Solução numérica de equações diferenciais ordinárias. Problema de valor inicial (PVI)

Tamanho: px
Começar a partir da página:

Download "Solução numérica de equações diferenciais ordinárias. Problema de valor inicial (PVI)"

Transcrição

1 Solução numérca de equações derencas ordnáras Problema de valor ncal PVI 4 5

2 Inrodução 4 5

3 Uma equação derencal ordnára é denda como uma equação que envolve uma unção ncógna e algumas das suas dervadas avaladas numa varável ndependene : ' ''... n n Nas cêncas aplcadas a ulzação de equações derencas em como objecvo descrever o comporameno dnâmco de ssemas 4 5 íscos. Por exemplo o comporameno dnâmco de um crcuo pode ser descro por uma equação derencal.

4 Tpos de equações derencas 4 5

5 Equações derencas ordnáras EDO Esas são equações derencas que possuem apenas uma varável ndependene como por exemplo: d d é unção de e é a únca varável ndependene. d d d d x x e x são unções de ; é a únca varável ndependene. e x são unções de ; é a únca varável ndependene. Esa é de segunda ordem. 4 5

6 Equações derencas parcas EDP Uma equação derencal parcal é aquela cuja unção ncógna depende de duas ou mas varáves ndependenes. Exemplo u x u u é unção de x e ; x e são varáves ndependenes. EDP lnear de ª ordem e omogénea equação de Laplace. 4 5

7 Exemplo Resolva a equação derencal d d analcamene. d d d d d d ln c c ln c c uma consane. c e e e c. Tomando c e obemos: e.

8 A solução da equação derencal resula numa amíla de curvas que dependem da consane como pode ser vso na gura abaxo. Uma solução parcular pode ser obda a parr das condções ncas do problema. A especcação de uma condção ncal dene uma solução enre a amíla de curvas. e 4 5

9 No exemplo aneror especcando uma condção ncal: obemos a solução e. d d 4 5

10 Ceras equações derencas podem ser resolvdas analcamene como o o caso no exemplo aneror. No enano so nem sempre é possível. Nese caso a solução é obda aravés de um méodo numérco. 4 5

11 O eorema segune ornece uma condção sucene para a exsênca de uma únca solução de um problema de valor ncal. 4 5

12 Teorema Consdere o problema de condção ncal: Seja ' a α [ a b]. { R : a b < < } D e conínua em D. Se exsr L > al que < L para qualquer para [ a b]. D enão o problema em uma solução únca 4 5

13 Méodo de Pcard 4 5

14 O méodo de Pcard aproxma a solução valores ncas do problema de ' a α [ a b] por oura unção n recorrendo ao méodo eravo onde a x x dx... e α. 4 5

15 Se orem saseas as condções do eorema aneror enão quando ende para a solução do problema. n n Uma esmava do erro da aproxmação n pode ser obda por: n n 4 5

16 Exemplo Consdere o problema de valores ncas 3 '. Enconre uma aproxmação do problema ulzando o méodo de Pcard.. Indque uma esmava do erro absoluo da aproxmação Indque uma esmava do erro absoluo da aproxmação aneror em dx x dx x dx x x dx x x x dx x x dx x x x x dx x x.

17 O erro em pode ser esmado por

18 Consdere a EDO de prmera ordem com condção ncal : a b a a ]; [ ' * 4 5

19 Na solução numérca não se deermna a expressão leral da solução do problema de valor ncal PVI mas sm uma solução aproxmada num conjuno dscreo de ponos. Nos problemas das cêncas aplcadas esuda-se o comporameno dnâmco de deermnadas varáves porano necessa-se da evolução das varáves em unção da varável ndependene. A parr dos dados numércos é possível gerar um esboço do gráco da unção ncógna. 4 5

20 Os méodos numércos para resolver o PVI são méodos que deermnam aproxmações... n em... Consderemos b a... n. n sendo n o número de subnervalos de [ab]; cama-se o passo da mala. a < <... < n n... n [ a b] b para a solução exaca camados ponos da mala. equdsanes n 3 a 3 n b 4 5

21 Méodos de passo smples 4 5

22 Méodos baseados na sére de Talor 4 5

23 Suponamos que em dervadas conínuas ae à ordem no nervalo Para cada a sére de Talor de em orno de é :!! "! ' ξ L. com ξ Assm desprezando o úlmo ermo do membro dreo [ ]. a b... n 4 5! "! ' L e como sasaz a equação derencal * e podemos escrever.! '! L

24 ....! "! ' ; n L α O erro local é dado por: Desgnando emos o méodo de Talor de ordem j j : 4 5 O erro local é dado por: onde! e ξ. ξ

25 Se em dervadas conínuas aé à ordem no nervalo ecado [ab] que coném os ponos sobre os quas esamos a azer a dscrezação enão exse M max [ a b] e ξ M ξ [ a b]. Assm emos um lme superor para o erro global: M max e [ a b]! C 4 5

26 Um méodo numérco é do de ordem consane C> al que: m> se exse uma e < C m para n onde C depende das dervadas da unção que dene a equação derencal. 4 5

27 Para aplcar o méodo da sére de Talor de ordem : ' '' L!! emos de calcular ' '' '''

28 Temos. ' Consderemos o méodo da sére de Talor de ª ordem: '... onde ' ' ou em noação smplcada Noa: ec. ' 4 5

29 Observe que '' A expressão da ercera dervada já nos mosra a dculdade dos cálculos de um méodo de Talor de ercera ordem. Observe anda que odos esses cálculos são eeuados para cada... n. 4 5

30 Os méodos que usam o desenvolvmeno em sére de Talor de eorcamene ornecem a solução de qualquer equação derencal. No enano do pono de vsa compuaconal os méodos da sére de Talor de ordem mas elevada são consderados naceáves pos a menos de uma classe resra de unções por exemplo o cálculo das dervadas oas envolvdas é exremamene complcado. 4 5

31 O méodo da sére de Talor de ordem cama-se méodo de Euler: onde ' e " ξ 4 5

32 Exemplo Consdere o PVI: Ulze o méodo de Euler para aproxmar.4 ou gual a 5-4. ' com erro menor O prmero passo é enconrar de modo que: e " ξ 5 4. Nese caso conecemos a solução analíca do PVI: e Enão M max [.4 ] " e.4.48 " ξ M 4 5

33 donde e.48 I [.4] ; enão Porano.3. Consderando ponos gualmene espaçados emos.4/n onde n é o número de subnervalos de I. Assm.4 n.3 Porano omando n.. n.4.3 n.9 n. 4 5

34 Assm e..4. Agora.. e Dado que e.4.48 com quaro casas decmas emos que o erro comedo é <

35 Méodos de Runge-Kua 4 5

36 A déa básca deses méodos é aprovear as qualdades dos méodos de Talor ordem elevada e ao mesmo empo elmnar a sua maor dculdade que é o cálculo das dervadas de que conorme vmos ornam os méodos de Talor compuaconalmene naceáves. 4 5

37 Os méodos de Runge-Kua de ordem n caracerzam-se pelas propredades: - São de passo smples auo-ncanes não dependem de ouros méodos; - Não exgem o cálculo de dervadas parcas de ; - Necessam apenas do cálculo de em deermnados ponos os quas dependem da ordem dos méodos; - Desenvolvendo a sére de Talor de em orno de e agrupando os ermos em relação às poêncas de a expressão do méodo de Runge- Kua concde com a do méodo de Talor de mesma ordem. 4 5

38 Uma ormulação genérca para os méodos de Runge-Kua: M Φ com Φ a a... a m onde os a são consanes e m p p m q m qm qm... q 4 As consanesa q j p são obdas de modo que se obena a mesma precsão que o méodo de Talor de ordem m. m m m 5

39 Méodo de Runge-Kua de ª ordem O méodo de Euler é um méodo de Runge-Kua de ordem m:

40 Méodos de Runge-Kua de ª ordem a a ou seja a a p q Vamos deermnar as consanes. 4 5

41 O desenvolvmeno em sére de Talor da unção p q em orno do pono é dado por: q p a a 4 5 q p q p ermos de. ] [ q p a a ermos de 3 Desa orma o méodo de Runge-Kua pode ser reescro na orma:

42 ] [ q p a a ermos de 3. A expressão: pode ser escra na orma q a p a a a 4 5 q a p a a a ] [ q a p a a a ermos de 3. ermos de 3.

43 Como o méodo de sére de Talor de ª ordem é dado por: e o méodo de Runge-Kua de ª ordem é dado por:... ] [ ermos de ] [ b a b a a a Enão a concordânca dos dos méodos aé é obda se: ermos de 3. b a b a a a

44 Dando um valor a a por exemplo / obemos a segune órmula : onde 4 5

45 Méods de Runge-Kua de ordens superores 4 5

46 De orma análoga podemos consrur méodos de Runge-Kua de 3ª ordem 4ª ordem ec. A segur apresenamos as órmulas para os méodos de Runge- Kua de 3ª e 4ª ordem: 4 5

47 Runge-Kua de 3ª ordem onde

48 Runge-Kua de 4ª ordem onde

49 Observação Os méodos de Runge-Kua apesar de serem auoncáves e não dependerem das dervadas de apresenam a desvanagem de não conecermos para eles uma esmava smples para o erro o que podera ajudar na escola do passo. 4 5

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade.

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade. FISP CIRCUITOS ELÉTRICOS EXERCÍCIOS RESOLVIDOS 00 CIRCUITOS ELÉTRICOS EXERCÍCIOS 00 Para o crcuo da fgura, deermnar a ensão de saída V ou, ulzando a lneardade. Assumremos que a ensão de saída seja V ou

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR - Mecânca Computaconal para Mecatrônca CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problema de derencação numérca aparentemente é semelante ao de ntegração numérca ou seja obtendo-se um polnômo nterpolador

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Controle Cinemático de Robôs Manipuladores

Controle Cinemático de Robôs Manipuladores Conrole Cnemáco de Robôs Manpuladores Funconameno Básco pos de rajeóra rajeóras Pono a Pono rajeóras Coordenadas ou Isócronas rajeóras Conínuas Geração de rajeóras Caresanas Inerpolação de rajeóras Inerpoladores

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

Figura 1 Uma imensa nuvem de pássaros [ red-billed queleas] retornam a seu viveiro natural ao pôr do sol, Delta do Okavango, Botswana, África

Figura 1 Uma imensa nuvem de pássaros [ red-billed queleas] retornam a seu viveiro natural ao pôr do sol, Delta do Okavango, Botswana, África 5. MÉTODO DE ENXAME DE PARTÍCULAS PARTICLE SWARM 5..Analoga Comparamenal: odos por um e um por odos 5..A Tradução Maemáca: o algormo básco 5.3.A Programação do Algormo 5.4.Eemplos Ilusravos 5. MÉTODO DE

Leia mais

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do 3 Snas Aleaóros em empo Conínuo. Pare II: Modelos de Fones de Informação e de uído. No capíulo aneror vemos oporundade de recordar os conceos báscos da eora das probabldades e das varáves aleaóras. Nese

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS BRUNO FIGUEREDO ARCENO FLORIANÓPOLIS 5 UNIVERSIDADE

Leia mais

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor APÍTUO I IRUITOS BÁSIOS OM INTERRUPTORES, IOOS E TIRISTORES. IRUITOS E PRIMEIRA OREM.. rcuo R em Sére com um Trsor Seja o crcuo apresenado na Fg... T R v R V v Fg.. rcuo RT sére. Anes do dsparo do rsor,

Leia mais

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE Pesqusa Operaconal e o Desenvolvmeno Susenável 7 a /9/5, Gramado, RS HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE André Luís Shguemoo Faculdade de Engenhara Elérca e Compuação Unversdade Esadual

Leia mais

Programação Não Linear Irrestrita

Programação Não Linear Irrestrita EA 044 Planejameno e Análse de Ssemas de Produção Programação Não Lnear Irresra DCA-FEEC-Uncamp Tópcos -Inrodução -Busca undmensonal 3-Condções de omaldade 4-Convedade e omaldade global 5-Algormos DCA-FEEC-Uncamp

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches ANÁLISE MATEMÁTICA DE MODELOS DE OLIMERIZAÇÃO Heloísa Laas Sanches TESE SUBMETIDA AO CORO DOCENTE DA COORDENAÇÃO DOS ROGRAMAS DE ÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Uma análise da não-linearidade da função de reação do Banco Central do Brasil: Avesso a Inflação ou a Recessão?

Uma análise da não-linearidade da função de reação do Banco Central do Brasil: Avesso a Inflação ou a Recessão? Uma análse da não-lneardade da função de reação do Banco Cenral do Brasl: Avesso a Inflação ou a Recessão? Terence de Almeda Pagano José Luz Ross Júnor Insper Workng Paper WPE: 88/9 Coprgh Insper. Todos

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS 1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS ANÁLISE DO CRESCIMENTO POPULACIONAL BRASILEIRO Poro Alegre 13 CÁSSIA PEREIRA DA ROSA MOSCHOUTIS

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

Capítulo 1 Introdução

Capítulo 1 Introdução Capíulo Inrodução No mercado braslero de prevdênca complemenar abera e de seguro, regulado e fscalzado pela Supernendênca de Seguros Prvados SUSEP, os planos de prevdênca e de seguro de vda que possuam

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Análise da Confiabilidade de Componentes Não Reparáveis

Análise da Confiabilidade de Componentes Não Reparáveis Análse da onfabldade de omponenes Não Reparáves. omponenes versus Ssemas! Ssema é um conjuno de dos ou mas componenes nerconecados para a realzação de uma ou mas funções! A dsnção enre ssema, sub-ssema

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica MESTRADO EM IÊNIAS DE GESTÃO/MBA MÉTODOS QUANTITATIVOS APIADOS À GESTÃO V Funções Eponencal, Poênca e ogaríca V- FUNÇÕES EXPONENIA, POTÊNIA E OGARÍTMIA. U capal, coposo anualene a ua aa de juro anual durane

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela Esa monografa é dedcada a Leíca e aos meus pas, João e Adelangela Agradecmenos Gosara de agradecer ao Prof. Vrgílo, pelo apoo e orenação dados durane ese e ouros rabalhos. Agradeço ambém a meus colegas

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

MODELAGEM E OTIMIZAÇÃO ECONÔMICA DE COLUNAS DE DESTILAÇÃO

MODELAGEM E OTIMIZAÇÃO ECONÔMICA DE COLUNAS DE DESTILAÇÃO ESCOA POITÉCICA DA UIERSIDADE DE SÃO PAUO EIPE HIDEO IGAWA RIBEIRO ERADA RACO TOEOTTI MODEAGEM E OTIMIZAÇÃO ECOÔMICA DE COUAS DE DESTIAÇÃO Trabalho de conclusão de curso apresenado à Escola Polécnca para

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

ESTIMADOR DE ESTADOS ORTOGONAL COM RESTRIÇÕES DE IGUALDADE

ESTIMADOR DE ESTADOS ORTOGONAL COM RESTRIÇÕES DE IGUALDADE ESTIMADOR DE ESTADOS ORTOGONAL COM RESTRIÇÕES DE IGUALDADE José Paulo da Slva Gouvêa (*) Anôno José Alves Smões Cosa Unversdade Federal de Sana Caarna CTC/EEL/GSP Campus Unversáro, Floranópols, S.C. C.

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos:

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos: (9) - O LIT SOLV IM DISCUSIVS ÍSIC USTÃO ÍSIC sendo nula a velocdade vercal ncal v, devdo à equação (). Volando à equação () obemos:,8 ˆj ˆj b) Dado o momeno lnear da equação () obemos a velocdade na dreção

Leia mais

5 Modelo de Previsão de Temperatura

5 Modelo de Previsão de Temperatura 5 Modelo de Prevsão de Temperaura 5. Prevsão de Clma As varações do clma nfluencam os preços das commodes pela nfluênca na demanda. Todava, a correlação enre eses preços e o parâmero de clma não são perfeos,

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

FATORES DETERMINANTES DA DEMANDA POR MOEDA NO BRASIL: UMA ABORDAGEM ECONOMÉTRICA USANDO REGRESSÃO LINEAR DINÂMICA

FATORES DETERMINANTES DA DEMANDA POR MOEDA NO BRASIL: UMA ABORDAGEM ECONOMÉTRICA USANDO REGRESSÃO LINEAR DINÂMICA Pesqusa Operaconal e o Desenvolvmeno Susenável FATORES DETERMINANTES DA DEMANDA POR MOEDA NO BRASIL: UMA ABORDAGEM ECONOMÉTRICA USANDO REGRESSÃO LINEAR DINÂMICA Wesley Vera da Slva Ponfíca Unversdade Caólca

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ EDUARDO HENRIQUE VIECILLI MARTINS DE MELLO ANÁLISE DINÂMICA DE VIGAS DE EULER-BERNOULLI E

UNIVERSIDADE FEDERAL DO PARANÁ EDUARDO HENRIQUE VIECILLI MARTINS DE MELLO ANÁLISE DINÂMICA DE VIGAS DE EULER-BERNOULLI E UNIVERSIDADE FEDERAL DO PARANÁ EDUARDO HENRIQUE VIECILLI MARTINS DE MELLO ANÁLISE DINÂMICA DE VIGAS DE EULER-BERNOULLI E DE TIMOSHENKO COM O MÉTODO DAS DIFERENÇAS FINITAS CURITIBA 2014 EDUARDO HENRIQUE

Leia mais

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR)

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR) Quesões Agráras, Educação no Campo e Desenvolvmeno CRESCIMENTO DO PRODUTO AGROPECUÁRIO: UMA APLICAÇÃO DO VETOR AUTO-REGRESSIVO (VAR) CARLOS ALBERTO GONÇALVES DA SILVA; LÉO DA ROCHA FERREIRA; PAULO FERNANDO

Leia mais

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA Hécor Arango José Polcaro G. Abreu Adalbero Canddo Insuo de Engenhara Elérca - EFEI Av. BPS, 1303-37500-000 - Iajubá (MG) e-mal: arango@ee.efe.rmg.br Resumo -

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Plano Básico Equações Diferenciais

Plano Básico Equações Diferenciais Plano Básico Equações Diferenciais PET ENGENHARIA ELÉTRICA PROGRAMA DE EDUCAÇÃO TUTORIAL ORIENTADOR: LEONARDO OLÍMPIO LOPES Felipe Pones Samara Fava Rafael Marins Hydelo Wagner Robson Cardoso Foraleza,

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005 1 Impaco da Educação Defasada sobre a Crmnaldade no Brasl: 2001-2005 Evandro Camargos Texera Ana Lúca Kassouf Seembro, 2011 Workng Paper 010 Todos os dreos reservados. É probda a reprodução parcal ou negral

Leia mais

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido.

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. A Prevsão com o Modelo de Regressão.... Inrodução ao Modelo de Regressão.... Exemplos de Modelos Lneares... 3. Dervação dos Mínmos Quadrados no Modelo de Regressão... 6 4. A Naureza Probablísca do Modelo

Leia mais