= C. (1) dt. A Equação da Membrana

Tamanho: px
Começar a partir da página:

Download "= C. (1) dt. A Equação da Membrana"

Transcrição

1 A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura espacial da célula e tratá-la coo u ponto. A ebrana coo u capacitor: A ebrana neuronal é forada por duas caadas de lipídeos que separa os eios condutores intra e extracelular por ua fina caada isolante. Portanto, a ebrana neuronal atua coo u capacitor. A diferença de potencial entre as placas do capacitor é a voltage através da ebrana, V = V intra V extra. A relação entre a voltage V estabelecida entre as placas de u capacitor quando ua quantidade de carga Q é distribuída ao longo de suas placas é dada pela capacitância C, Q = CV. Quando a voltage V uda no tepo, há ua variação na quantidade de carga Q que corresponde a ua corrente (I C = dq/dt) que flui para/ou das placas do capacitor, carregando-o ou descarregando-o. E teros da equação acia a corrente I C é dada por: I C dv ( t ) = C. (1) dt É iportante notar que nunca existe u oviento de cargas através da ebrana isolante. O que ocorre é ua redistribuição de cargas nos dois lados da ebrana causada pela corrente I C que flui pelo resto do circuito.

2 A Resistência da Mebrana: As proteínas que cruza a ebrana de u neurônio atua coo poros, ou canais iônicos, por onde corrente elétrica (íons) pode passar (íons entrando ou saindo). Ua ilustração disso é dada na figura abaixo: Cada canal iônico (seletivo a ua dada espécie iônica) pode ser odelado por u resistor r colocado e paralelo co o capacitor que representa a ebrana (veja a figura abaixo). Segundo esta representação, a corrente iônica através de u canal pode ser escrita e teros da lei de Oh, V I = r Esta equação pode ser reescrita e teros da condutância g do canal, coo é ais cou e neurofisiologia: I =. gv. A condutância de u único canal iônico funciona coo u eleento binário, tendo valor nulo (g = 0) se o canal estiver fechado ou valor não nulo (= g) se o canal estiver aberto. Se o canal estiver aberto, os íons para os quais o canal é seletivo passarão através dele. Por exeplo, se o canal for u canal de K + haverá u fluxo de íons de potássio de dentro da célula para fora, pois há ua aior concentração de íons K + dentro do que fora da célula.

3 Por outro lado, se o canal for u canal de Na + haverá u fluxo de íons de sódio do exterior para o interior da célula, pois a concentração de íons de sódio é aior fora da célula do que dentro. Coo visto nas notas de aula sobre difusão e a equação de Nernst, esse fluxo iônico irá gerar ua separação de cargas entre os dois lados da ebrana que produzirá ua diferença de potencial elétrico através da ebrana. No equilíbrio, o valor dessa diferença de potencial é dado pelo potencial de Nernst do íon. Vaos passar a escrever esse potencial coo E íon, por exeplo, para o potássio teos E K, para o sódio teos E Na etc. E = íon RT zf [ Íon] ln [ Íon] fora dentro. Pode-se odelar a existência de u potencial elétrico trans-ebrana provocado pelo fluxo iônico através de u canal iônico colocando-se ua bateria e série co a resistência que representa o canal iônico (veja a figura abaixo). A voltage da bateria é o potencial de Nernst para a espécie iônica à qual o canal é seletivo. Exercício: Observe na figura que o posicionaento das placas da bateria depende do íon específico. Explique porque isso é assi e porque cada bateria ostrada está co o posicionaento das suas placas indicado pela figura. As figuras acia representa u único canal iônico de u dado tipo (de sódio, potássio ou cloreto). Poré, a esa representação pode ser usada para representar todos os canais iônicos de u dado tipo e ua célula isopotencial (por causa da lei da cobinação de condutores e paralelo e u circuito elétrico).

4 Se ua célula isopotencial te N íon canais iônicos para u dado tipo de íon e todos eles estão abertos ou fechados (nua outra aula analisareos o caso e que ua parte desses canais pode estar aberta e a outra parte pode estar fechada), sua condutância aos íons desse tipo é dada por, G = íon N Observando a expressão para o potencial de Nernst de u íon, veos que ele depende apenas da valência do íon, da teperatura e das concentrações do íon dentro e fora da célula. Ele não depende do núero N íon de canais iônicos na célula. Isto iplica que podeos representar o efeito cobinado da passage de corrente através dos N íon canais iônicos da célula por u circuito equivalente igual ao ostrado na figura anterior, co o eso valor da voltage da bateria, E íon, as co a resistência sendo igual a G íon : íon g íon. O efeito cobinado dos fluxos das várias espécies iônicas produz ua diferença de potencial através da ebrana, o potencial de ebrana V. Podeos representar isso pela figura abaixo. Só existe corrente líquida de ua dada espécie iônica cruzando a ebrana se o potencial de ebrana V for diferente do potencial de Nernst E íon para essa espécie.

