6. Determinação do Conjunto dos Estados Atingíveis

Tamanho: px
Começar a partir da página:

Download "6. Determinação do Conjunto dos Estados Atingíveis"

Transcrição

1 Sistema para verificação Lógica do Controlo Dezembro Determinação do Conjunto dos Estados Atingíveis No capítulo anterior chegamos a uma implementação que determinava o estado de um sistema quando aplicado um controlo constante. No entanto o sistema pode estar sujeito a muitos controlos distintos, que podem variar ao longo do tempo, em que cada um deles pode produzir um estado final diferente, ora o que vamos pretender neste capítulo é determinar todos esses possíveis estados para todos esses possíveis controlos, ou dito de outro modo pretendemos determinar o Conjunto dos Estados Atingíveis de um sistema. 6.. Definição Já vimos no ponto 2.. do capítulo 2. Uma definição de Conjunto de Estados atingíveis, que vamos aqui relembrar e escrever de outro modo que passaremos a utilizar neste capítulo. Conjunto dos estados atingíveis. É o conjunto de estados que é possível atingir com um dado sistema dinâmico a partir de uma dado estado inicial. Podemos dizer que A ( t, t, x ) é o conjunto dos estados atingíveis no instante de tempo t quando iniciado no instante t no estado x usando controlos admissíveis Implementação de função que determine o Conjunto dos Estados Atingíveis Como já sabemos da equação x x () = x () t = Φ( t,) x + Φ( t, τ) t dτbu ( 6.) resulta o estado que o sistema atinge no instante t quando parte do estado inicial x e é aplicado o controlo u que para já consideramos constante. Por facilidade vamos normalizar a variável tempo entre e [,] estados atingíveis vai ser escrito na seguinte forma A(,, x ) t pelo que o conjunto dos e vamos utilizar como exemplo ilustrativo o sistema x! = Ax + Bu com os seguintes valores 2 A = B = e com x = Continuando a supor que o controlo é constante por exemplo 6., utilizando por exemplo a função xt(a,b,x,u,t) implementada no capitulo anterior, com os valores acima indicados chegamos ao seguinte resultado u =, resolvendo a equação ( ) - -

2 Sistema para verificação Lógica do Controlo Dezembro 23 x 3,945 =,4762 sendo portanto este o estado a que chega o sistema com as condições acima descritas. No entanto podemos aplicar como controlo do sistema um número muito variado de funções, como por exemplo as que aparecem na figura 6.. Figura 6. : Exemplos de controlos possíveis Antes de continuar-mos vamos definir melhor o controlo Definição: Sendo o controlo u é restringido para valores pertencentes ao conjunto fixo t, será chamada de controlo admissível. e é continuo. Uma função continua u: [ ) Ω Vamos supor que o controlo u vai estar definido na seguinte área u [,] para t [,] p Ω R, Figura 6.2 : Área correspondente ao controlo entre e Continuamos a ter um número infinito de controlos admissíveis, mas desta vez restringidos pela área que definimos. Um número infinito de hipóteses de controlo leva a um número infinito de estados atingíveis

3 Sistema para verificação Lógica do Controlo Dezembro Vamos, para simplificar ainda mais o problema, dizer que o controlo para cada instante t só vai ter dois valores possíveis u u = = e divididos no tempo em instantes iguais. Figura 6.3 : Divisão do controlo em instantes com os valores e Deste modo já temos um número finito de possibilidades de controlo 24 2 n = = o que torna mais fácil a determinação dos Estados. Vamos guardar esses n controlos admissíveis numa matriz a que chamaremos nu. = nu Com este número n finito de controlos admissíveis podemos calcular n vezes o estado do sistema, é claro que isso é moroso fazendo manualmente mas para isso é que existem os computadores, vamos por isso recorrer novamente à nossa ferramenta matemática o MATLAB. Utilizando a como base a função xt(a,b,x,u,t) podemos agora criar uma nova função que calcule, para n possibilidades de controlo, os n possíveis estados atingíveis.

