSTRUÇÃO DE BARREIRAS ACÚSTICAS, PARA O CHILLER E PARA AS TORRES DO SISTEMA DE CONDICIONAMENTO DE AR, DA CÂMARA MUNICIPAL, DE BELO HORIZONTE, MG. I.INTRODUÇÃO:

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 0/ SUMÁRIO. FUNÇÕES REAIS DE UMA VARIÁVEL..... CONCEITO..... ZEROS DE UMA

Leia mais

Posições de template do projeto portal padrão

Posições de template do projeto portal padrão Posições de template do projeto portal padrão O portal padrão utiliza o template (tema) portalpadrao01, contido no diretório templates a partir do diretório raiz de instalação do portal padrão. A forma

Leia mais

Matemática para Engenharia

Matemática para Engenharia Matemática para Engenharia Profa. Grace S. Deaecto Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. [email protected] Segundo Semestre de 2013 Profa. Grace S. Deaecto ES401

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

4 Operações aritméticas em sistema de vírgula flutuante

4 Operações aritméticas em sistema de vírgula flutuante 77 4 Operações aritméticas em sistema de vírgula lutuante 4. Introdução É imediato reconhecer que, dados dois números, F, o resultado de qualquer das operações aritméticas +, -,, com esses números pode

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

[email protected] Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV PV O ursinho que Mais Aprova na GV FGV ADM 1/dez/01 MATEMÁTIA APLIADA 01. Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

REQUISITOS ACÚSTICOS NOS EDIFÍCIOS

REQUISITOS ACÚSTICOS NOS EDIFÍCIOS REQUISITOS ACÚSTICOS NOS EDIFÍCIOS MODELOS DE PREVISÃO Albano Neves e Sousa 22 de Maio de 2009 ÍNDICE QUALIDADE ACÚSTICA DE ESPAÇOS FECHADOS Tempo de reverberação: EN 12354-6:2003 ISOLAMENTO SONORO Ruído

Leia mais

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components 7./ RL & : Conrolador pneumáico de volume-caudal Usado em conjuno com um prao orifício ou com um sensor de pressão dinâmica e um acuador pneumáico de regiso para conrolo do volume de ar em sisemas de ar

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior 2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior Seja R 3 o espaço euclidiano tridimensional, chamamos de álgebra exterior de R 3 a álgebra Λ(R 3 ) gerada pela base canônica {e 1, e 2, e 3 } satisfazendo

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

Verificação e Validação em CFD

Verificação e Validação em CFD Erro de arredondamento. Erro iterativo. Erro de discretização. As três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento da malha). Erro

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação;

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação; R E D E S D E N O V A G E R A Ç Ã O D E S A F I O e O P O R T U N I D A D E A P D C, 3 1 D E M A R Ç O D E 2 0 0 9 A S O N A E C O M A C R E D I T A Q U E A S R d N G S Ã O U M A O P O R T U N I D A D

Leia mais

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas

Leia mais

Delft3D 3D/2D modeling suite for integral water solutions

Delft3D 3D/2D modeling suite for integral water solutions Delft3D 3D/2D modeling suite for integral water solutions Bruna Arcie Polli Doutoranda em Engenharia de Recursos Hídricos e Ambiental Estágio à docência [email protected] Plano de aula Sistemas computacionais

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Aula

Leia mais

Resoluções das Atividades

Resoluções das Atividades Resoluções das Atividades Sumário Módulo 4 Prismas, dioptro plano e lâminas de aces paralelas... Módulo 5 Lentes eséricas... 4 Módulo 6 Óptica da visão e revisão de óptica geométrica... 6 0 E Módulo 4

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

AULA 28 REGRESSÃO DESCONTÍNUA

AULA 28 REGRESSÃO DESCONTÍNUA 1 AULA 28 REGRESSÃO DESCONTÍNUA Ernesto F. L. Amaral 20 de junho de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação de Impacto do

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 69 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Rafael de Freitas Manço (UNI-FACEF) Antônio Acra Freiria (UNI-FACEF) INTRODUÇÃO Nas mais diversas áreas das ciências as equações diferenciais aparecem em situações práticas.

Leia mais

Métodos de Adams-Bashforth. Se y é uma solução exacta do problema de Cauchy, então

Métodos de Adams-Bashforth. Se y é uma solução exacta do problema de Cauchy, então Métodos de Adams-Bashforth Se y é uma solução exacta do problema de Cauchy, então ti+1 y(t i+1 ) = y(t i )+ f(t, y(t)) dt. t i A ideia é de aproximar a função f(t, y(t)) no intervalo [t i, t i+1 ] pelo

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional

CCI-22 CCI-22. 2) Erros de arredondamento. Matemática Computacional Matemática Computacional 2) Erros de arredondamento Carlos Alberto Alonso Sanches Erros de representação e de cálculo Tipos de erros Erro inerente: sempre presente na incerteza das medidas experimentais

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Integração do Sistema de Gestão em Higiene Ocupacional conforme OHSAS 18001:2007 com o PPRA. Osny F. De Camargo Gerente de EHS 3M do Brasil Ltda.

Integração do Sistema de Gestão em Higiene Ocupacional conforme OHSAS 18001:2007 com o PPRA. Osny F. De Camargo Gerente de EHS 3M do Brasil Ltda. Integração do Sistema de Gestão em Higiene Ocupacional conforme OHSAS 18001:2007 com o PPRA Osny F. De Camargo Gerente de EHS 3M do Brasil Ltda. Programa Planejar métodos para identificação de perigos,

Leia mais