5 Se o potencial de ebrana V for aior que o potencial de Nernst E íon do íon, isto irá iplicar e ua corrente líquida do íon nua dada direção (para dentro ou para fora da célula, dependendo da carga do íon). Se o potencial de ebrana for enor que o potencial de Nernst, haverá ua corrente líquida do íon cuja direção será oposta à do caso anterior. Desta fora, a direção da corrente do íon é invertida quando V passa por E íon. Por este otivo, E íon tabé é chaado de potencial de reversão do íon. Exercício: Usando os valores de E Na, E K, E Cl e E Ca para o axônio gigante de lula a 20 o C dados na aula 2, deterine o sentido das correntes desses quatro íons quando V = 70 V, V = 80 V e V = +60 V. Assua que a direção positiva de corrente é de dentro para fora da célula. Baseado no odelo da figura anterior, quando corrente passa pela ebrana (para dentro ou para fora) a variação de potencial sentida pelos íons responsáveis por ela te duas coponentes: ua é a variação ôhica devida à resistência R, RI, e a outra é a variação devida à bateria, E íon. Pela 2 a lei de Kirchoff, a soa dessas variações de potencial te que ser igual ao potencial de ebrana: V = RI + E íon. Isolando I nesta equação teos: I R V E = ( V E ) íon = G íon íon. (2) R íon Note que para que não exista corrente passando pelo resistor (ou corrente líquida entrando ou saindo da célula) o potencial de ebrana deve ser igual ao potencial de reversão. Cobinando os eleentos de circuito vistos até agora e u único odelo de circuito elétrico para ua ebrana neuronal, teos o circuito abaixo (no caso do desenho, considerou-se apenas os canais de sódio e potássio):

6 A Corrente de Mebrana Quando ua corrente I passa pela ebrana, teos ua situação coo a da figura abaixo (vaos definir o sentido positivo de corrente coo sendo de dentro para fora da célula; vaos tabé considerar soente u canal iônico para não sobrecarregar a figura): Aplicando a lei das correntes de Kirchoff ao nó superior dessa figura: I I + I dv ( t) = C + GV ( ( t) E). dt = C R. (3) O odelo acia descreve ua ebrana passiva, pois os eleentos do circuito não depende da voltage através da ebrana. Sabe-se experientalente que existe canais iônicos cujas condutâncias depende da voltage através da ebrana (e tabé de outros fatores coo, por exeplo, da presença ou ausência de certos neurotransissores nas proxiidades da fenda sináptica e da concentração de cálcio no interior da célula), G = G(V, t,...). Mebranas co canais iônicos desse tipo são chaadas de ativas (por extensão, chaa-se os canais desse tipo de canais ativos e suas respectivas condutâncias de condutâncias ativas). A aior parte das propriedades iportantes dos neurônios coo os potenciais de ação, por exeplo decorre dos efeitos não-lineares causados por tais canais ativos e vereos ais adiante coo eles pode ser odelados. Por ora, vaos nos restringir ao estudo das propriedades de ua ebrana passiva.

7 Note que o odelo construído corresponde a u circuito RC. Podeos estiar o tepo característico desse circuito para u neurônio típico, coo feito a seguir: Propriedades ateriais da ebrana: Desenrolando u pedaço de u neurônio cilíndrico de raio a, veos que a sua ebrana corresponde a u condutor de copriento b e seção reta de área A = 2πa. A resistência desse pedaço de ebrana é então: b R = ρ, onde: A - ρ é a resistividade elétrica do aterial (unidades: Ω.c); - 1/ρ é a condutividade elétrica σ (unidades: S/c). Para ua dada ebrana de espessura b, define-se a sua resistência específica R por R = ρb (unidades: Ω.c2). Desta fora, para se saber a resistência da ebrana de ua célula de área A cuja ebrana te resistência específica R deve-se dividir R por A: R R A =. Define-se a capacitância específica C de ua ebrana coo a capacitância de ua área unitária (unidades: µf/c2). Desta fora, para se saber a capacitância da ebrana de ua célula de área A deve-se ultiplicar C por A. Alguns valores típicos para estas variáveis são: C = 1 µf/c2; R = 10 kω.c2; G = 1/R = 100 µs/c2; b = 0,1 10 µ.