4 Sistema para verificação Lógica do Controlo Dezembro 23 Função ating(nu,a,b,x,t) function nx=ating(nu,a,b,x,t) x=x; [r,c]=size(nu); t=linspace(/c,,c)*t; for j=:r, u=nu(j,:); for i=:c, x=xt(a,b,x,u(i),t()); x=x; end, nx(j,:)=x'; x=x; end, Entradas e saídas da função: A função ating(nu,a,b,x,t) vai ter como entrada os seguintes parâmetros:! a - matiz quadrada A.! b vector B.! x vector representativo do estado inicial.! nu matriz nu contendo n controlos aplicados ao sistema.! t tempo t decorrido entre o instante inicial e o instante final. O resultado desta função, ou seja nx=ating(nu,a,b,x,t), vai ser:! nx matriz resultado da função, representa os n valores possíveis para do estado x () t. Descrição da função A função vai ser implementada seguindo o ponto 6.2. descrito anteriormente. Em primeiro lugar vamos atribuir a variável x o valor de x representativo do estado inicial do sistema. Com a função [r,c]=size(nu) determinamos as dimensões em termos de número de linhas e número de colunas da matriz nu contendo os n controlos aplicados ao sistema, a variável c resultante da função anterior vai corresponder ao número de instantes em que foi dividido o tempo t. Com a função t=linspace(/c,,c)*t criamos um vector com c instantes de tempo. A partir de aqui temos que calcular função implementada no capítulo anterior tantas vezes quantos os controlos aplicados, para isso vamos recorrer a dois ciclos for um que vai evoluir de até ao numero de linhas r e outro interior a este que vai evoluir de ate ao numero de colunas c do sistemas, abrangendo assim todos os controlos contidos na matriz de controlos nu

5 Sistema para verificação Lógica do Controlo Dezembro 23 No primeiro ciclo for criámos um vector u=nu(j,:) com c controlos correspondentes à linha j da matriz nu. Dentro deste ciclo vamos ter outro ciclo for onde é calculada a função x=xt(a,b,x,u(i),t()) descrita no capítulo anterior, no fim de cada cálculo o valor inicial para novo cálculo é actualizado x=x fazendo assim a função evoluir no tempo. Voltando ao primeiro ciclo, os valores do Estado do Sistema que vão sendo encontrados vão ser guardados na matriz nx, para voltarmos a uma nova interacção deste ciclo temos que actualizar novamente o valor da variável x com o valor inicial do sistema x. O resultado final vai ser uma matriz nx com o resultado da função e que representa os valores possíveis para do estado do sistema para os controlos correspondentes à matriz nu a ele aplicados. Teste da função no MATLAB. Estamos agora em condições de testar esta função no MATLAB, para tal vamos considerar novamente o seguinte exemplo para os valores do sistema: 2 A = B = x =» a=[2 ; ] a = 2» b=[;] b =» x=[;] x =» Considerando um tempo final para qual se quer saber os possíveis estados do sistema t=, e aplicando por exemplo n = 2 = 24 controlos, que por facilidade guardamos numa variável uu num ficheiro a que chamamos u24.mat e que precisamos descarregar para o MATLAB.» load u24.mat» uu - 5 -

6 Sistema para verificação Lógica do Controlo Dezembro 23 uu = Podemos agora calcular os valores dos estados do sistema para cada um destes controlos.» nx=ating(uu,a,b,x,) nx = A cada par de valores, de cada linha da matriz nx resultante, vai corresponder a um estado possível que o sistema pode atingir para determinado controlo. A figura 6.4 representa os n = 2 = 24 estados possíveis que o sistema, do nosso exemplo, pode atingir. Com a função plot() podemos construir o gráfico.» plot(nx(:,),nx(:,2),'g.')» - 6 -

7 Sistema para verificação Lógica do Controlo Dezembro 23 Figura 6.4 : Nuvem com os pontos correspondentes ao conjunto dos estados atingíveis do exemplo. Obtemos uma nuvem com n = 2 = 24 pontos correspondentes aos estados atingíveis quando aplicados os n = 2 = 24 hipóteses de controlo pré estabelecidas Simplificação do processo de determinação do Conjunto dos Estados Atingíveis Verificamos no entanto que este processo ainda é moroso devido ao elevado número de operações que temos que realizar. Se admitirmos que u() t Ω() t e que () t t, resulta que A (,, x ) também vai ser convexo e fechado, logo se conseguimos calcular os pontos da margem da nuvem resultante do exemplo anterior ficamos com uma solução mais simplificada para o problema. Ω é convexo e fechado para todo [ ] Se utilizarmos apenas as possibilidades de controlo que correspondem à variação do controlo de para e de para vamos obter a simplificação desejada, ou seja reduzimos de n = 2 = 24 para n = 2 = 2 possibilidades de controlo o que reduz em muito o numero de operações realizadas. Com isto vamos obter n = 2 = 2 pontos na margem da nuvem obtida no exemplo anterior correspondentes a estados limites do sistema. As matrizes n e nque representamos a seguir representam variação do controlo de para e de para, para o exemplo com dez divisões no tempo

8 Sistema para verificação Lógica do Controlo Dezembro = n = n Vamos voltar a testar a função ating(nu,a,b,x,t) usando o exemplo anterior mas agora com estes valores para o controlo. Teste da função no MATLAB.» a=[2 ; ] a = 2» b=[;] b =» x=[;] x =» Para facilitar a obtenção das matrizes n e n criamos um função auxiliar nu() para criar uma matriz em MATLAB com os 2 valores correspondentes variação do controlo de para e de para, no caso são 2 porque as 2 2 n = = linhas da matriz, foi acrescentada uma para fechar o ciclo. function nu=nu(n) nu=triu(ones(n)); nu(n+:2*n,:)=(nu(:n,:)-)*(-); nu(2*n+,:)=nu(,:);

9 Sistema para verificação Lógica do Controlo Dezembro 23 Com esta função vamos criar os controlos para o sistema que guardamos na variável uu.» uu=nu() uu =»» nx=ating(uu,a,b,x,) nx =

10 Sistema para verificação Lógica do Controlo Dezembro 23 Usando novamente a função plot() obtemos o contorno da área ocupada pelo conjunto dos estados atingíveis.» plot(nx(:,),nx(:,2), g+ )» hold on» plot(nx(:,),nx(:,2)) Figura 6.5 : Contorno da área correspondentes ao conjunto dos estados atingíveis do exemplo. Com uma alteração de código criamos a função ating3() onde podemos verificar as trajectórias tomadas até à obtenção do conjunto dos estados atingíveis. function [x,x2,t]=ating3(nu,a,b,x,t) x=x; [r,c]=size(nu); t=linspace(/c,,c)*t; for j=:r, u=nu(j,:); for i=:c, x=xt(a,b,x,u(i),t()); x(j,i)=x(); x2(j,i)=x(2); x=x; end, x=x; end, - -

11 Sistema para verificação Lógica do Controlo Dezembro 23 Testando esta nova função e utilizando a função do MATLAB, plot3() obtemos as trajectórias.» [x,x2,t]=ating3(nu(),a,b,x,);» plot3(t,x,x2)» hold on» plot3(ones(2,),nx(:,),nx(:,2))» grid on Figura 6.6 : Trajectórias correspondentes ao conjunto dos estados atingíveis do exemplo. - -

8. Sistema Não Linear

8. Sistema Não Linear Sistema para verificação Lógica do Controlo Dezembro 3 8. Sistema Não Linear Verificamos no capitulo anterior que o principio do máimo, resulta eficaz para determinar o conjunto dos estados atingíveis

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

Continuidade e Limite

Continuidade e Limite Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

Universidade Federal de Ouro Preto -UFOP Departamento de Computação - DECOM Programação de Computadores I BCC701

Universidade Federal de Ouro Preto -UFOP Departamento de Computação - DECOM Programação de Computadores I BCC701 Universidade Federal de Ouro Preto -UFOP Departamento de Computação - DECOM Programação de Computadores I BCC701 www.decom.ufop.br/moodle No circuito abaixo, temos uma fonte de voltagem V=120V, com uma

Leia mais

RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor

Leia mais

Análise Complexa e Equações Diferenciais Guia 9 João Pedro Boavida. 23 a 30 de Novembro

Análise Complexa e Equações Diferenciais Guia 9 João Pedro Boavida. 23 a 30 de Novembro Análise Complexa e Equações Diferenciais Guia 9 24 de Novembro de 2 Este guia explica vários exemplos de determinação de formas de Jordan e cálculo de exponenciais de matrizes, bem como alguns outros exemplos

Leia mais

Noções Elementares Sobre Derivadas

Noções Elementares Sobre Derivadas Noções Elementares Sobre Derivadas da Silva, M.Ilsangela Departamento de Matemática Universidade Estadual Vale do Acaraú 7 de dezembro de 2007 milsangela@gmail.com pré-prints do Curso de Matemática de

Leia mais

Complemento Matemático 02 Ciências da Natureza I EQUAÇÃO DO 2º GRAU Física - Ensino Médio Material do aluno

Complemento Matemático 02 Ciências da Natureza I EQUAÇÃO DO 2º GRAU Física - Ensino Médio Material do aluno A relação existente entre equações e fenômenos físicos Leia atentamente a afirmação abaixo: Complemento Matemático 0 Ciências da Natureza I EQUAÇÃO DO º GRAU Uma equação é uma descrição matemática de um

Leia mais

Ajuste de dados por mínimos quadrados

Ajuste de dados por mínimos quadrados Cálculo Numérico por mínimos quadrados Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343

Leia mais

Resolução de circuitos usando lei de Kirchhoff

Resolução de circuitos usando lei de Kirchhoff Resolução de circuitos usando lei de Kirchhoff 1º) Para o circuito abaixo, calcular todas as correntes. a) Definimos as correntes nas malhas e no ramo central e damos nomes a elas. A definição do sentido

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Márcio Nascimento. 19 de fevereiro de 2018

Márcio Nascimento. 19 de fevereiro de 2018 Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 19 de fevereiro de 2018 1 / 16 Considere

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (016-017 Exercícios resolvidos Ficha 7-1. ( ( 30 10 0 10. Ficha 7 -. 4 10 ( 4 10. Ficha 7-3. A resposta à primeira pergunta é (5 3 ( 5 6. A probabilidade de acertar exactamente

Leia mais

Informática para Ciências e Engenharias 2013/14. Teórica 7

Informática para Ciências e Engenharias 2013/14. Teórica 7 Informática para Ciências e Engenharias 2013/14 Teórica 7 Na aula de hoje... Controlo de execução ciclos condicionais while end Exemplos raiz quadrada histograma fórmula química while while e matrizes

Leia mais

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Interpolação Conteúdo temático Avaliação do erro

Leia mais

Física Computacional 5

Física Computacional 5 Física Computacional 5 1. Derivadas com diferenças finitas a. O conceito de derivada, menos simples que o de integral b. Cálculo numérico da derivada com diferenças finitas c. Um outro conceito, Equação

Leia mais

Matemática Básica I Notas de aula - versão

Matemática Básica I Notas de aula - versão 1 - Departamento de Matemática Aplicada (GMA) Matemática Básica I Notas de aula - versão 3 2011-1 Marlene Dieguez Fernandez Observações preliminares A disciplina Matemática Básica I é oferecida no mesmo

Leia mais

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z. GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan

Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú Curso de Licenciatura em Matemática marcio@matematicauva.org 8

Leia mais

Parte II. Determinemos a variação do lucro, quando o custo do trabalho passa de 0 para 5 mil euros.

Parte II. Determinemos a variação do lucro, quando o custo do trabalho passa de 0 para 5 mil euros. Funções reais a duas variáveis reais Parte II III. Derivadas [ELL] Voltemos ao exemplo da função lucro a uma variável. Numa determinada empresa concluiu se que o lucro anual, em milhares de euros, é dependente

Leia mais

Informática para Ciências e Engenharias 2014/15. Teórica 7

Informática para Ciências e Engenharias 2014/15. Teórica 7 Informática para Ciências e Engenharias 2014/15 Teórica 7 Na aula de hoje... Controlo de execução ciclos condicionais while end Exemplos raiz quadrada histograma fórmula química while while e matrizes

Leia mais

distribuição perto do pico

distribuição perto do pico Teoria Quântica de Campos I 178 Em espalhamentos relativísticos o mesmo ocorre, as partículas iniciais podem se combinar para formar estados instáveis, que então decaem em outros, por exemplo: Na amplitude

Leia mais

Método dos Mínimos Quadrados

Método dos Mínimos Quadrados Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Método dos Mínimos Quadrados Objectivos: Estimação de valores pelo método dos mínimos quadrados. PROBLEMAS 1 Determine

Leia mais

4. Tensores cartesianos em 3D simétricos

4. Tensores cartesianos em 3D simétricos 4. Tensores cartesianos em D simétricos 4.1 Valores e vectores próprios ou valores e direcções principais Em D não é possível deduzir as fórmulas que determinam os valores e as direcções principais na

Leia mais

7 Imunização utilizando o modelo de imunização estocástica

7 Imunização utilizando o modelo de imunização estocástica 139 7 Imunização utilizando o modelo de imunização estocástica No capítulo anterior apresentamos e definimos uma série de novos conceitos em duração e em imunização. odos estes conceitos teóricos servem

Leia mais

Capítulo 3 - Mínimos Quadrados Lineares

Capítulo 3 - Mínimos Quadrados Lineares Capítulo 3 - Mínimos Quadrados Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

2 Programação de Simulink S-functions

2 Programação de Simulink S-functions 2 Programação de Simulink S-functions 2.1 S-function É uma descrição de um bloco do simulink numa linguagem de programação, que pode ser codificada em Matlab, C / C++, Fortran ou Ada. u Fig. 2-1: (S-function

Leia mais

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo:

Consideremos um sistema linear de n equações lineares e n incógnitas, do tipo: 58 3. Resolução de Sistemas Lineares MÉTODOS DIRETOS: são métodos que determinam a solução de um sistema linear com um número finito de operações. Entre os métodos diretos (Eliminação de Gauss, Eliminação

Leia mais

Controle Ótimo - Aula 10 Princípio do Mínimo de Pontryagin

Controle Ótimo - Aula 10 Princípio do Mínimo de Pontryagin Controle Ótimo - Aula 10 Princípio do Mínimo de Pontryagin Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos O problema de controle ótimo

Leia mais

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 3 Sistemas de Equações Lineares Um sistema com n equações lineares pode ser escrito na forma : ou na forma matricial onde com a 1,1 x 1 + a 1,2 x 2 + + a x n = b 1 a 2,1 x 1 + a 2,2 x 2 + + a

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

O método do lugar das raízes

O método do lugar das raízes 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada em função

Leia mais

Professora Bruna FÍSICA A. Aula 15 Função Horária no MUV. Página 194

Professora Bruna FÍSICA A. Aula 15 Função Horária no MUV. Página 194 FÍSICA A Aula 15 Função Horária no MUV Página 194 INTRODUÇÃO Na aula anterior, definimos a função horária das velocidades para o Movimento Uniformemente Variado (MUV). Nesta aula, vamos definir a função

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

7. Controlo Adaptativo

7. Controlo Adaptativo 1 7. Controlo Adaptativo Objectivo: Mostrar como é possível integrar os blocos anteriormente estudados de identificação de sistemas e projecto de controladores para obter controladores adaptativos. 2 Motivação

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Numérico 3/55 Introdução Em geral, experimentos geram uma gama de dados que devem

Leia mais

3. Números Racionais

3. Números Racionais . Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

sujeito a: 30x x (madeira) 5x x (horas de trabalho) x 1, x 2 0

sujeito a: 30x x (madeira) 5x x (horas de trabalho) x 1, x 2 0 IV. MÉTODO GRÁFICO O método gráfico só permite resolver problemas de PL de pequena dimensão (duas ou três variáveis) não tendo pois qualquer interesse prático. O método gráfico permite visualizar um conjunto

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema II Funções e Gráficos. Funções polinomiais. Função módulo.

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema II Funções e Gráficos. Funções polinomiais. Função módulo. ESCOLA SECUNDÁRIA COM º CICLO D. DINIS Problemas aplicando a Regra de Ruffini (ponto 1 do Plano de trabalho nº 6) 1. Considere a função polinomial f definida por f( x) = x 14x + 59x+ 0. No referencial

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas 1 Exercícios Introdutórios

Leia mais

TESTES DE PRIMALIDADE

TESTES DE PRIMALIDADE TESTES DE PRIMALIDADE MOTIVACAO Testes de primalidade são ingredientes essenciais em sistemas de segurança computadorizados. Há uma série de sistemas de segurança que contam com a suposição que é difícil

Leia mais

O Problema de Transportes

O Problema de Transportes Investigação Operacional- 00/0 - Problemas de Transportes 8 O Problema de Transportes O problema geral de transportes consiste em determinar a forma mais económica de enviar um bem que está disponível

Leia mais

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros Resumo Filtragem Adaptativa Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Sistemas de filtragem adaptativa Conceitos de filtragem adaptativa Filtro de Wiener Algoritmo steepest descent

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

VETORES Motivação AULA 19

VETORES Motivação AULA 19 AULA 19 VETORES 19.1 Motivação Considere o problema de calcular a média aritmética das notas de 5 alunos de uma disciplina e determinar e escrever o número de alunos que obtiveram nota superior à média

Leia mais

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS PEDRO ALADAR TONELLI 1. Introdução Nosso objetivo é apresentar de uma forma simples o procedimento para achar soluções de uma equação relacional fuzzy para

Leia mais

1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem

1 Derivadas Parciais de Ordem Superior Em duas variáveis Em três variáveis. 1.3 Derivadas de Ordem Contents 1 Derivadas Parciais de Ordem Superior 1 1.1 Em duas variáveis..................................... 1 1. Em três variáveis...................................... 1 1.3 Derivadas de Ordem...................................

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Processamento Simbólico Polinómios e Equações Gráficos

Processamento Simbólico Polinómios e Equações Gráficos Matlab Processamento Simbólico Polinómios e Equações Gráficos Matlab Eercício. Iniciar o programa Matlab. Há duas formas: Fazer duplo-clique sobre o atalho, eistente no ambiente de trabalho do Windows

Leia mais

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Com esta apostila espera-se levar o aluno a: Apostila organizada por: Vanderlane Andrade Florindo Silvia

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

EQUAÇÕES RECURSIVAS. A2) Equação: x n = x n 1 + n b (n > 0) Fixado o termo x 0, de ordem n = 0, a equação admite uma única n

EQUAÇÕES RECURSIVAS. A2) Equação: x n = x n 1 + n b (n > 0) Fixado o termo x 0, de ordem n = 0, a equação admite uma única n EQUAÇÕES RECURSIVAS Chama-se equação recursiva a uma relação usada para definir recursivamente uma sucessão, onde o termo de ordem n é expresso em função de termos de ordem anterior. As equações A), A1),

Leia mais

MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB

MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB Bruno Avila Farenzena 1 Eliete Biasotto Hauser 2 Resumo: Neste trabalho

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Capítulo 3. Álgebra de Bool

Capítulo 3. Álgebra de Bool Capítulo 3 Álgebra de Bool Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Objectivos Compreender a relação entre lógica Booleana e os circuitos

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Ezequias Martins França Paulo Giovanni de Souza Carvalho. Resolução dos problemas 2.4 e 2.6 da lista de exercícios

Ezequias Martins França Paulo Giovanni de Souza Carvalho. Resolução dos problemas 2.4 e 2.6 da lista de exercícios Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas 2.4 e 2.6 da lista de exercícios Brasil 2017 Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

CADERNO DE EXERCÍCIOS 2B

CADERNO DE EXERCÍCIOS 2B CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Análise de Suporte para Televisão e DVD

Análise de Suporte para Televisão e DVD Universidade Federal de Minas Gerais Elementos Finitos para Análise de Estruturas Professor Estevam as Casas Análise de Suporte para Televisão e DVD Carlos Secundino Heleno Santos ucia ima obo eite Willer

Leia mais

INTERFERÊNCIA. S 1 r 1 P S 2 r 2 E 1

INTERFERÊNCIA. S 1 r 1 P S 2 r 2 E 1 INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA : FÍSICA GERAL E EXPERIMENTAL IV-E (FIS 4) INTERFERÊNCIA Sejam duas fontes puntiformes de luz S e S e um ponto P situado a

Leia mais

aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES

aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES 18 aula META Fazer com que o aluno seja capaz de realizar os procedimentos existentes para a avaliação da qualidade dos ajustes aos modelos. OBJETIVOS Ao final

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 8 : O método Simplex. Casos particulares. Empate no critério de entrada. Óptimo não finito. Soluções óptimas alternativas. Degenerescência. INÍCIO Forma Padrão Faculdade

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Solução básica viável inicial Marina Andretta ICMC-USP 10 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

Aula 3: Algoritmos: Formalização e Construção

Aula 3: Algoritmos: Formalização e Construção Aula 3: Algoritmos: Formalização e Construção Fernanda Passos Universidade Federal Fluminense Programação de Computadores IV Fernanda Passos (UFF) Algoritmos: Formalização e Pseudo-Código Programação de

Leia mais

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos.

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos. 2017, NÚMERO 1, VOLUME 5 ISSN 2319-023X Universidade Federal de Sergipe - UFS evilson@ufs.br Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo estendido das divisões

Leia mais

Sistemas - Relações entre as colunas da matriz ampliada

Sistemas - Relações entre as colunas da matriz ampliada Sistemas - Relações entre as colunas da matriz ampliada Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra

Leia mais

Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel. Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME0305

Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel. Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME0305 Sistemas Lineares - Métodos Iterativos : Jacobi e Gauss-Seidel Profa. Cynthia de O. Lage Ferreira Métodos Numéricos e Computacionais I - SME35 Métodos Iterativos Nesta seção, vamos estudar métodos iterativos

Leia mais

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADAS PARCIAIS7 Gil da Costa Marques 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação: Funções de mais do que duas Variáveis

Leia mais

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações 1). Tipos de equações LIÇÃO 7 Introdução à resolução das equações numéricas Na Matemática, nas Ciências e em olimpíadas, encontramos equações onde a incógnita pode ser número, função, matriz ou outros

Leia mais

PET FÍSICA GEOMETRIA ANALÍTICA TATIANA MIRANDA DE SOUZA JOSE CARLOS DE MORAES SILVA FREDERICO ALAN DE OLIVEIRA CRUZ

PET FÍSICA GEOMETRIA ANALÍTICA TATIANA MIRANDA DE SOUZA JOSE CARLOS DE MORAES SILVA FREDERICO ALAN DE OLIVEIRA CRUZ PET FÍSICA GEOMETRIA ANALÍTICA Aula 9 TATIANA MIRANDA DE SOUZA JOSE CARLOS DE MORAES SILVA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais