Terceira Lista de Preparação para a XXIX Olimpíada de Matemática do Cone Sul e VIII Olimpíada de Matemática dos Países de Língua Portuguesa

Tamanho: px
Começar a partir da página:

Download "Terceira Lista de Preparação para a XXIX Olimpíada de Matemática do Cone Sul e VIII Olimpíada de Matemática dos Países de Língua Portuguesa"

Transcrição

1 Terceira Lista de Preparação para a XXIX Olimpíada de Matemática do Cone Sul e VIII Olimpíada de Matemática dos Países de Língua Portuguesa Álgebra e Teoria dos Números Problema ) Encontre o primeiro dígito após o ponto decimal do número Solução: Defina a n = n + + n n e note que a n a n = temos: a n = n ( ) < ( ) = ( ) + = ln < 0.7 = Também temos que: Logo a resposta é 6. a 009 = 009 = = Problema ) Encontre todas as triplas (m, p, q), tal que: = ( ) > > 0.6 m p + = q 7, com p e q números primos e m um inteiro positivo. n(n + ), assim Solução: Assumindo m > 0 temos q é ímpar e pelo desenvolvimento da equação, temos: () m p = q 7 = (q )(q 6 + q 5 + q 4 + q 3 + q + q + ) = (q )f(q) Implicando que: f(q) = 6 =0 q 6 =0 = 7 (mod ) de acordo com a equação () m q. Logo teremos: () q m f(q) = p. Sabemos que q < q < q + < f(q) unindo à eq.() encontramos: q = m e m p = f(q) = q7 = (m +) 7 = m + 7, Logo m p 7. q m Se m então 4 p 7, que é impossível. Então m =, e assim q = m + = + = 3. Dessa forma p = q7 = 37 = 87 = 86 = 093, logo p N gerando um absurdo. q 3 Para m = 0, teremos p ou q par ou seja igual a pois são primos. casos teremos números não naturais, gerando também um absurdo. Porém, em ambos os

2 Problema 3) Prove que a 4 existem infinitos inteiros n livres de quadrado tal que n a n. Observação: inteiro livre de quadrado é aquele que não é múltiplo de nenhum quadrado perfeito. Solução: Seja n o menor divisor primo de a. Assim criamos a seguinte recorrência: em que n + a n. Sabemos que: Porém mdc(a n, p i=0 ain ) p. n + = p n, mdc(p, n ) = p n a n p = (a n ) i=0 a in Dessa forma, p i=0 ain não pode ser puramente uma potência de p e então podemos escolher outro fator primo p. Combinatória Problema 4) Defina um -clique como sendo um conjunto de pessoas de tal modo que quaisquer duas se conhecem mutuamente. Em uma certa festa, todo par de 3-cliques tem pelo menos uma pessoa em comum, e não existem 5-cliques. Prove que existe duas pessoas ou menos cuja partida não deixa 3-cliques restantes. Solução: É impossível ter mais que dois triangulos (3-clique) de tal forma que cada dois tem uma aresta em comum. Então, pegue dois triângulos xyz, xuv tais que {x, y} {u, v} =. Suponha primeiro que todos os nossos triângulos que não têm x como vértice tem seus vértices entre y, z, u, v. Logo, deve haver um triângulo que não tenha y como vértice, e o mesmo vale para z, u, v, assim xyzuv é um 5-clique, o que não é verdade. Isto significa que entre os triângulos que não têm x como vértice, nós podemos encontrar um tvz(por exemplo) tal que t / {x, y, z, u, v}. Assuma agora que nossa conclusão não é válida. Isto significa que podemos encontrar triângulos que não tenham (x, v), (v, x) ou (z, x) como aresta. Depois de constatar que yu, ut, ty não podem ser arestas, podemos ver que a única maneira para isso ocorrer é ter outro vértice p e triângulos pxt, pyv, puz. Isso, no entanto, significa que temos o 5-clique xyzuv, gerando também uma contradição. Problema 5) Há uma moeda em cada quadrado do tabuleiro de xadrez n n. Nós juntamos n moedas e as distribuímos nos quadrados (novamente cada quadrado contendo uma moeda) tal que quaisquer duas moedas adjacentes encontram-se novamente adjacentes. Encontre todas as distribuições de tal forma que pelo menos uma das moedas nos cantos permaneça no seu quadrado inicial. Observação: dois quadrados são adjacentes se eles compartilham uma borda comum. Solução: Como cada uma das (n ) moedas internas inicial tem quatro vizinhas na configuração inicial, também deve ter quatro vizinhas na nova configuração. Isso implica que as moedas interiores vão para os quadrados internos e as moedas de fronteira vão para o limite. Agora considere que um moeda do canto permanece no seu quadrado inicial, essa tem duas moedas vizinhas na configuração inicial que devem ir para os dois quadrados vizinhos na nova

3 configuração. Existem duas maneiras de atribuir esses dois vizinhos. Pode-se mostrar que, uma vez fixada a moeda do canto e a posição das vizinhas, isso também fixa a posição de todas as moedas restantes. Problema 6) Um tabuleiro é dado. No início todo quadrado unitário tem escrito o número"0". Duas pessoas participam de um jogo que termina após 00 passos (cada jogador joga 00 passos). Em cada passo cada um escolhe uma linha ou coluna e adiciona ao número escrito em todos os quadrados (mod 3). O primeiro jogador é o vencedor se mais da metade dos quadrados(5000 quadrados unitários) tem o número ""escrito. Já o Segundo jogador ganha se mais da metade dos quadrados tem o número "0"escrito. Caso contrário o jogo fica empatado. Assuma que ambos os jogadores jogam com suas melhores estratégias. Qual será o resultado do jogo? Solução: O jogo será empate. Vamos definir uma estratégia não perdedora para cada jogador. É suficiente para o primeiro jogador escolher todas as linhas, cada linha uma vez. Nós garantimos que o primeiro jogador não perde nesse caso. Assuma caso contrário, isso significa que o segundo jogador pode de alguma forma ganhar o jogo nesse caso. Note que a ordem dos movimentos não importa para o resultado final, porque o número escrito em cada célula é definido apenas pela quantidade de vezes que é escolhido, não pela ordem deles. Então assuma que o primeiro jogador realiza os primeiro 00 movimentos e então o segundo jogador realiza os outros 00. Pelos primeiro 00 movimentos, teremos um tabuleiro em que o número está escrito em cada célula. Cada célula que tenha o número 0 escrito precisa ser escolhida pelo menos outras vezes( note que o segundo jogador está jogando o resto do jogo). Agora, se existe mais que 5000 células, teremos que escolher mais que 5000 = 0000 vezes. Porém cada jogador escolhe exatamente 0000 células. Portanto, é impossível o segundo jogador vencer nesse caso. Já para o segundo jogador, é suficiente fazer exatamente os mesmos movimentos que o primeiro jogador faz, isso significa que se o primeiro jogador escolher a i-ésima coluna/linha, então o segundo jogador escolhe a mesma coluna/linha. Queremos que o segundo jogador não perca Nesse caso. Assuma caso contrário, que o segundo jogador pode de alguma forma ganhar. Note que se uma célula é escolhida pelo primeiro jogador por vezes, então essa deve ser escolhida pelo segundo jogador exatamente vezes. Agora, para cada célula com o número, nos devemos ter: (mod 3) o que implica (mod 3) assim. Isso significa que o primeiro jogador deve escolher cada célula pelo menos vezes. A mesma desigualdade nos dá a mesma contradição. Geometria Problema 7) Seja ABCDE um pentágono convexo. Suponha que BD CE = A, CE DA = B, DA EB = C, EB AC = D e AC BD = E. Suponha também que (ABD ) (AC E) = A, (BCE ) (BD A) = B, (CDA ) (CE B) = C, (DEB ) DA C = D e (EAC ) (EB D) = E. Prove que AA, BB, CC, DD e EE são concorrentes. Solução: Aplicando inversão com centro A e raio arbritário, e colocando para indicar os inversos. Vamos provar a seguinte suposição: (AE E ) (AB B ) está em AA. Lema: C D B E Prova: Note que C B C C B E B D D e similarmente D E D E C C. Então nós conseguimos C C /C B = B D /D D = C C D D = C B B D e analogamente CC D D = E D E C. Então, C B /E D = E C /B D. Mas

4 nós temos E C A B D A assim E C /B D = A C /A D, como queriamos demonstrar. Assim, E B é não paralelo a E B então E B E B é cíclico, assim claramente A está no eixo radical de (AE E ), (AB B ) assim ao re-inverter nós teremos a concorrência desejada. Problema 8) BD Seja D um ponto no lado BC do triângulo ABC tal que AD = AB + AD = CD AC + AD. DE Seja E um ponto tal que D está em [AE] e CD =. Prove que AE = AB + AC. CD + CE Solução: Vamos demonstrar inicialmente o Lema abaixo. Lema: Dado um triângulo ABC. Seja o ponto D BC tal que AD BC. Então b = c(a + c) B = C DC = DB + BA Prova: b = c(a + c) b c = ac DC DB = ac DC = DB + BA b cos C = c + c cos B sin B cos C = sin C( + cos B) tan B = tan C B = C Denote por ABC = x, ACB = y, CED = z. Então, aplicando o Lema acima, no ABC : BD = AD (AB + AD) = BAD = ABD = x. Analogamente, no ACD : CD = AD (AC + AD) = CAD = ACD = y e no CDE : DE = CD (CE + CD) = DCE = CED = z. Observe que A + B + C = 80 (x+y)+x+y = 80 x+y = 60, e ABD + BAD = CED + DCE x+x = z + z z = x e ABEC é cíclico. Então AE = AB + AC sin ACE = sin ACB + sin ABC sin(x + y) = sin y + sin x sin(x + y) sin y = sin x sin x cos(x + y) = sin x cos(x + y) = x + y = 60 o que é verdade. Problema 9) Dado o ABC isósceles com AB = AC > BC. A mediatriz de AB encontra a bissetriz externa de ADB em P, e a interseção da mediatriz de AC e a bissetriz externa de ADC é o ponto Q. Prove que B, C, P e Q são concíclicos. Solução: Seja P = P D AB, Q = QD AC e AB = AC = δ. Sabendo que P e Q são pontos médios do arco AB em (ABD) e do arco AC em (ACD), respectivamente. Então: = BD AD + CD AD = = BP δ + BP + CQ δ + CQ = = δ = BP CQ dessa forma: P B = DB = P B DA = P A DB = δ DB + P B DB (). P A DA Se denotarmos por R = BP AD, R = CQ AD, então em () nós temos AR = [ABP ] DR [DBP ] = δ AP DB DP = δ BP DB = δ CQ DC = δ AQ DC DQ = [ACQ] [DCQ] = AR DR = R R R Assim, BR RP = AR RD = CR RQ = B, C, P, Q são concíclicos.

5 Problemas gerais Problema 0) Dado um polígono convexo A A...A n de tamanho n. Prove ou refute que os maiores círculos circunscritos aos triângulos A i A j A, com i, j, {,,..., n} e i j, são da forma A l A l+ A l+. Solução: Assuma que o problema pede para mostrar que existe m de modo a A m A m+ A m+ ter o maior circunraio. Seja A i A j A o triângulo com o maior circunraio. Como todo triângulo tem pelo menos dois ângulos agudos, suponha sem perda de generalidade que A i, A j são ambos agudos. Denote por Γ = (A i A j A ). Pegue A l no mesmo lodo de A j A que A i. Então pela Lei dos A j A A j A Senos, nós sabemos que que se reorganiza para sin A A l A j sin A A i A j sin A A l A j sin A A i A j = A A l A j A A i A j. Como A i, A l estão no mesmo lado, nós deduzimos que A l está dentro de Γ ou em seu limite. Um argumento semelhante para A l estando no mesmo lado de A i A que A j nos dá que A l está dentro de Γ ou em seu limite. Juntando as duas conclusões conseguimos que o n-ágono está dentro ou em Γ. Agora considere A l estando no lado oposto de A A j referente a A i, se esse existir. A l está dentro de Γ nos dá 80 A A l A j A A i A j, então pela Lei dos Senos o circunraio de (A A l A j ) é pelo menos o de (A i A j A ), assim a igualdade deve manter, implicando que todos esses pontos A l estão em Γ. Analogamente, todos os pontos A l opostos a A j em relação a A i A devem estar em Γ, assim nós concluimos que A A A + está em Γ, como queríamos. Problema ) Seja uma sequência de números reais a 0, a, a,... satisfazendo a seguinte condição: m a n ( ) n n=0 ( ) m = 0 n para todos valores suficientemente grande de m. Mostre que existe um polinômio P tal que a n = P (n) para todo n 0. Solução: Temos que N/ m N : m n=0 a n ( ) n (m n) = 0. Considere um polinômio P de tal forma que 0 i N : P (i) = a i. Assim, vamos proceder por indução, o primeiro passo é óbvio. Assuma então que P (n) = a n, nós iremos provar que P (n + ) = a n+ : Para n N é claro, então assuma n N. Dado o Lema abaixo: Lema: n ( ) n ( ) P () = 0 =0 com P polinômio de grau menor que n. Prova: Uma simples indução funciona. É fácil provar a validade para n =, suponha agora válido para n e vamos provar validade para n. De n =0 ( )( n ) = 0 nós podemos supor que o polinômio tem 0 como raiz, i.e. P (X) = XQ(X). Sabemos ( ) ( n = n n ) então n = ( )( ) n P () = n ( )( ) n np () = n 0 ( ) ( ) n nq( + ) = 0 (usando a suposição de que Q é de grau menor ou igual a n ). Logo temos n+ =0 P () ( ) (n+ ) = 0 mas n+ =0 a ( ) (n+ ) = 0 = P (n+) = an+

6 Problema ) Seja n um inteiro positivo. Dado S um subconjuntos de pontos no plano com as seguintes propriedades: I) Não existem n linhas no plano tais que todo elemento de S está em pelo menos uma delas; II) Para todo X S existe n linhas no plano tais que todo elemento de S X está em pelo menos uma delas. Ache o maior valor de S. (n + )(n + ) Solução: Vamos mostrar por indução em n que S. É fácil ver que para n = temos S 3, pois ao analisarmos para 4 pontos veremos que por I) ele são não colineares e por II) cada 3 devem ser colineares, o que nos gera um absurdo (sendo exemplo de igualdade ( + )( + ) qualquer triângulo não degenerado). Assumimos agora que S para todo n. Sabemos que em S n não podemos ter mais que n+ pontos colineares, caso contrário denote por x, x,..., x n+ tais pontos logo escolhendo X = x i por P.C.P. e por II), deveremos ter uma reta que passa por pelo menos dois dos pontos, assim passado por todos inclusive X, o que gera absurdo pela letra I). Assim, assumindo o caso maximal teremos em S n n + pontos colineares formando o conjunto K(pertencendo esses a reta ), logo em S n K devemos ter as mesmas propriedades que S n, pois pegando X em S n K devemos ter como sendo uma das n retas, caso contrário teríamos pelo menos n+ retas. Sabemos também que não existe n linhas no plano tais que todo elemento de S n K está em pelo menos uma delas pois caso contrário em S n teríamos uma (n)(n + ) contradição de I)(reta r e as n linhas). Logo S n = S n + (n + ) + n + = (n + )(n + ). Como queríamos demonstrar. Assim, S (n + )(n + ) e um exemplo é o subconjunto de pontos S = {(l, ) +l n}.

Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria Plana - Parte 2 Congruência de Triângulos e Aplicações. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria Plana - Parte 2. Congruência

Leia mais

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo. TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Módulo de Áreas de Figuras Planas. Áreas de Figuras Planas: Mais alguns Resultados. Nono Ano

Módulo de Áreas de Figuras Planas. Áreas de Figuras Planas: Mais alguns Resultados. Nono Ano Módulo de Áreas de Figuras Planas Áreas de Figuras Planas: Mais alguns Resultados Nono Ano Áreas de Figuras Planas: Mais alguns Resultados 1 Exercícios Introdutórios Exercício 1. No desenho abaixo, as

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B

Leia mais

Gabarito e Pauta de Correção ENQ

Gabarito e Pauta de Correção ENQ Gabarito e Pauta de Correção ENQ 015.1 Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais.

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano Módulo de Elementos básicos de geometria plana Condição de alinhamentos de três pontos e a desigualdade triangular Oitavo Ano Condição de alinhamentos de três pontos e a desigualdade triangular Exercícios

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da 1 a Prova de Geometria I - Matemática - Monica 08/05/2013 1 a Questão: (3 pontos) Dê uma prova

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

Capítulo 4. Geometria Euclideana

Capítulo 4. Geometria Euclideana Capítulo 4 Geometria Euclideana 4.1 Introdução Chamamos de Geometria Euclideana a geometria descrita pelos postulados já enunciados, e mais o chamado quinto postulado de Euclides, cujo enunciado (modernizado)

Leia mais

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

= a = x x ) Se a 75%b então. x x 3x + 12 x 12 e x Logo, a divisão deverá ser feita a partir de 01/01/2016.

= a = x x ) Se a 75%b então. x x 3x + 12 x 12 e x Logo, a divisão deverá ser feita a partir de 01/01/2016. MATEMÁTICA 1 c Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 10 caixas, com 4 frascos em cada caixa. Sabendo-se que cada caixa continha frascos de detergentes

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x

Leia mais

r O GABARITO - QUALIFICAÇÃO - Março de 2013

r O GABARITO - QUALIFICAÇÃO - Março de 2013 GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2004 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 CALCULE o número natural n que torna o determinante a seguir igual a 5. Por Chio, tem-se Matemática Questão 02 Considere

Leia mais

Cálculo Combinatório

Cálculo Combinatório Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

(segmentos direcionados, ou seja, a razão será negativa se tiverem sentidos opostos).

(segmentos direcionados, ou seja, a razão será negativa se tiverem sentidos opostos). Semana Olímpica 014 Nivel 3: Coordenadas Baricêntricas. Régis Prado Barbosa Coordenadas Baricêntricas são um jeito diferente de fazer contas em problemas de geometria, mais exatamente de usa vetores. Essa

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo

Leia mais

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. » Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

MA13 Geometria AV2 2014

MA13 Geometria AV2 2014 MA1 Geometria AV 014 Questão 1 [,0 pt ] Na figura a seguir temos que BAC = /, BAD = y/, medidos em radianos, e AB =. Com base nessas informações: a Epresse a área dos triângulos ABC e ABD como funções

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, em que n é um número inteiro positivo.

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Teoria Combinatória dos Números

Teoria Combinatória dos Números Teoria Combinatória dos Números Samuel Feitosa, Yuri Lima, Davi Nogueira 27 de fevereiro de 2004 O objetivo deste artigo é mostrar algumas propriedades dos números inteiros, que combinadas podem originar

Leia mais

GEOMETRIA: ÂNGULOS E TRIÂNGULOS

GEOMETRIA: ÂNGULOS E TRIÂNGULOS Atividade: Ângulos e Triângulos (ECA 03 Atividade para 16/03/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: ÂNGULOS E TRIÂNGULOS ATENÇÃO: Estimados alunos,

Leia mais

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota:

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota: SALVADOR-BA Formando pessoas para transformar o mundo Tarefa: ª AVALIAÇÃO DE MATEMÁTICA UNIDADE I ALUNO(A): a Série do Ensino Médio Turma: Nº: Professora: OCTAMAR Nº de questões: 0 Data: / / Nota: QUESTÃO

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) C 6) D 11) B 16) D 1) C ) D 7) E 1) C 17) A ) C 3) D 8) A 13) A 18) A 3) C 4) E 9) B 14) D 19) C

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Quadrilátero convexo

Quadrilátero convexo EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 10 (material didático produzido por Paula Rigo)

Leia mais

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

Soluções Comentadas Matemática Curso Mentor Colégio Naval. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Colégio Naval. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Colégio Naval Barbosa, L.S. leonardosantos.inf@gmail.com 30 de dezembro de 2013 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática 2013/2014

Leia mais

GABARITO ITA MATEMÁTICA

GABARITO ITA MATEMÁTICA GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 PROVA DA SEGUNDA ETAPA NÍVEL I (Estudantes da 6 a e 7 a Séries) Problema 1 A expressão E, a seguir, é o produto de 20 números:

Leia mais

Usando estas propriedades, provamos que:

Usando estas propriedades, provamos que: Áreas de Polígonos Função área Uma função área é uma função que a cada região delimitada por um polígono, associa um número real com as seguintes propriedades: Regiões delimitada por polígonos congruentes

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT em Revista Revista Científica Eletrônica da Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU - MG Problemas e Soluções Número 0 - Abril de 008 www.famat.ufu.br Comitê Editorial

Leia mais

Definição. Dois ângulos são congruentes se eles têm a mesma medida.

Definição. Dois ângulos são congruentes se eles têm a mesma medida. Axiomas de Congruência A partir das noções de medida de segmentos e de ângulos são introduzidos os conceitos de congruência de segmentos, ângulos e triângulos. São apresentados, também, teoremas que dão

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está

Leia mais

Módulo de Elementos básicos de geometria plana. Conceitos Geométricos Básicos. Oitavo Ano

Módulo de Elementos básicos de geometria plana. Conceitos Geométricos Básicos. Oitavo Ano Módulo de Elementos básicos de geometria plana Conceitos Geométricos Básicos Oitavo Ano Conceitos Geométricos Básicos 1 Exercícios Introdutórios Exercício 1. Dados quatro pontos distintos A, B, C e D,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9. Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,

Leia mais

Geometria com Números Complexos

Geometria com Números Complexos CAPÍTULO 1 Geometria com Números Complexos A partir de agora vamos aprender a usar os números complexos na geometria plana. Os números complexos são muito mais do que vetores, eles formam um corpo. Desse

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x Diagonal mais curta Seja P um polígono regular de lados ( > 6), d a medida da sua diagonal mais curta e l a medida do seu lado. Supondo que d e l são comensuráveis, temos d mx e l nx, onde m e n são inteiros

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Geometria Computacional

Geometria Computacional Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

OBMEP ª fase Soluções - Nível 3

OBMEP ª fase Soluções - Nível 3 OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Lista 1 com respostas

Lista 1 com respostas Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105/MAT0112-1 semestre de 2015 Exercício 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta: (a) (A, B) (C, D) AB

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

PUC-Rio Desafio em Matemática 4 de outubro de 2015

PUC-Rio Desafio em Matemática 4 de outubro de 2015 PUC-Rio Desafio em Matemática 4 de outubro de 05 Nome: GABARITO Inscrição: Assinatura: Identidade: Questão Valor Nota Revisão,0,0 3,5 4,5 5,5 6,5 7,0 Nota final 0,0 Instruções Mantenha seu celular completamente

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

As referências que seguem serão as nossas fontes principais de apoio:

As referências que seguem serão as nossas fontes principais de apoio: ENCONTRO 1 OBMEP NA ESCOLA N2 ciclo 3 Assuntos a serem abordados: Geometria Congruências de triângulos. Paralelismo: soma dos ângulos internos de um triângulo, propriedades e caracterização dos quadriláteros

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329).

Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). MA13 Exercícios das Unidades 17 e 18 2014 Lista 11 Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). 1) Sejam dados um ponto A e um plano α com A α. Prove

Leia mais