8 Exeplo: Para ua célula esférica co diâetro de 20 icrons, a sua capacitância total é, C = C.A = C.4πr 2 = ( F/c 2 ).4π.(10x10-4 c) 2 = 12,6 x F = 12,6 pf, e a sua resistência total é, R = R /A = (10x10 3 Ω/c 2 )/(4π.(10x10-4 c) 2 ) = 796 x 10 6 Ω = 796 MΩ. Nota: Cada ebrana possui suas propriedades ateriais, que são independentes da fora da célula. Poré, as propriedades elétricas de ua dada célula depende da sua geoetria. Co os valores de C e de R dados acia, podeos calcular a constante de tepo de ua ebrana neuronal típica: = R C = RC = 10 s τ. (4) Note que a constante de tepo da ebrana neuronal não depende do taanho e da geoetria da célula. Injeção de Corrente Externa Vaos supor que se injeta corrente I inj através de u icroeletrodo diretaente dentro da nossa pequena célula isopotencial, coo na figura abaixo. Coo podeos descrever a dinâica do potencial de ebrana V (t) e resposta a essa corrente? Usando o odelo de circuito elétrico construído, esta situação pode ser representada pela figura a seguir:

9 Por conservação de corrente, a corrente de ebrana deve ser igual à corrente injetada: I = I inj : dv ( t) C G V = dt ( ( t) E ) I ( t) + inj. Multiplicando abos os lados por R e usando τ = RC: dv ( t) τ = V ( t) + E RI inj ( t). dt + (5) Esta equação é chaada de equação da ebrana. A equação da ebrana é ua equação diferencial ordinária de prieira orde co coeficientes constantes. Definindo-se ua condição inicial V (0), a sua solução nos dará ua única curva para V versus t. Se a corrente injetada for nula, a solução da equação da ebrana é (ostre coo exercício): V t τ ( E V ( 0 ) ) e ( t ) = E. (6) Qualquer que seja a condição inicial, o potencial de ebrana decai exponencialente para E co o tepo. Por isso, podeos chaar E de potencial de ebrana de repouso neste caso. Se V (0) = E, o potencial de ebrana peranece no valor de repouso indefinidaente.

10 Vaos supor agora que a corrente injetada é do tipo degrau: e t = 0 injeta-se u valor de corrente I 0 que é antido constante por u longo tepo. A teoria das equações diferenciais nos ostra que a solução ais geral da equação da ebrana é do tipo: V ( t) v e t v = τ 0 + 1, (7) onde ν 0 e ν 1 depende das condições iniciais. Substituindo esta fora geral de solução na equação da ebrana obteos a igualdade: v 1 E + RI =. Vaos ipor a seguinte condição inicial: V (0) = E. Isto nos dá: E = v. 0 + v1 v0 = RI0 Substituindo ν 0 e ν 1 na solução geral (equação 7) teos: 0 V onde se definiu V = RI 0. t t ( t) = RI0 1 τ e + E = V 1 τ e E, + (8) U longo tepo após a aplicação do degrau de corrente (e antendo-se a corrente constante), o potencial de ebrana atinge o valor V + E = RI 0 + V (0). É costue representar o potencial de ebrana de ua célula e relação ao seu potencial de repouso V rep (isto é, redefine-se o zero de potencial de aneira que ele coincida co o potencial de repouso da célula). Definindo-se ua nova variável, V = V t ) V, (9) ( rep e notando que neste caso V rep = E, a solução da equação da ebrana para o degrau de corrente torna-se: V = V e t τ 1. (10) A constante V = RI 0 é chaada de potencial de estado estacionário, pois é o valor para o qual a diferença (V (t) V rep ) tende e resposta ao degrau de corrente.

11 E geral, ede-se a corrente injetada e ua célula e teros da área da ebrana que é estiulada, ou seja, ede-se a densidade de corrente (as unidades ais couns são µa/c 2 ). Para ua ebrana típica (R = 10 kω.c 2 ) estiulada co ua corrente de 5 µa/c 2, o potencial de estado estacionário vale: V = RI 0 = (R /A)(J 0.A) = R J 0 = (10 4 Ω.c 2 ).(5 x 10-6 A/c 2 ) = 5 x 10-2 V. Para passar para ilivolts (a unidade ais usada), deve-se ultiplicar por 10 3, V = 50 V. Lebrando que V = V V rep, podeos agora escrever o valor do potencial de estado estacionário que a ebrana atinge neste caso edido e relação ao potencial externo coo (supondo, por exeplo, que V rep = 70 V): V = V + V rep = 50 V 70 V = 20 V. O gráfico abaixo ostra soluções nuéricas da equação da ebrana para diferentes valores do degrau de corrente injetado (R = 2 MΩ).

12 O gráfico anterior ostra as respostas do odelo de ebrana coo u circuito RC para quatro diferentes valores de J 0 (u negativo e três positivos). Na escala arbitrária de tepo usada, o estíulo degrau é aplicado e t = 20 e desligado e t = 120. Note que se I 0 for positiva, V = RI 0 será positivo. Isto quer dizer que a célula foi despolarizada (V > V rep ). Já se I 0 for negativa, V será negativo, iplicando que a célula foi hiperpolarizada. Para entender isso, vejaos o diagraa da ebrana abaixo. Ua I 0 positiva corresponde a ua corrente de ebrana positiva, I > 0. Pela convenção adotada, ua corrente de ebrana positiva indica corrente saindo da célula e isto só ocorre quando a ebrana está despolarizada, isto é, o interior da célula está ais positivo do que no repouso. Isto está de acordo co o esperado, pois quando I 0 > 0 o icroeletrodo injeta corrente diretaente no interior da célula, provocando u auento de cargas positivas no interior e despolarizando a célula. Já ua I 0 negativa (I indo de fora para dentro da célula) corresponde a ua retirada de cargas positivas do interior da célula pelo icroeletrodo, hiperpolarizando a célula. A resistência R é chaada de resistência de entrada da célula. Quanto aior R, aior a variação na voltage através da ebrana para ua dada corrente constante. O valor da resistência de entrada do corpo celular de u neurônio varia de alguns egaohs para os neurônios otores da edula espinhal até centenas de egaohs para células corticais.

A Equação da Membrana

A Equação da Membrana A Equação da Mebrana 5910179 Biofísica II Tura de Biologia FFCLRP USP Prof. Antônio Roque Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana

Leia mais

Propagação do Potencial de Ação ao Longo do Axônio

Propagação do Potencial de Ação ao Longo do Axônio 5910187 Biofísica II FFCLRP USP Prof. Antônio Roque Aula 1 Propagação do Potencial de Ação ao Longo do Axônio Os experientos originais de Hodgkin e Huxley que os levara ao seu odelo era realizados e condições

Leia mais

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem.

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem. POTÊNCIA EM CARGAS GENÉRICAS Prof. Antonio Sergio C. de Menezes. Depto de Engenharia Elétrica Muitas cargas nua instalação elétrica se coporta de fora resistiva ou uito aproxiadaente coo tal. Exeplo: lâpadas

Leia mais

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO 113 17 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua

Leia mais

Aula 6 Primeira Lei da Termodinâmica

Aula 6 Primeira Lei da Termodinâmica Aula 6 Prieira Lei da Terodinâica 1. Introdução Coo vios na aula anterior, o calor e o trabalho são foras equivalentes de transferência de energia para dentro ou para fora do sistea. 2. A Energia interna

Leia mais

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação Um neurônio de uma célula animal é recoberto por uma fina membrana (60 a 70 Å de espessura) que o separa do meio intercelular, chamada

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por

Leia mais

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante.

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante. Questão 01 - Alternativa B :: Física :: Coo a distância d R é percorrida antes do acionaento dos freios, a velocidade do autoóvel (54 k/h ou 15 /s) peranece constante. Então: v = 15 /s t = 4/5 s v = x

Leia mais

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino MÓDULO DE WEIBULL F. Jorge Lino Departaento de Engenharia Mecânica e Gestão Industrial da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telf. 22508704/42,

Leia mais

POTENCIAL ELÉTRICO. alvaro.unespbauru@hotmail.com

POTENCIAL ELÉTRICO. alvaro.unespbauru@hotmail.com POTENCIAL ELÉTRICO alvaro.unespbauru@hotmail.com Potenciais elétricos Potencial de membrana: é a diferença de potencial elétrico, em Volts (V), gerada a partir de um gradiente eletroquímico através de

Leia mais

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída. Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco

Leia mais

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA

Leia mais

Transformadores e bobinas de alta frequência

Transformadores e bobinas de alta frequência Transforadores e bobinas de alta frequência 007 Profª Beatriz Vieira Borges 1 Transforadores e bobinas de alta frequência ideal v 1 v úcleo de ferrite i 1 i + + v 1 v - - v 1 1 1 v i 1 i 007 Profª Beatriz

Leia mais

3.3. O Ensaio de Tração

3.3. O Ensaio de Tração Capítulo 3 - Resistência dos Materiais 3.1. Definição Resistência dos Materiais é u rao da Mecânica plicada que estuda o coportaento dos sólidos quando estão sujeitos a diferentes tipos de carregaento.

Leia mais

Capítulo 14. Fluidos

Capítulo 14. Fluidos Capítulo 4 luidos Capítulo 4 - luidos O que é u luido? Massa Especíica e ressão luidos e Repouso Medindo a ressão rincípio de ascal rincípio de rquiedes luidos Ideais e Moviento Equação da continuidade

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Nome: R.A. Gabarito 4 a lista de exercícios

Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Nome: R.A. Gabarito 4 a lista de exercícios Engenharia Quíica Físico Quíica I. O abaixaento da pressão de vapor do solvente e soluções não eletrolíticas pode ser estudadas pela Lei de Raoult: P X P, onde P é a pressão de vapor do solvente na solução,

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais

07. Obras célebres da literatura brasileira foram ambientadas em regiões assinaladas neste mapa:

07. Obras célebres da literatura brasileira foram ambientadas em regiões assinaladas neste mapa: 6 FUVEST 09/0/202 Seu é Direito nas Melhores Faculdades 07. Obras célebres da literatura brasileira fora abientadas e regiões assinaladas neste apa: Co base nas indicações do apa e e seus conhecientos,

Leia mais

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação Nesta aula, vamos deixar de lado a abordagem histórica e fazer uma apresentação do ponto de vista moderno sobre a membrana neuronal e

Leia mais

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963.

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963. O Modelo de Hodgkin-Huxley 5910187 Biofísica II FFCLRP USP Prof. Antônio Roque Aula 18 Os ecanisos iônicos responsáveis pela geração de u potencial de ação fora elucidados pelos trabalhos de Hodgkin e

Leia mais

SISTEMA NERVOSO PARTE 1

SISTEMA NERVOSO PARTE 1 SISTEMA NERVOSO PARTE 1 1 TECIDO NERVOSO 1. O sistema nervoso é dividido em: SISTEMA NERVOSO CENTRAL e SISTEMA NERVOSO PERIFÉRICO 2. A unidade básica = célula nervosa NEURÔNIO 3. Operam pela geração de

Leia mais

Roteiro. Contracao muscular e potencial de acao. Musculo cardiaco caracteristicas da contracao do musculo cardiaco

Roteiro. Contracao muscular e potencial de acao. Musculo cardiaco caracteristicas da contracao do musculo cardiaco Roteiro Contracao muscular e potencial de acao Musculo cardiaco caracteristicas da contracao do musculo cardiaco Impulsos eletricos no coracao Sistema nervoso simpatico e parassimpatico e a atividade cardiaca

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliinar 7 de setebro de 00 Notas de Aula de ísica 05. LEIS DE NEWON... ONDE ESÃO AS ORÇAS?... PRIMEIRA LEI DE NEWON... SEGUNDA LEI DE NEWON... ERCEIRA LEI DE NEWON... 4 APLICAÇÕES DAS LEIS DE

Leia mais

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I PDRÃO DE RESPOST - FÍSC - Grupos H e a UESTÃO: (, pontos) valiador Revisor Íãs são frequenteente utilizados para prender pequenos objetos e superfícies etálicas planas e verticais, coo quadros de avisos

Leia mais

Aula 5 Componentes e Equipamentos Eletrônicos

Aula 5 Componentes e Equipamentos Eletrônicos Aula 5 Componentes e Equipamentos Eletrônicos Introdução Componentes Eletrônicos Equipamentos Eletrônicos Utilizados no Laboratório Tarefas INTRODUÇÃO O nível de evolução tecnológica evidenciado nos dias

Leia mais

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente:

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente: Questão 46 gasto pela pedra, entre a janela do 1 o piso e a do piso térreo, é aproxiadaente: A figura ostra, e deterinado instante, dois carros A e B e oviento retilíneo unifore. O carro A, co velocidade

Leia mais

Quinta aula de estática dos fluidos. Primeiro semestre de 2012

Quinta aula de estática dos fluidos. Primeiro semestre de 2012 Quinta aula de estática dos fluidos Prieiro seestre de 01 Vaos rocurar alicar o que estudaos até este onto e exercícios. .1 No sistea da figura, desrezando-se o desnível entre os cilindros, deterinar o

Leia mais

Números Complexos. Note com especial atenção o sinal "-" associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1

Números Complexos. Note com especial atenção o sinal - associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1 1 Números Complexos. Se tivermos um circuito contendo uma multiplicidade de capacitores e resistores, se torna necessário lidar com resistências e reatâncias de uma maneira mais complicada. Por exemplo,

Leia mais

A Unicamp comenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES

A Unicamp comenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES A Unicap coenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES As questões de Física do Vestibular Unicap versa sobre assuntos variados do prograa (que consta do Manual do Candidato). Elas são foruladas

Leia mais

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE Tatiana Turina Kozaa 1 Graziela Marchi Tiago E diversas áreas coo engenharia, física, entre outras, uitas de suas aplicações

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO 34 4.4 Experimento 4: Capacitância, capacitores e circuitos RC 4.4.1 Objetivos Fundamentar o conceito de capacitância e capacitor; Realizar leituras dos valores de capacitância de capacitores; Associar

Leia mais

b) Dalton proporções definidas. c) Richter proporções recíprocas. d) Gay-Lussac transformação isobárica. e) Proust proporções constantes.

b) Dalton proporções definidas. c) Richter proporções recíprocas. d) Gay-Lussac transformação isobárica. e) Proust proporções constantes. APRFUDAMET QUÍMIA 2012 LISTA 9 Leis ponderais e voluétricas, deterinação de fórulas, cálculos quíicos e estudo dos gases. Questão 01) A Lei da onservação da Massa, enunciada por Lavoisier e 1774, é ua

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr. CQ049 FQ Eletroquímica prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.br 1 a estrutura I-S (água) ion central moléculas de água orientadas interações ion - dipolo

Leia mais

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas www.engenhariafacil.weebly.co Resuo co exercícios resolvidos do assunto: Sisteas de Partículas (I) (II) (III) Conservação do Moento Centro de Massa Colisões (I) Conservação do Moento Na ecânica clássica,

Leia mais

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos ª aula Suário: licação da conservação da energia ecânica a ovientos e caos gravíticos. nergia oteial elástica. Forças não conservativas e variação da energia ecânica. licação da conservação da energia

Leia mais

7.012 Conjunto de Problemas 8

7.012 Conjunto de Problemas 8 7.012 Conjunto de Problemas 8 Questão 1 a) A figura abaixo é um esquema generalizado de um neurônio. Identifique suas partes. 1 Dendritos, 2 corpo da célula e 3 axônio. b) Qual é a função de um axônio?

Leia mais

Curso Profissional de Técnico de Energias Renováveis 1º ano. Módulo Q 2 Soluções.

Curso Profissional de Técnico de Energias Renováveis 1º ano. Módulo Q 2 Soluções. Curso Profissional de Técnico de Energias Renováveis 1º ano Docuento de apoio Módulo Q 2 Soluções. 1. Dispersões 1.1. Disperso e dispersante Dispersão Ua dispersão é ua istura de duas ou ais substâncias,

Leia mais

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1 CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1. Introdução Seja u vetor à nu sistea de coordenadas (x, y, z), co os versores T,], k, de odo que - - - A = A 1 i + A 2 j + A 3 k. A derivada

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Aula 4. Inferência para duas populações.

Aula 4. Inferência para duas populações. Aula 4. Inferência para duas populações. Teos duas aostras independentes de duas populações P e P : população P aostra x, x,..., x n população P aostra y, y,..., y Observação: taanho de aostras pode ser

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III 1. OBJETIVOS CARGA E DESCARGA DE UM CAPACITOR a) Levantar, em um circuito RC, curvas de tensão no resistor

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Eletricidade Aplicada

Eletricidade Aplicada Eletricidade Aplicada Profa. Grace S. Deaecto Instituto de Ciência e Tecnologia / UNIFESP 12231-28, São J. dos Campos, SP, Brasil. grace.deaecto@unifesp.br Novembro, 212 Profa. Grace S. Deaecto Eletricidade

Leia mais

Revisões de análise modal e análise sísmica por espectros de resposta

Revisões de análise modal e análise sísmica por espectros de resposta Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro

Leia mais

Um capacitor não armazena apenas carga, mas também energia.

Um capacitor não armazena apenas carga, mas também energia. Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para

Leia mais

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico Construção de u sistea de Realidade Virtual (1 a Parte) O Engine Físico Roberto Scalco, Fabrício Martins Pedroso, Jorge Tressino Rua, Ricardo Del Roio, Wellington Francisco Centro Universitário do Instituto

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

Bacharelado em Engenharia Civil

Bacharelado em Engenharia Civil Bacharelado em Engenharia Civil Disciplina: Física III Profa.: Drd. Mariana de F. G. Diniz CAPACITÂNCIA É a propriedade que têm os corpos de manter uma carga elétrica. Portanto a capacitância corresponde

Leia mais

SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO

SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO 44 SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO Resuo Jair Sandro Ferreira da Silva Este artigo abordará a aplicabilidade das Equações Diferenciais na variação de teperatura de u corpo. Toareos

Leia mais

Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro

Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro Hector M. O. Hernandez e André P. Assis Departaento de Engenharia Civil & Abiental, Universidade de Brasília, Brasília,

Leia mais

Exercícios 1. Deduzir a relação:

Exercícios 1. Deduzir a relação: setor 1322 13220509 13220509-SP Aula 35 RELAÇÕES ENTRE ÁRIOS TIPOS DE CONCENTRAÇÃO Tipo de concentração Cou E ol/l As conversões entre esses tipos de concentração pode ser feitas: Aditindo-se 1,0 L de

Leia mais

POTENCIAL DE AÇÃO. Laboratório de Biofísica de Membranas Prof. Dr. Wamberto A. Varanda Luiz Artur Poletto Chaves Vander Baptista

POTENCIAL DE AÇÃO. Laboratório de Biofísica de Membranas Prof. Dr. Wamberto A. Varanda Luiz Artur Poletto Chaves Vander Baptista POTENCIAL DE AÇÃO Laboratório de Biofísica de Membranas Prof. Dr. Wamberto A. Varanda Luiz Artur Poletto Chaves Vander Baptista A membrana plasmática de alguns tipos celulares apresenta a propriedade de

Leia mais

RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 2006. 1 POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA.

RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 2006. 1 POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA. RESOLUÇÃO DAS QUESTÔES DE MATEMÁTICA DO VESTIBULAR DA UNICAMP 006. POR PROFESSORA MARIA ANTÔNIA C. GOUVEIA. 5. O gráfico ao lado ostra o total de acidentes de trânsito na cidade de Capinas e o total de

Leia mais

ESPECIFICAÇÃO TÉCNICA

ESPECIFICAÇÃO TÉCNICA SUMÁRIO CONTEÚDO PG.. Cabos Elétricos e Acessórios 02.1. Geral 02.2. Noras 02.3. Escopo de Forneciento 02 T-.1. Tabela 02.4. Características Construtivas 04.4.1. Aplicação 04.4.2. Diensionaento 04.4.3.

Leia mais

Circuito RC: Processo de Carga e Descarga de Capacitores

Circuito RC: Processo de Carga e Descarga de Capacitores Departamento de Física - IE - UFJF As tarefas desta prática têm valor de prova! Leia além deste roteiro também os comentários sobre elaboração de gráficos e principalmente sobre determinação de inclinações

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

5 de Fevereiro de 2011

5 de Fevereiro de 2011 wwq ELECTRÓNICA E INSTRUMENTAÇÃO º Exae 010/011 Mestrado Integrado e Engenharia Mecânica Licenciatura e Engenharia e Arquitectura Naval 5 de Fevereiro de 011 Instruções: 1. A prova te a duração de 3h00

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Nuérico Faculdade de ngenhari Arquiteturas e Urbaniso FAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronoia) VI Integração Nuérica Objetivos: O objetivo desta aula é apresentar o étodo de integração

Leia mais

AVALIAÇÃO DO MODELO DE TRANSFORMADORES EM FUNÇÃO DA FREQUÊNCIA

AVALIAÇÃO DO MODELO DE TRANSFORMADORES EM FUNÇÃO DA FREQUÊNCIA Universidade de Brasília Faculdade de Tecnologia Departaento de Engenaria Elétrica AVALIAÇÃO DO MODELO DE TANSFOMADOES EM FUNÇÃO DA FEQUÊNCIA Por Alexandre de Castro Moleta Orientador: Prof.Dr. Marco Aurélio

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

SIMULADOR DO COMPORTAMENTO DO DETECTOR DE ONDAS GRAVITACIONAIS MARIO SCHENBERG. Antônio Moreira de Oliveira Neto * IC Rubens de Melo Marinho Junior PQ

SIMULADOR DO COMPORTAMENTO DO DETECTOR DE ONDAS GRAVITACIONAIS MARIO SCHENBERG. Antônio Moreira de Oliveira Neto * IC Rubens de Melo Marinho Junior PQ SIMULADOR DO COMPORTAMENTO DO DETECTOR DE ONDAS GRAVITACIONAIS MARIO SCHENBERG Antônio Moreira de Oliveira Neto * IC Rubens de Melo Marinho Junior PQ Departaento de Física, ITA, CTA, 18-9, São José dos

Leia mais

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida.

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida. Aula 5 LEI DE GAUSS META Mostrar a fundamental importância da lei de Gauss para a compreensão do campo elétrico e como essa lei facilita o desenvolvimento matemático de problemas complexos de eletricidade.

Leia mais

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m.

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. Prof. André otta - ottabip@hotail.co Siulado 2 Física AFA/EFO 2012 1- Os veículos ostrados na figura desloca-se co velocidades constantes de 20 /s e 12/s e se aproxia de u certo cruzaento. Qual era a distância

Leia mais

Capacitores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Capacitores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Capacitores Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Capacitor Consiste em doiscondutores separados por um isolante, ou material dielétrico. Capacitores armazenam energia elétrica por

Leia mais

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Aula 05 Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Circuito Elétrico Básico e suas componentes. \ Resistores em Série Em uma associação de resistores em série, a corrente elétrica ( contínua)

Leia mais

Lei de Coulomb: Campo Elétrico:

Lei de Coulomb: Campo Elétrico: Lei de Coulomb: Método para distribuição de cargas: Dividir a distribuição em infinitos dq Analisar feito por dq Dividir em suas componentes dfx e dfy Analisar se há alguma forma de simetria que simplifica

Leia mais

Circuitos Elétricos Capacitores e Indutores

Circuitos Elétricos Capacitores e Indutores Introdução Circuitos Elétricos e Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) e indutores: elementos passivos, mas e indutores não dissipam energia

Leia mais

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA Movimento ordenado dos portadores de carga elétrica. 2- INTENSIDADE DE CORRENTE É a razão entre a quantidade de carga elétrica que atravessa

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

Modelagem, similaridade e análise dimensional

Modelagem, similaridade e análise dimensional Modelage, siilaridade e análise diensional Alguns robleas e MF não ode ser resolvidos analiticaente devido a: iitações devido às silificações necessárias no odelo ateático o Falta da inforação coleta (turbulência);

Leia mais

CIRCUITOS COM DIODOS: RETIFICADORES J.R. Kaschny

CIRCUITOS COM DIODOS: RETIFICADORES J.R. Kaschny CIRCUITOS COM DIODOS: RETIFICADORES J.R. Kaschny INTRODUÇÃO Recorano: O ioo é u ispositivo que perite a passage e corrente elétrica e ua única ireção, iealente coportano-se coo u curto circuito ou u circuito

Leia mais

Programa de Pós-Graduação em Eng. Mecânica. Introdução aos ciclos de refrigeração

Programa de Pós-Graduação em Eng. Mecânica. Introdução aos ciclos de refrigeração Nov/03 Prograa de Pós-Graduação e Eng. Mecânica Disciplina: Siulação de Sisteas Téricos Introdução aos ciclos de refrigeração Organização: Ciclo de Carnot Ciclo padrão de u estágio de copressão Refrigerantes

Leia mais

Biofísica das Membranas

Biofísica das Membranas Biofísica das Membranas Prof. Romildo Nogueira 1.0 Fluxos iônicos em membranas. A membrana plasmática das células, segundo Singer & Nicholson(1972), consiste de uma bicamada fluídica de lipídios na qual

Leia mais

Estruturas de Betão Armado II 10 Lajes Fungiformes Análise Estrutural

Estruturas de Betão Armado II 10 Lajes Fungiformes Análise Estrutural Estruturas de Betão Arado II 10 Lajes Fungifores Análise Estrutural A. P. Raos Out. 006 1 10 Lajes Fungifores Análise Estrutural Breve Introdução Histórica pbl 1907 Turner & Eddy M (???) 50 1914 Nichols

Leia mais

Física II Eng. Química + Eng. Materiais

Física II Eng. Química + Eng. Materiais Física II Eng. Química + Eng. Materiais Carga Eléctrica e Campo Eléctrico Lei de Gauss Potencial Eléctrico Condensadores 1. Nos vértices de um quadrado ABCD, com 10 cm de lado, estão colocadas cargas pontuais

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn IV Método Sibólico Versus Método Diagraas de Euler E Diagraas de Venn - 124 - Método Sibólico Versus Método Diagraas de Euler e Diagraas de Venn Para eplicar o que é o Método Sibólico e e que aspecto difere

Leia mais

Físico-Química Experimental I Bacharelado em Química Engenharia Química

Físico-Química Experimental I Bacharelado em Química Engenharia Química Físico-Quíica Experiental I Bacharelado e Quíica Engenharia Quíica Prof. Dr. Sergio Pilling Prática 5 Tensão Superficial de Líquidos Deterinação da tensão superficial de líquidos. utilizando a técnica

Leia mais

Ano. p. 59-68 USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS P. 1. Cláudio Sérgio SARTORI

Ano. p. 59-68 USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS P. 1. Cláudio Sérgio SARTORI N., Março Ano Cláudio Sérgio SARTORI n. USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS p. 59-68 Instituto de Engenharia Arquitetura e Design INSEAD Centro Universitário Nossa Senhora do Patrocínio

Leia mais

AULA #4 Laboratório de Medidas Elétricas

AULA #4 Laboratório de Medidas Elétricas AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de

Leia mais

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA UNIESIDADE DO ESTADO DE SANTA CATAINA CENTO DE CIÊNCIAS TECNOLÓGICAS DEPATAMENTO DE FÍSICA Lista - FCC 1. Um eletrômetro é um instrumento usado para medir carga estática: uma carga desconhecida é colocada

Leia mais

Práticas de Físico Química QB75B. Experimento 7

Práticas de Físico Química QB75B. Experimento 7 1 PR UNIVERSIDADE TECNOLÓGICA EDERAL DO PARANÁ MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA EDERAL DO PARANÁ - UTPR DEPARTAMENTO ACADÊMICO DE QUÍMICA E BIOLOGIA BACHARELADO EM QUÍMICA Práticas de ísico

Leia mais

Faculdade de Engenharia Elétrica e de Computação FEEC Universidade Estadual de Campinas Unicamp EE531 LABORATÓRIO DE ELETRÔNICA BÁSICA I EXPERIÊNCIA 2

Faculdade de Engenharia Elétrica e de Computação FEEC Universidade Estadual de Campinas Unicamp EE531 LABORATÓRIO DE ELETRÔNICA BÁSICA I EXPERIÊNCIA 2 Faculdade de ngenharia létrica e de Computação FC Universidade stadual de Campinas Unicamp 531 LABORATÓRIO D LTRÔNICA BÁSICA I XPRIÊNCIA 2 TRANSISTOR BIPOLAR Prof. Lee Luan Ling 1 o SMSTR D 2010 1 Objetivo:

Leia mais

Prof. Sergio Abrahão 17

Prof. Sergio Abrahão 17 DIFERENÇA DE POTENCIAL - DDP (U) (Tensão Elétrica) Vamos aqui definir diferença de potencial (d.d.p) ou tensão elétrica de duas maneiras. O de forma científica utilizará aquela adotada por Tipler em que

Leia mais

CAPACITOR. Simbologia: Armazenamento de carga

CAPACITOR. Simbologia: Armazenamento de carga CAPACITOR O capacitor é um componente eletrônico capaz de armazenar cargas elétricas. É composto por duas placas de material condutor, eletricamente neutras em seu estado natural, denominadas armaduras,

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

Laboratório 7 Circuito RC *

Laboratório 7 Circuito RC * Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais