Cálculo Diferencial e Integral 1

Tamanho: px
Começar a partir da página:

Download "Cálculo Diferencial e Integral 1"

Transcrição

1 NOTAS DE AULA Cálculo Dierencial e Integral Funções Proessor: Luiz Fernando Nunes, Dr 09/Sem_0

2 Cálculo ii Índice Funções Intervalos Deinição de unção Classiicação de unções 6 4 Função composta 8 5 Função Inversa 9 6 Exercícios propostos Reerências Bibliográicas 4

3 Funções Intervalos Notações ( a, b) = ] a, b[ = { x/ a x b} [ a, b] = { x/ a x b} [ a, b) = [ a, b[ = { x/ a x b} ( a, b] = ] a, b] = { x/ a x b} ( a, + ) = ] a, + [ = { x/ x a} [ a, + ) = [ a, +] = { x/ x a} (, b) = ], b[ = { x/ x b} (, b] = ], b] = { x/ x b} (, +) = ], + [ = { x / x} Operações com intervalos Exemplos: ) Sejam A = [0,] e B = [,4 [, ache B A e A B Respostas: A B = [, ] e A B = [0,4[ ) Sejam A = [,0[ e B = ], ], ache A B e A B, 4 Respostas: A B = [, ] e A B =],0[ 4

4 9 ) Sejam A = [, +[ e B = [,[, ache A B e A B 9 Respostas: A B = [,[ e A B = [, +[ Deinição de unção Dizemos que é uma unção de A em B, se e somente se, para todo x A, existe um único y B, tal que y = ( Notação: : A B O conjunto A é chamado de domínio da unção, denotado por D ( ) O conjunto B é chamado de contradomínio da unção, denotado por CD ( ) x é a variável independente y é a variável dependente Chamamos de imagem da unção, denotada Im ( ), ao conjunto: Im ( ) = { y B / x A; y = } Dizemos que y = ( é a imagem de x pela unção e a expressão que deine y = ( é chamada de regra ou lei da unção Exemplos: ) Para cada caso, obtenha o maior conjunto A, tal que as regras que seguem deinem unções : A (Em outras palavras, ache todos os valores de x que possuem imagens reais) a) x = b) = x x 6 c) = ( x + )( x + ) x + x + 8 d) = e) = (5x )(x + 6) (4 6 x x a) Condição: 0 ( x + )( x + ) 6

5 Resposta: D ( ) = { x/ x ou x } b) Condição: x x 6 0 Resposta: D ( ) = { x/ x ou x } c) Condição: x + 0 x + 0 x Resposta: D ( ) = { x / x } d) Condição: x 0 x Resposta: D ( ) = { x/ x } 8 6 e) Condição: (5x )(x + 6) (4 6 0 (Figura ora de escala) Resposta: D ( ) = { x / x ou x = } 5 ) Construa o gráico da unção :, tal que Qual é a imagem desta unção?, se x 0 y = = x +, se 0 x, se x

6 4 Resposta: Im ( ) = [, ] Figura: O gráico da unção cuja regra é y = ( ) Construa o gráico da unção :, tal que Qual é a imagem desta unção? x, se x y = = x, se x Resposta: Im ( ) = [, +[ Figura: O gráico da unção cuja regra é y = ( Função modular Uma unção : recebe o nome de unção modular, quando a cada x, associa o módulo de x x se x 0 Assim, a regra desta unção é = x = x se x 0 = x = max x, x Podemos também representar esta regra por

7 5 Figura: O gráico da unção cuja regra é Observações: x é chamado de módulo de x ou valor absoluto de x = x ( x ) = x Convém lembrarmos algumas desigualdades que envolvem o valor absoluto de números reais ( a 0 ): (i) x a a x a (ii) (iii) x a x a ou x a x + y x + y (Desigualdade triangular) Exemplos: ) Construa o gráico da unção :, tal que y = = x + Qual é a imagem desta unção? x, se x 0 x x = x +, se x 0 x x + se x x + Logo, = = x + + se x x + se x se x Resposta: Im ( ) = [, +[ Figura: O gráico da unção cuja regra é = x +

8 6 ) Construa o gráico da unção :, tal que y = = x + + x imagem desta unção? x +, se x + 0 x x + = x, se x + 0 x x, se x 0 x x = x +, se x 0 x Assim, devemos considerar casos: ) Quando x, temos: x + + x = x x + = x ) Quando x, temos: x + + x = x + x + = x + ) Quando x, temos: x + + x = x + + x = x Logo, x, y = = x + + x = x +, x, se x se x se x Qual é a Resposta: Im ( ) = [, +[ Classiicação de unções Figura: O gráico da unção cuja regra é = x + + x Funções sobrejetoras, injetoras e bijetoras é sobrejetora, se e somente se, Im ( ) = B é injetora, se e somente se, ( x ), sempre que x x

9 é bijetora, se e somente se, é sobrejetora e injetora simultaneamente Observação: Uma unção poderá não pertencer a nenhuma destas categorias 7 Funções pares e unções ímpares Uma unção é par, se e somente se, x D( ), ( = Uma unção é ímpar, se e somente se, x D( ), ( = Assim, sendo :, as unções = cos(, = x, = x ( são exemplos de unções pares Do mesmo modo, as unções: = sen(, = x, = x, são exemplos de unções ímpares, Observações: Uma unção poderá não ser par, nem ímpar Exemplo: = x x + A unção = 0 é a única unção par e ímpar ao mesmo tempo Exemplos: ) Prove que toda unção : I pode ser escrita como a soma de uma unção par com uma unção ímpar Considere a unção, tal que : I Considere ainda duas unções g e h, também deinidas de I em tais que: ( ) ( + ( g x = e ( ) ( ( h x = Como ( ) ( t) + ( t) g t = = g( t), concluímos que g é uma unção par Como ( ) ( t) ( t) h t = = h( t), concluímos que h é uma unção ímpar Logo, se escrevermos = g( + h( (veriique que de ato esta igualdade é verdadeira), estaremos escrevendo a unção como a soma de uma unção par (g) com uma unção ímpar (h) Resposta: = g( + h( com ( ) ( + ( g x = e ( ) ( ( h x = ) Mostre que a única unção : I, que é par e ímpar ao mesmo tempo, é a unção constante = 0 Se é par, então temos que ( = = ( Se é ímpar, então temos que ( = = ( Somando membro a membro as igualdades = ( e = (, obtemos: = 0 = 0, que é a unção constante nula Resposta: : I, tal que = 0 Funções crescentes e unções decrescentes Uma unção : A B é crescente no conjunto A A, se para dois valores x e x pertencentes a A, com x x, tivermos ( x )

10 8 Figura: O gráico de uma unção crescente Uma unção : A B é decrescente no conjunto A A, se para dois valores x e x pertencentes a A, com x x, tivermos ( x ) 4 Função composta Figura: O gráico de uma unção decrescente Dadas duas unções e g, então, a unção composta g, é a unção cuja regra é: ( g)( = ( g( ) O domínio de g é o conjunto de todos os valores x do domínio de g, tais que g ( estejam no domínio de Exemplos: ) Se as regras das unções e g são dadas por = x e g( = x, obtenha as regras das unções: a) g b) g c) d) g g a) ( g)( = ( g( ) = x = 4 x b) ( g )( = g( ) = x c) 4 ( )( = ( ) = x = x

11 9 d) ( g g)( = g( g( ) = x Respostas: a) ( g)( = 4 x b) ( g )( = x 4 c) ( )( = x d) ( g g)( = x ) Sejam as unções e g, tais que: x 4x + se x = e g ( = x +, obter: x se x a) ( g)( = ( g( ) b) ( g )( = g( ) (x + ) 4(x + ) + se (x + ) a) ( g)( = ( g( ) = (x + ) se (x + ) 4x + 4x se x ( g)( = ( g( ) = 4x + se x ( x 4x + ) + se x b) ( g )( = g( ) = (x ) + se x x 8x + 9 se x ( g )( = g( ) = 4x se x 4x + 4x se x Respostas: ( g)( = x 8x + 9 se x e ( g )( = 4x + se x 4x se x 5 Função Inversa Se : A B é uma unção bijetora, cuja regra é y = (, então chamamos de inversa de, a unção denotada por : Observação: Os gráicos de ímpares B A, tal que x = ( y ) e 5 Regra prática para se obter a unção inversa de : ) Na regra de dada por ( são simétricos em relação à bissetriz dos quadrantes y = trocamos x por y e y por x; ) Isolamos a variável y, obtendo a regra de Exemplos: ) Seja :, deinida por y = x x = y y = x y = x Encontre a unção inversa de

12 0 Figura: Os gráicos de e, mostrando a simetria que existe em relação à bissetriz dos quadrantes ímpares Resposta: :, deinida por y = x ) Seja : {} { }, deinida por x y x + y = x = y = x y x + x y = Encontre a unção inversa de x Figura: Os gráicos de e Resposta: : { } {}, deinida por, mostrando a simetria que existe em relação à bissetriz dos quadrantes ímpares x + y = x + ) Considere a unção :], ] [0, +[, deinida por y = = x Encontre a unção inversa de y = x x = y y = x

13 Figura: Os gráicos de e, mostrando a simetria que existe em relação à bissetriz dos quadrantes ímpares Resposta: :[0, +[ ], ], deinida por y = x 4) Considere a unção inversa de é a unção + :, deinida por y = ) = g : +, cuja regra é y = g( = ln x x ( x e Veriique que a unção Figura: Os gráicos de e, mostrando a simetria que existe em relação à bissetriz dos quadrantes ímpares 5) Considere a unção inversa de é a unção + :, deinida por y ) g : +, cuja regra é y = g( = log / x x = = (, Veriique que a unção

14 Figura: Os gráicos de e, mostrando a simetria que existe em relação à bissetriz dos quadrantes ímpares x, se x 0 6) Seja :, deinida por y = = Encontre a unção inversa de x, se x 0 Se x 0 y = = x y e se x 0 y = = x y Assim, a unção é: y = x se x 0 e y e y = x se x 0 e y Aplicando a regra prática: ) Permutando x por y e y por x; x = y se y 0 e x e x = y se y 0 e x ) Isolando y, temos: y = x + se y 0 e x e y = x + se y 0 e x Resposta: :, deinida por 6 Exercícios propostos x + se ( = x + se 4 ) Sejam A =], ] e B =], ], ache A B e A B, Respostas: A B =], ] e A B =], ] x x ) Para cada caso, obtenha o maior conjunto A, tal que as regras que seguem deinem unções : A (Em outras palavras, ache todos os valores de x que possuem imagens reais) x a) = 4 b) = x + x + c) = ( x + )( d) x Respostas: 4 = ( ( (5 7 ) e) x = x x + + x 4 + x

15 a) D ( ) = { x/ x ou x } b) D ( ) = { x} 5 c) D ( ) = { } = d) D ( ) = { x / x ou x = } 7 e) D ( ) = { x/ x e x ou x } ) Construa o gráico da unção :, tal que Qual é a imagem desta unção? Resposta: Im ( ) = [, +[ ou { }, se x y = = x +, se x x, se x 4) Construa o gráico da unção :, tal que y = = x 4 Qual é a imagem desta unção? Resposta: x 6, se x y = = e Im ( ) = [ 4, +[ x, se x 5) Se as regras das unções e g são dadas por = x e g ( = x, obtenha as regras das unções: a) g b) g c) d) g g Respostas: a) ( g)( = x b) ( g )( = x 4 c) ( )( = x d) 6) Sejam as unções e g, tais que: 4 ( g g)( = x x x + se x = se x e g( = x, obter: x 4 x se x a) ( g)( = ( g( ) b) ( g )( = g( ) Respostas: 9x x + 6 se x x 4 x 7 a) ( g)( = se x b) ( g )( = x x 9x + x se x x 0 se se se x x x 7) Sejam as unções reais = x 5 e ( g)( = x, determinar a lei da unção g Resposta: g ( = x + 8) Sejam as unções reais g ( = x e ( g)( = 9x x +, determinar a lei da unção Resposta: = x + x + 5 9) Ache a inversa da unção : { } { }, tal que 5x + = x

16 5 x + Resposta: : { } { }, tal que = x 5 x + se x 0) Ache a inversa da unção = x + se x x se x 7 Resposta: = x se x 7 Reerências Bibliográicas 4 Flemming, D M e Gonçalves, M B Cálculo A Funções, limite, derivação e integração 6a Edição São Paulo: Pearson Prentice Hall, 006 Iezzi, G e Murakami, C Fundamentos de Matemática Elementar Volume 6a Edição São Paulo: Atual Editora, 985 Iezzi, G et al Fundamentos de Matemática Elementar Volume 8 6a Edição São Paulo: Atual Editora, Lima, E L et al A Matemática do Ensino Médio Volume 6a Edição Rio de Janeiro: Coleção do Proessor de Matemática Sociedade Brasileira de Matemática, 00 5 Stewart, J Cálculo 6a Edição São Paulo: Cengage Learning, 0

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierencial e Integral Funções Proessor: Luiz Fernando Nunes, Dr. 08/Sem_0 Cálculo ii Índice Funções.... Intervalos.... Deinição de unção.... Classiicação de unções... 6.4 Função composta...

Leia mais

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010 1. Funções Sobrejetoras Dizemos que uma unção : é sobrejetora se, e somente se, o seu conjunto imagem or igual ao contradomínio, isto é, se Im() =. Em outras palavras, dado um elemento z qualquer no contradomínio,

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Dierencial e Integral I RESUMO DA AULA TEÓRICA 1 Livro do Stewart: Seções 4.1 a 4.. MÁXIMOS E MÍNIMOS ABSOLUTOS: revisão da aula teórica 6 Deinição: O máximo absoluto de uma unção em um

Leia mais

3 Função - conceitos gerais 45

3 Função - conceitos gerais 45 UFF/GMA - Matemática Básica - Parte III - Função Notas de aula - Marlene - 010-44 Sumário III Função: conceitos erais 45 3 Função - conceitos erais 45 3.1 Conceito e representação simbólica de unção...............................

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Dierencial II TPC nº 8 Entregar em 0 009. Na igura está representado um prisma hexagonal com as

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h)

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h) Professora: Elisandra Bär de Figueiredo Lista : Funções - Cálculo Diferencial e Integral I. Determine o domínio e construa o gráco das seguintes funções. A seguir identique como estão relacionados os grácos

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Funções Elementares

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Funções Elementares Curso 1504 - Licenciatura em Matemática Ênfase Identificação Disciplina 0007200A - Funções Elementares Docente(s) Ivete Maria Baraldi Unidade Faculdade de Ciências Departamento Departamento de Matemática

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: Funções 10/04/14 e 11/04/14 Definição de função Dados dois conjuntos A e B não vazios, uma relação f de A em

Leia mais

FUNÇÕES REAIS DE UMA VARIÁVEL REAL

FUNÇÕES REAIS DE UMA VARIÁVEL REAL FUNÇÕES REAIS DE UMA VARIÁVEL REAL Deinição inormal de unção Uma unção é uma regra que a cada elemento de um dado conjunto A associa um e um só elemento de um outro conjunto B. : A B ( ) Simbolicamente,

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Funções Exponenciais, Inversas,Simetria

Funções Exponenciais, Inversas,Simetria Funções Exponenciais, Inversas,Simetria Aula 4 590253 Plano da Aula Funções exponencial e logaritmos naturais Funções Inversas Simetria Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning)

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

cotg ( α ) corresponde ao valor da abcissa do

cotg ( α ) corresponde ao valor da abcissa do Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado

Leia mais

Matemática tica Discreta Módulo Extra (4)

Matemática tica Discreta Módulo Extra (4) Universidade Federal do Vale do São Francisco Curso de Enenharia da Computação Matemática tica Discreta Módulo Extra (4) Pro. Jore Cavalcanti jore.cavalcanti@univas.edu.br - www.univas.edu.br/~jore.cavalcanti

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

TÓPICOS DE MATEMÁTICA UIA 3 ALGUMAS FUNÇÕES ESPECIAIS

TÓPICOS DE MATEMÁTICA UIA 3 ALGUMAS FUNÇÕES ESPECIAIS TÓPICOS DE MATEMÁTICA UIA 3 ALGUMAS FUNÇÕES ESPECIAIS 2 Este material é destinado eclusivamente aos alunos e professores do Centro Universitário IESB, contém informações e conteúdos protegidos e cuja divulgação

Leia mais

Teste de Matemática 2017/I

Teste de Matemática 2017/I Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática 017/I 1. Os ovos de galinha são mais baratos do que os de perua. Não tenho dinheiro suficiente para comprar duas dúzias de

Leia mais

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x) Capítulo II Funções reais de variável real.1 Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO. Ano Letivo/Semestre 2015/1

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO. Ano Letivo/Semestre 2015/1 UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO Ano Letivo/Semestre 2015/1 1 Identificação 1.1. Unidade: Instituto de Física e

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Seja a unção, de domínio 0 e., deinida por Recorrendo a métodos analíticos, sem utilizar a calculadora, estude a unção quanto à eistência de assíntota horizontal. matemática

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina B - Funções Elementares

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina B - Funções Elementares Curso 1504 - Licenciatura em Matemática Ênfase Identificação Disciplina 0005001B - Funções Elementares Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Considere a unção, de domínio, deinida por ln. Utilizando eclusivamente métodos analíticos, estude a unção quanto à eistência de do seu gráico paralelas aos eios coordenados.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

Função IDÉIA INTUITIVA DE FUNÇÃO

Função IDÉIA INTUITIVA DE FUNÇÃO Função IDÉIA INTUITIVA DE FUNÇÃO O conceito de unção é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são eemplos de unções: - O valor

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

Introdução às Funções

Introdução às Funções Introdução às Funções Guilherme Prado Curso Pré-vestibular Unicentro Plano cartesiano O plano cartesiano é um sistema ortogonal de coordenadas utilizado para demonstrar a localização de pontos no espaço

Leia mais

Programa da Disciplina

Programa da Disciplina INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Funções Elementares

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase. Disciplina A - Funções Elementares Curso 1503 1504 1505 - Licenciatura em Matemática Ênfase Identificação Disciplina 0005001A - Funções Elementares Docente(s) Emilia de Mendonca Rosa Marques Unidade Faculdade de Ciências Departamento Departamento

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

Lista 6 - Bases Matemáticas

Lista 6 - Bases Matemáticas Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente

Leia mais

Módulo 3 FUNÇÕES (1ª Parte)

Módulo 3 FUNÇÕES (1ª Parte) . Módulo 3 FUNÇÕES (ª Parte) Eercícios ) O esquema seguinte representa uma página da agenda teleónica da Maalda Objectivos Recordar: A (nomes) Médico (João) B (teleones) 397345 (casa) 3973456 (consultório)

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.

Leia mais

REPÚBLICA FEDERATIVA DO BRASIL ESTADO DE SANTA CATARINA Universidade do Estado de Santa Catarina - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - UDESC/CCT

REPÚBLICA FEDERATIVA DO BRASIL ESTADO DE SANTA CATARINA Universidade do Estado de Santa Catarina - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - UDESC/CCT Curso: MAT-LIC - Licenciatura em Matemática Departamento: DMA - Matemática Disciplina: MATEMÁTICA BÁSICA Código: MBA0001 Carga horária: 72 Período letivo: 2018/1 Professor: Adriano Luiz dos Santos Né Contato:

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Matemática A Superintensivo

Matemática A Superintensivo Matemática A Superintensivo Eercícios 0) a) é elemento de A A. b) não é elemento de B B. c) 0 não é elemento de C 0 C. d) Todo elemento de B é elemento de A B A. e) B e C B C. f) O conjunto A contém os

Leia mais

V Workshop de Álgebra UFG-CAC. Só Funções. Francismar Ferreira Lima. Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de / 43

V Workshop de Álgebra UFG-CAC. Só Funções. Francismar Ferreira Lima. Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de / 43 V Workshop de Álgebra UFG-CAC Só Funções Francismar Ferreira Lima Universidade Tecnológica Federal do Paraná (UTFPR) 09 de novembro de 2016 1 / 43 Planejamento da Apresentação 1 Produto Cartesiano 2 Relação

Leia mais

4 Funções. Introdução. 1) Estudar o conceito de função: definição, nomenclatura e gráficos.

4 Funções. Introdução. 1) Estudar o conceito de função: definição, nomenclatura e gráficos. 4 Funções 4 Funções ) Estudar o conceito de função: definição, nomenclatura e gráficos. ) Estudar as propriedades das funções (função injetora, sobrejetora, bijetora, par e ímpar). ) Estudar a composição

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA C9_ITA_Mod_33_36_prof /0/0 09:5 Page I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 33 Funções I. (OPM Seja f uma função dada por: f( = 7 e n f(n =, para n natural, maior que.

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha SUMÁRIO 4 FUNÇÃO REAL DE UMA VARIÁVEL REAL 1 4.1 DEFINIÇÃO E NOTAÇÃO Definição Dados dois conjuntos

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: damasceno@yahoo.com.br damasceno@interjato.com.br damasceno@hotmail.com http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO

INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO Disciplinas: Estágio Supervisionado IV e Laboratório de prática e ensino aprendizagem II Professoras: Marleide Coan Cardoso e Margarete Farias Medeiros

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio Material Teórico - Módulo de Função Logarítmica Função logarítmica e propriedades - Parte 1 Primeiro Ano - Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Motivação

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais