Matemática tica Discreta Módulo Extra (4)

Tamanho: px
Começar a partir da página:

Download "Matemática tica Discreta Módulo Extra (4)"

Transcrição

1 Universidade Federal do Vale do São Francisco Curso de Enenharia da Computação Matemática tica Discreta Módulo Extra (4) Pro. Jore Cavalcanti - 1

2 Introdução Proramas = Dados + Aloritmos Proramas = Tipos de Dados + Funções Proramas = (Objetos + Operações) + Funções Proramas = Objetos + ( Operações + Funções) Cateorias = Objetos + Morismos Adaptado de Haeuler, E. H., Notas de Aula, PUC-Rio 2

3 Introdução Teoria das Cateorias estuda objetos e morismos (setas) entre eles. Ela é uma eneralização da teoria dos conjuntos e das unções: Objetos = Conjuntos estruturados; Morismos = unções. Fornece uma erramenta para a descrição abstrata de problemas de matemática. Fornece uma estrutura para o estudo de semântica de linuaens de proramação. 3

4 Revisão Composição de Funções Sejam : A B e : B C, então a unção o : A C, é uma unção deinida por ( o )(a) = [(a)] onde a A. A unção o é chamada de composição de e. Ex. 1: Sejam A={1,2,3,4,5}, B={6,7,8,9} e C={10,11,12,13}. Sejam : A B e : B C, deinidas por: = {(1,6), (2,6), (3,9), (4,7), (5,7)} = {(6,10), (7,11), (8,12), (9,13)} Então = {(1,10), (2,10), (4,11), (5,11)} ( o )(2) = [(2)] = [6] = 10 A B C 4

5 Revisão Composição de Funções Ex. 2: Sejam, : dada por (x) = x 2 +1 e (x)=2x-3. Quanto vale ( o )(4)? ( o )(4) = [(4)] = (4 2 +1) = (17) = 2(17)-3 = 31. De modo eral: ( o )(x) = [(x)] = (x 2 +1) = 2(x 2 +1) -3 = 2x = 2x 2-1 Por que o e não o? A notação o siniica que primeiro calculamos e em seuida (em o (a), está mais próximo de (a)). O domínio de o é o mesmo domínio de. A existência da unção o, não asseura a deinição de o. Veja (6) no Ex. 1. Quando ambas são deinidas, eralmente o o. 5

6 Revisão Composição de Funções Ex. 3: Sejam A={1,2,3,4,5}, : A A e : A A, deinidas por: = {(1,1), (2,1), (3,1), (4,1), (5,1)} ={(1,5), (2,4), (3,3), (4,2), (5,1)} Então o e o são: o = {(1,5), (2,5), (3,5), (4,5), (5,5)} o = {(1,1), (2,1), (3,1), (4,1), (5,1)} o o Exercício: Sejam, : dada por (x) = x 2 +1 e (x)=2x-3. Mostre que: a) ( o )(4) ( o )(4) b) ( o )(x) ( o )(x) 6

7 Revisão Composição de Funções Associatividade Sejam os conjuntos A, B, C e D e sejam : A B, : B C e h: D C, então: h o ( o ) = (h o ) o [h o ( o ) (a)] = h [( o ) (a)] = h[[(a)]] [(h o ) o ](a) = (h o ) [(a)] = h[[(a)]] Loo: h o ( o ) = (h o ) o 7

8 Revisão Função Identidade Seja um conjunto A. A unção identidade em A (Id A ) é a unção cujo domínio é A e para todo a A, Id A = a, ou (a) = a. Id A = [(a,a) a A] Sejam os conjuntos A e B, : A B, então: o Id A = Id B o = ( o Id A ) (a)= (Id A (a)) = (a) = (Id B o ) (b)= Id B ( (b)) = Id B (b) = Ex.: Seja A={1,2,3}, B={4,5,6}, : A B dada por :{(1,4), (2,5), (3,6)}. Veriique que o Id A = Id B o = Id A = {(1,1), (2,2), (3,3)} Id b = {(4,4), (5,5), (6,6)} o Id A = [Id A ] = {(1,4), (2,5), (3,6)} = Id B o = Id B [] = {(1,4), (2,5), (3,6)} = 8

9 Deinição Uma cateoria C contém: 1. Uma coleção Ob C de objetos, denotados por a; b;... ;A;B;...; 2. Uma coleção Mor C de morismos (setas), denotadas por ; ;...; 3. As operações dom e cod atribuindo para cada seta dois objetos, respectivamente domínio (oriem) e codomínio (destino) de. 4. Uma operação id associando a cada objeto a um morismo id a (a identidade de a) tal que dom(id a ) = cod(id a ) = a; 5. Uma operação o (composição) associando a cada par de setas e, uma seta o. : A B, : B C o : A C A B C o 9

10 Deinição A Identidade e a Composição devem satisazer: 1 - Lei da identidade Para qualquer unção : A B tem-se que: o id a = id b o = 2 - Lei da associatividade Para quaisquer setas, e h, tal que dom() = cod() e dom() = cod(h), ( o ) o h = o ( o h). 10

11 Notação : a b denota um morismo com oriem a e destino b; Dados dois objetos a e b, o conjunto de todos os morismos, tal que : a b é denotado por C[a,b]. Assim, C[a,b] siniica que dom() = a e cod() = b. Um morismo em que coincidem oriem e destino é chamado de endomorismo; Uma cateoria C é pequena se ObC e MorC são conjuntos. Caso contrário a cateoria é dita rande. 11

12 Exemplos de cateorias: 12

13 A Cateoria Set Para comprovar que Set é uma cateoria basta, veriicar a associatividade de unções e a identidade: Set = [Ob set, Mor set, dom, cod, id set, o) 13

14 Outras Cateorias pequenas: Cateoria Vazia É a menor cateoria, que não possui objetos nem morismos: [,,,,,,] Cateoria 1 É ormada somente com 1 objeto e 1 morismo (a identidade desse objeto). A Cateoria Cateoria com 02 objetos e 02 morismos (identidades). A B Cateoria 2 É uma cateoria com 02 objetos e 03 morismos. A B 14

15 Diaramas Usados para representar cateorias e suas propriedades. : a b a b Ex.: Sejam os morismos : a b, : a c e h: c b, então seu diarama é: a b h Em um diarama, objetos podem icar isolados. Em um diarama, objetos e setas podem ser repetidos. c 15

16 Diaramas Representando identidade: a b a b ou Id a Quando a composição de todos os caminhos entre 2 objetos em um diarama são iuais, dizemos que o diarama comuta ou é comutativo. Sejam : a b, : b c h = o h: a c a a b h c 16

17 Diaramas Lei da identidade Sejam : b a, : a c, id a o = e o id a = ; b a Id a Lei da associatividade a c Sejam : c d, : b c, h: a b, ( o ) o h = o ( o h). c b a h d c b a c h b d ou a ( o ) o h o ( o h) d 17

18 Morismos (setas) Os seuintes morismos podem ser veriicados: Monomorismo Epimorismo Isomorismo Podem ser vistos como eneralizações dos seuintes tipos de unções: Injetora Sobrejetora Bijetora 18

19 Monomorismo Uma unção : A B é dita injetora, se e somente se, para quaisquer a, b A, tem-se que: Se (a) = (b), então a=b Considere que existem, h: X A, x X, x X, o (x) = o h(x) x X, ((x)) = (h(x)) x X, (x) = h(x) = h Então : A B é um monomorismo (injetora), se e somente se: o = o h o = o h X A B h então = h 19

20 Epimorismo Uma unção : A B é dita sobrejetora, se e somente se: ( b B)( a A)((a)=b) Considere que existem, h: B X, b B, a A tal que (a)=b e ((a))=h((a)) b B, (b) = h(b) = h Então : A B é um Epimorismo (sobrejetora), se e somente se: o = h o o = h o A B h X então = h 20

21 Isomorismo Uma unção : A B é dita bijetora, se or simultaneamente injetora e sobrejetora. Intuitivamente, essa deinição é de que toda unção bijetora, ao ser invertida, ainda é uma unção. Então um morismo : A B é um Isomorismo (bijetora) se e somente se possui um morismo inverso, ou seja exista um : B A, tal que: a) é um morismo inverso à esquerda de : o = Id A b) é um morismo inverso à direita de : o = Id B a b o = Id A e o = Id B 21

22 Exercícios 1. Analise os diaramas abaixo e assinale as cateorias válidas (a identidade está implícita). a) A B C b) A B h C c) A B ) ) A C B C 22

3 Função - conceitos gerais 45

3 Função - conceitos gerais 45 UFF/GMA - Matemática Básica - Parte III - Função Notas de aula - Marlene - 010-44 Sumário III Função: conceitos erais 45 3 Função - conceitos erais 45 3.1 Conceito e representação simbólica de unção...............................

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierencial e Integral Funções Proessor: Luiz Fernando Nunes, Dr 09/Sem_0 Cálculo ii Índice Funções Intervalos Deinição de unção Classiicação de unções 6 4 Função composta 8 5 Função

Leia mais

Matemática Discreta Parte 11

Matemática Discreta Parte 11 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierencial e Integral Funções Proessor: Luiz Fernando Nunes, Dr. 08/Sem_0 Cálculo ii Índice Funções.... Intervalos.... Deinição de unção.... Classiicação de unções... 6.4 Função composta...

Leia mais

Matemática tica Discreta Módulo Extra (2)

Matemática tica Discreta Módulo Extra (2) Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010 1. Funções Sobrejetoras Dizemos que uma unção : é sobrejetora se, e somente se, o seu conjunto imagem or igual ao contradomínio, isto é, se Im() =. Em outras palavras, dado um elemento z qualquer no contradomínio,

Leia mais

V Workshop de Álgebra UFG-CAC. Só Funções. Francismar Ferreira Lima. Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de / 43

V Workshop de Álgebra UFG-CAC. Só Funções. Francismar Ferreira Lima. Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de / 43 V Workshop de Álgebra UFG-CAC Só Funções Francismar Ferreira Lima Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de 2016 1 / 43 Planejamento da Apresentação 1 Produto Cartesiano 2 Relação

Leia mais

Especialização em Matemática - Estruturas Algébricas

Especialização em Matemática - Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

Produto Funcional de Grafos

Produto Funcional de Grafos ISSN 984-88 Produto Funcional de Graos Abel Rodolo Garcia Lozano Universidade do Estado do Rio de Janeiro Departamento de Matemática Universidade do Grande Rio Escola de iências, Educação, Letras, Artes

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 27 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Lista 6 - Bases Matemáticas

Lista 6 - Bases Matemáticas Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Funções

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

ANÉIS. Professora: Elisandra Bär de Figueiredo

ANÉIS. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo ANÉIS DEFINIÇÃO 1 Um sistema matemático (A,, ) constituído de um conjunto não vazio A e duas leis de composição interna sobre A, uma adição: (x, y) x y e uma multiplicação

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

FUNÇÃO. Regra. Lei de Formação. Propriedade

FUNÇÃO. Regra. Lei de Formação. Propriedade FUNÇÃO Regra Lei de Formação Propriedade Definição: Uma relação f é chamada função desde que (a,b) f e (a,c) f impliquem b=c. A definição acima equivale a dizer que : uma relação f não é uma função se

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN

ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN No século XIX Georges Boole desenvolveu uma teoria matemática com base nas leis da lógica - a Álgebra de Boole - cuja aplicação nos circuitos digitais e computadores

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo: n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão Lista L1 Preliminares Observações: Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (017) Curso de Verão Esta lista corresponde a um conjunto de exercícios selecionados

Leia mais

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 e pertinência Conjunto é entendido como uma coleção de

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 0. AN DE ESCLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste rupo, selecione a opção correta. Escreva, na sua olha de respostas, o número

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 02 Introdução à Teoria da Computação Prof.ª Danielle Casillo Linguagem: é uma forma precisa de expressar

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7.

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7. Exercícios para a Prova 3 de Matemática 1 Trimestre 1. Sendo n um número natural, a expressão. é igual a a) 1 b) 3 n b) 2 n d) 6 n 2. Fatore a² + b² - c² + 2ab 3. Os números naturais a e b, com a > b,

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014 Funções - Aula 06 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica O principal objetivo do

Leia mais

Capítulo 1. Conjuntos, Relações, Funções

Capítulo 1. Conjuntos, Relações, Funções i Sumário 1 Conjuntos, Relações, Funções 1 1.1 Axiomas e Definições.................................. 2 1.2 Operações com Conjuntos............................... 4 1.3 Relações.........................................

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Aula 13 de Bases Matemáticas

Aula 13 de Bases Matemáticas Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Notas de aula de MAC0329 Álgebra Booleana e Aplicações

Notas de aula de MAC0329 Álgebra Booleana e Aplicações Notas de aula de MAC0329 Álgebra Booleana e Aplicações Nina S. T. Hirata Depto. de Ciência da Computação IME / USP Este texto é uma referência-base para o curso de MAC0329 (Álgebra Booleana e Aplicações).

Leia mais

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008 ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções

Leia mais

Teorema da Função Inversa

Teorema da Função Inversa 3 a aula, 29-03-2007 Teorema da Função Inversa Teorema da Função Inversa Seja : (X n, p) (Y n, q) um mapa suave tal que D p : T p X n T q Y n é um isomorismo. Então existe U X n aberto tal que (1) p U,

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

Derivadas parciais de ordem superior

Derivadas parciais de ordem superior UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 21 Assunto: Derivadas parciais de ordem superior e máximos e mínimos Palavras-chaves: derivadaderivada parcial ordem de derivação ordem superior

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução MTEMÁTIC - 1o no Funções - Eponenciais e loaritmos Resolução ráica de equações e problemas Propostas de resolução Eercícios de eames e testes intermédios 1. Como o ponto é o ponto de abcissa neativa (

Leia mais

Hewlett-Packard FUNÇÃO INVERSA. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard FUNÇÃO INVERSA. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard FUNÇÃO INVERSA Aulas 0 a 0 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário FUNÇÃO INJETORA FUNÇÃO SOBREJETORA FUNÇÃO BIJETORA EXERCÍCIOS FUNDAMENTAIS FUNÇÃO INVERSA 3 EXERCÍCIOS

Leia mais

f ( C) = 243, f ( D) = 2187 e assim por diante. Suponha, ainda, que f é bijetora e que f é sua inversa.

f ( C) = 243, f ( D) = 2187 e assim por diante. Suponha, ainda, que f é bijetora e que f é sua inversa. PROCESSO SELETIVO 7 O DIA GABARITO 4 MATEMÁTICA QUESTÕES DE A 5. Considere : IR IR uma unção real deinida por cartesiano que melhor representa a unção é: cos ( ) = det sen. O gráico sen cos a) b) c) d)

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 O DIA GABARITO MATEMÁTICA QUESTÕES DE A 5. Em porcentagem das emissões totais de gases do eeito estua, o Brasil é o quarto maior poluidor, conorme a tabela abaio: Classiicação País

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MTEMÁTI - 3o ciclo Função quadrática (9 o ano) Eercícios de provas nacionais e testes intermédios 1. Na iura ao lado, estão representados, em reerencial cartesiano, a unção quadrática e o triânulo [].

Leia mais

Matrizes - Soma e Produto por Escalar

Matrizes - Soma e Produto por Escalar Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.1 23 de julho de 2015 Sumário 1 Representação de um

Leia mais

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes DAMCZB014-17SA Introdução à análise funcional Claudia Correa Conjuntos quocientes e espaços vetoriais quocientes O objetivo do presente texto é recordar as noções relacionadas a conjuntos quocientes e

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. AN DE ESCLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste rupo, selecione a opção correta. Escreva, na olha de respostas, o número

Leia mais

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

Funções. Definições: f: A B. Para todo a Dom(f), f(a) (ou seja, o conjunto dos f relativos de a) contém apenas um elemento.

Funções. Definições: f: A B. Para todo a Dom(f), f(a) (ou seja, o conjunto dos f relativos de a) contém apenas um elemento. Funções Estudaremos uma classe particular de relações chamadas FUNÇÕES. Nos preocuparemos fundamentalmente com as funções chamadas DISCRETAS, que são aquelas que relacionam um conjunto enumerável com outro

Leia mais

Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.

Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler. REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,

Leia mais

Slides de apoio: Fundamentos

Slides de apoio: Fundamentos Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos

Leia mais

MATEMÁTICA II. Ana Paula Figueiredo

MATEMÁTICA II. Ana Paula Figueiredo II DEFINIÇÃO DE FUNÇÃO Dados dois conjuntos A e B, cama-se unção de A em B a toda a correspondência unívoca deinida de A em B, isto é, que a cada elemento de A associa um e um só elemento de B. Ao conjunto

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Operações Envolvendo Vetores Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Adição de vetores Na aula anterior

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76

2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG 2019/01 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG - 2019/01 1 / 76

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

5. Composição de funções

5. Composição de funções Tema Deinições. Dierentes tipos de unções. perações com unções. Sucessões. Composição de unções Dadas duas unções, e, a composta de com escreve-se + lê-se: após ou composta de com e é deinida por: + =

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Lista 6. Bases Matemáticas. Funções I. 1 Dados A e B conjuntos, defina rigorosamente o conceito de função de A em B.

Lista 6. Bases Matemáticas. Funções I. 1 Dados A e B conjuntos, defina rigorosamente o conceito de função de A em B. Lista 6 Bases Matemáticas Funções I Dados A e B conjuntos, defina rigorosamente o conceito de função de A em B. Dados os conjuntos A = {a, e, i, o, u} e B = {,, 3, 4, 5}, diga qual das relações abaixo

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar

Leia mais

Modelos Evolucionários e Tratamento de Incertezas

Modelos Evolucionários e Tratamento de Incertezas Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 05 Teoria dos Conjuntos Difusos Max Pereira CONJUNTOS CLÁSSICOS Teoria dos Conjuntos é o estudo da associação entre objetos

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Operações com Matrizes. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Operações com Matrizes. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Operações com Matrizes Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 Operações com matrizes

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Funções e Limites - Aula 08

Funções e Limites - Aula 08 Funções e Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Março de 2013 Primeiro Semestre de 2013 Turma 2013104 - Engenharia de Computação Definição

Leia mais