Estatística Aplicada I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estatística Aplicada I"

Transcrição

1 Estatística Aplicada I ESPERANCA MATEMATICA AULA 1 25/04/17 Prof a Lilian M. Lima Cunha Abril de 2017 EXPERIMENTO RESULTADOS EXPERIMENTAIS VARIÁVEL ALEATÓRIA X = variável aleatória = descrição numérica do resultado de um experimento -cada um de seus possíveis valores se associa a uma probabilidade DISCRETA CONTINUA 1

2 Distribuição de X: conjunto dos valores de X e as respectivas probabilidades X = variável aleatória P(X) = Probabilidade associada aos valores de X X = numero de clientes que usam caixa eletrônico no período de 1 minuto EX1 X P(X) 0 0, , , , , ou mais 0,0527 ( ) = % EX2 Resultado do lançamento de um dado P (X) P (X) 1/6 1/6 1/7 1/ X ( ) = = 2

3 VARIÁVEIS ALEATÓRIAS DISCRETAS EX1:Examecom4partes(CPA) X = numero de partes que o candidato foi aprovado (0,1,2,3,4) = numero finito EX 2: X = numero de carros que chegam no pedágio no períodode1dia=numerointeiroseinfinitos EX 3: Pesquisa solicita ao individuo que relembre a mensagem de um recente comercial de TV X = 1 para os que lembram X = 0 para os que não lembram. VARIÁVEIS ALEATÓRIAS CONTINUAS EX 1: Ambulância no atendimento de ocorrências em um trecho de 90 km; X = numero de km até o local do próximo acidente de trânsito ao longo do trecho de 90 km; X = qualquervalorentre0e90 EX2:X=tempoparasacardinheiro EX3: encher uma lata de refrigerante que tem capacidade para 350 ml X = quantidade em ml; x = qualquer valor entre 0 e 350 3

4 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE X = variável aleatória discreta P(X)=probabilidadeassociadaacadaX A distribuição dessas probabilidades (P(X)) e definida por uma função de probabilidade chamada f(x) EX1: X = numero de carros vendidos em um dia O experimento foi realizado no período de 300 dias X varia de 0 a 5 por histórico de vendas DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE EX1: X = numero de carros vendidos em um dia X Numero de dias f (X) /300 f(0) /300 f(1) /300 f(2) /300 f(3) /300 f(4) 5 3 3/300 f(5) 300 ( ) =( ) = + +()= 4

5 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE EX1: X = numero de carros vendidos em um dia X Numero de dias f (X) f(x) f(x) /300 f(0) 0, /300 f(1) 0, /300 f(2) 0, /300 f(3) 0, /300 f(4) 0, /300 f(5) 0, soma soma A venda de 1 carro por dia é o evento mais provável Qual seria a probabilidade de vender 3 ou mais carros por dia? Resp: 0,19 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE CONDIÇÕES NECESSARIA PARA FUNÇÃO DE PROBABILIDADE DISCRETA: 1) ( ) = 2) ( ) * Esta associada a probabilidade de ocorrência (só pode ser positiva) f (X) 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0, X 5

6 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE = n = número de valores que a variável aleatória pode assumir DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE CONSIDERE O LANÇAMENTO DE UM DADO X = NUMERO QUE APARECE NA FACE VIRADA PARA CIMA X f(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 = = * Existem 6 possíveis valores para X 6

7 ESPERANÇA MATEMATICA (ou valor esperado) Aesperançadeumavariávelaleatóriaéasuamédia; Para variável discreta, a sua media não será media simples e sim uma média ponderada pela probabilidade de ocorrência. = = ( ) i = 0,1,..., n ESPERANÇA MATEMATICA (ou valor esperado) ** Utilizando o exemplo de vendas de automóveis... X f(x) 0 0,17 1 0,39 2 0,24 3 0,14 4 0,04 5 0,01 1,0 soma = =, +, + +, =, Por dia 7

8 ESPERANÇA MATEMATICA (ou valor esperado) ** para o exemplo do lançamento de um dado E (X) = 3,5 X f(x) X x f(x) 1 0,17 0, ,17 0, ,17 0, ,17 0, ,17 0, ,17 1,000 3,50 ESPERANCA VARIÂNCIA MEDIDA DE VARIABILIDADE OU DISPERSÃO PARA SINTETIZAR A VARIABILIDADE DE UM CONJUNTO DE DADOS E, NESSE CASO, PARA SINTETIZAR A VARIABILIDADE DOS VALORES DA VARIAVEL ALEATÓRIA VAR = = (( ( )) ( )) i = 0,1,..., n 8

9 VARIÂNCIA - cálculo ** Utilizando o exemplo de vendas de automóveis... X f(x) X x f(x) (X- E (X)) (X- E (X)) 2 (X- E (X)) 2 x f (X) 0 0,18 0,000-1,500 2,250 0, ,39 0,390-0,500 0,250 0, ,24 0,480 0,500 0,250 0, ,14 0,420 1,500 2,250 0, ,04 0,160 2,500 6,250 0, ,01 0,050 3,500 12,250 0,1225 1,500 1,250 soma soma Uma companhia está considerando uma expansão da fábrica que tornará possível à empresa produzir um novo produto. O presidente da empresa precisa decidir se a expansão será em média ou em grande escala. Existe uma incerteza em relação à demanda do produto, a qual pode ser baixa, média ou alta, com probabilidades de 20%, 50% e 30%, respectivamente. Considere que X e Y são as previsões de lucro da empresa em cada um dos cenários de expansão. Demanda EXEMPLO - APLICADO Média Escala Alta Escala X P(X) Y P(Y) Baixa 50 0,20 0 0,20 Média 150 0, ,50 Alta 200 0, ,30 a. Calcule o valor esperado para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de maximizar o lucro? b. Calcule a variância para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de minimizar o risco/incerteza? 9

10 RESOLUÇÃO Demanda média escala alta escala X P(X) Y P(Y) X*Pr(X) Y*Pr(Y) Baixa 50,00 0,20 0,00 0, Média 150,00 0,50 100,00 0, Alta 200,00 0,30 300,00 0, ESPERANCA X ESPERANCA Y a.calcule o valor esperado para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de maximizar o lucro? RESP: CENARIO DE MEDIA ESCALA RESOLUÇÃO (X - Media) 2 x Pr (X) (Y- Media) 2 x Pr (Y) , , VARIÂNCIA X VARIÂNCIA Y b. Calcule a variância para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de minimizar o risco/incerteza? RESP: CENARIO DE MEDIA ESCALA, também!!!! 10

11 DISTRIBUIÇÃO CONTINUA DE PROBABILIDADE 1) Para a variável aleatória discreta, a função de Probabilidade(f(X)) produz a probabilidade de a variável aleatória assumir um valor em particular; 2) Para a variável aleatória contínua, a contraparte da função de Probabilidade é a função de densidade de probabilidade, também expressa por f(x) função de densidade de probabilidade não produz probabilidade DIRETAMENTE A probabilidade de a variável aleatória continua assumir um exato valor, é zero; Aprobabilidadenessecasoseráobtidapelaáreasobográficodef(X).Essaáreaserá a probabilidade de a Variável aleatória continua X assumir um valor nesse intervalo. DISTRIBUIÇÃO CONTINUA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE SEMPRE QUE A PROBABILIDADE FOR PROPORCIONAL AO COMPRIMENTO DO INTERVALO, A VARIAVEL ALEATÓRIA SE ENCONTRA UNIFORMEMENTE DISTRIBUIDA 11

12 EX: SUPONHA QUE X = TEMPO DE VOO DE UMA AVIAO QUE VAI DE A PARA B. SUPONHA QUE TEMPO DE VOO POSSA TER QUALQUER VALOR NO INTERVALODE120 A140MINUTOS.UMAVEZQUEAVARIAVELALEATORIAX PODE ASSUMIR QUALQUER VALOR DESSE INTERVALO, X É UMA VARIÁVEL ALEATÓRIA CONTINUA, E NÃO UMA DISCRETA. DIANTE DE DADOS DISPONIVEIS, PODEMOS CONCLUIR QUE A PROBABILIDADE DE TEMPO DE VOO NO INTERVALO DE 1 MINUTO QUALQUER TENHA A MESMA PROBABILIDADE DE TEMPO DE VOO EM OUTRO INTERVALO DE 1 MINUTO, TODOS CONTIDOS NO INTERVALO TOTAL DE 120 A 140 MINUTOS. CONSIDERA-SE QUE CADA UM DOS INTERVALOS DE 1 MINUTO É IGUALENTE PROVAVEL, DIZEMOS QUE A VARIAVEL ALEATORIA CONTINUA TEM UMA DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE. ASSIM, A FUNÇÃO DE DENSIDADE DE PROBABILIDADE, A QUAL DEFINE A DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE, CORRESPONDE A VARIAVEL ALEATORIA TEMPO DE VOO E: 1/20 para f (X) = 0 outro ponto qualquer DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE A FÓRMULA GERAL PARA FUNÇÃO DE DENSIDADE UNIFORME DE PROBABILIDADE: f (X) = 1/(b a) para a 0 outro ponto qualquer EM RELAÇÃO A VARIAVEL ALEATORIA TEMPO DE VOO, a = 120 e b = 140 1/20 QUAL A PROBABILIDADE DO TEMPO DE VOO SITUAR-SE ENTRE120E130MINUTOS? RESP: 0,

13 () FORMA GENERICA DE CALCULO DA DISTRIBUICAO DE PROBABILIDADE UNIFORME CONTINUA = =, F(X)= () *USANDO O EXEMPLO DA VARIAVEL ALEATORIA TEMPO DE VOO -QUAL A PROBABILIDADE DO TEMPO DE VOO SITUAR-SE ENTRE 120 E 130 MINUTOS? 1/20 Função de densidade de probabilidade ESPERANÇA MATEMATICA (ou valor esperado) 13

14 COMO SERIA O CALCULO DA ESPERANÇA MATEMATICA PARA: PARA DISTRIBUICAO UNIFORME DE PROBABILIDADE DISCRETA??? Usando a formulação genérica do slide anterior... 14

15 *USANDO O EXEMPLO DA VARIAVEL ALEATORIA TEMPO DE VOO, a = 120 e b = 140 1/ O CALCULO GENERICO PARA A ESPERANDA SERIA: == () (+) = () = EXERCICIO PARA ENTREGAR A tabela ao lado é uma distribuição de probabilidade referente ao lucro projetado da MRA Company (X = lucro em milhares de dólares) para o primeiro ano de operação ( o valor negativo denota prejuízo). X f(x) ,10 0 0, , , ,10 200???? a)qual é o valor adequado para f (200)? Qual a interpretação desse valor? b)qualaprobabilidadedeamraserrentável? c)qual e a probabilidade de a MRA alcançar pelo menos USS100mil? d)calculeovaloresperadodalucrodaempresa. e) Calcule a respectiva variância. 15

16 RESULTADOS a 0,05 b 0,90 Considerando lucro zero c 0,40 d 55 e 5475 REFERENCIAS BIBLIOGRÁFICAS ANDERSON, D.; SWEENEY, D.J.; WILLIANS, T.A Estatistica aplicada a administração e economia. Ed. Thompson. 2ª ed. 597 p. cap6pgs205a209;cap5pgs169a178. HOFFMANN, R. Estatística para economistas cap6. 16

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

15.053 26 de fevereiro de 2002

15.053 26 de fevereiro de 2002 15.053 26 de fevereiro de 2002 Análise de Sensibilidade apresentado como Perguntas Freqüentes Pontos ilustrados em um exemplo contínuo de fabricação de garrafas. Se o tempo permitir, também consideraremos

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Teoria da Firma. Capítulo VI. Introdução. Introdução. Medição de custos: quais custos considerar?

Teoria da Firma. Capítulo VI. Introdução. Introdução. Medição de custos: quais custos considerar? Introdução Teoria da Firma A tecnologia de produção representa a relação entre os insumos e a produção. Dada a tecnologia de produção, os administradores da empresa devem decidir como produzir. Capítulo

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FACULDADE DE CIÊNCIAS E TECNOLOGIA Redes de Telecomunicações (2006/2007) Engª de Sistemas e Informática Trabalho nº4 (1ª aula) Título: Modelação de tráfego utilizando o modelo de Poisson Fundamentos teóricos

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013 Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Custo de Oportunidade do Capital

Custo de Oportunidade do Capital Custo de Oportunidade do Capital É o custo de oportunidade de uso do fator de produção capital ajustado ao risco do empreendimento. Pode ser definido também como a taxa esperada de rentabilidade oferecida

Leia mais

Fluxo de caixa, valor presente líquido e taxa interna de retorno 1

Fluxo de caixa, valor presente líquido e taxa interna de retorno 1 Fluxo de caixa, valor presente líquido e taxa interna de retorno 1 Métodos de análise de investimentos Os chamados métodos exatos são os mais aceitos no mercado para avaliar investimentos. Serão analisados

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA

CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA Conforme Silva (1999), seja U uma utilidade (bem ou serviço) cujo preço de venda por unidade seja um preço

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

FOLHA 5. Problemas de Transportes e de Afectação

FOLHA 5. Problemas de Transportes e de Afectação FOLHA 5 Problemas de Transportes e de Afectação 1. Uma companhia de aço possui 2 minas e 3 fábricas transformadoras. Em cada mina (1 e 2) encontram-se disponíveis 103 e 197 toneladas de minério. A companhia

Leia mais

Aula 2 - Avaliação de fluxos de caixa pelos métodos do Valor Presente Líquido

Aula 2 - Avaliação de fluxos de caixa pelos métodos do Valor Presente Líquido Avaliação da Viabilidade Econômico- Financeira em Projetos Aula 2 - Avaliação de fluxos de caixa pelos métodos do Valor Presente Líquido Elias Pereira Avaliação da Viabilidade Econômico- Ementa e Datas

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Utilidade 1 Valor Monetário Esperado Assumamos que sempre podemos medir o valor das consequencias em termos monetarios

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

O QUE É UMA MARGEM DE CONTRIBUIÇÃO EFETIVAMENTE BOA

O QUE É UMA MARGEM DE CONTRIBUIÇÃO EFETIVAMENTE BOA O QUE É UMA MARGEM DE CONTRIBUIÇÃO EFETIVAMENTE BOA (Qual a margem de contribuição ideal)! Alcançar o ponto de equilíbrio basta?! A margem de contribuição unitária diz alguma coisa?! A TIR responde se

Leia mais

Dynamic Voltage Scaling in Multitier Web Servers with End-to-End Delay Control

Dynamic Voltage Scaling in Multitier Web Servers with End-to-End Delay Control Dynamic Voltage Scaling in Multitier Web Servers with End-to-End Delay Control Tibor Horvath and Tarek Abdelzaher and Kevin Skadron and Xue Liu Universidade Federal Fluminense Diego Passos Apresentação

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

b b 4ac =, onde 2 , é um número REAL que pode ser: positivo, nulo ou negativo.

b b 4ac =, onde 2 , é um número REAL que pode ser: positivo, nulo ou negativo. Função do º Grau Equação do segundo grau: Chama-se equação do º grau toda sentença da forma: a, b, c R e a 0 a b c + + = 0, com Fórmula resolvente (BHÁSKARA): ± b b 4ac =, onde a = b 4ac Observe que b

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1) Arredonde os valores abaixo, para apenas dois algarismos significativos: (a) 34,48 m (b) 1,281 m/s (c) 8,563x10

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

PRINCIPAIS FATORES DE ANÁLISES. INVESTIMENTOS e RISCOS

PRINCIPAIS FATORES DE ANÁLISES. INVESTIMENTOS e RISCOS PRINCIPAIS FATORES DE ANÁLISES INVESTIMENTOS e RISCOS RENTABILIDADE A rentabilidade é a variação entre um preço inicial e um preço final em determinado período. É o objetivo máximo de qualquer investidor,

Leia mais

Introdução à Economia

Introdução à Economia CURSO DE ENGENHARIA AMBIENTAL ECONOMIA AMBIENTAL Introdução à Economia Prof. Augusto Santana 28/11/2012 CONCEITOS BÁSICOS Conceito de Economia Economia é a ciência social que estuda como o indivíduo e

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Aula 10: Escalonamento da CPU

Aula 10: Escalonamento da CPU Aula 10: Escalonamento da CPU O escalonamento da CPU é a base dos sistemas operacionais multiprogramados. A partir da redistribuição da CPU entre processos, o sistema operacional pode tornar o computador

Leia mais

POLÍTICA DE INVESTIMENTOS DA BRASKEM

POLÍTICA DE INVESTIMENTOS DA BRASKEM ANEXO À PD.CA/BAK-37/2010 POLÍTICA DE INVESTIMENTOS DA BRASKEM Aprovada pelo Conselho de Administração da Braskem S.A. em 29 de Novembro de 2010 1 XX/XX/10 RAE Inventimentos LE Braskem Revisão Data da

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

Aula 4 Função do 2º Grau

Aula 4 Função do 2º Grau 1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Aula 03. Processadores. Prof. Ricardo Palma

Aula 03. Processadores. Prof. Ricardo Palma Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia

Leia mais

Aula 1 Restrições temporais: origem e caracterização

Aula 1 Restrições temporais: origem e caracterização Sistemas de Tempo-Real Aula 1 Restrições temporais: origem e caracterização Conceitos básicos de tempo-real Requisitos dos Sistemas de Tempo-Real Adaptado dos slides desenvolvidos pelo Prof. Doutor Luís

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Otimização Linear Aplicada a Problemas de Planejamento de Produção

Otimização Linear Aplicada a Problemas de Planejamento de Produção Otimização Linear Aplicada a Problemas de Planejamento de Produção Rafaela Schuindt Santos¹, Daniela Renata Cantane² ¹Escola Estadual Luiz Campacci Laranjal Paulista SP - Brasil ²Universidade Estadual

Leia mais

CENTRO EDUCACIONAL NOVO MUNDO Matemática

CENTRO EDUCACIONAL NOVO MUNDO  Matemática Desafio de Matemática 3 ano EF 2D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 2 o DESAFIO CENM - 2014 Matemática Direção: Ano: 3 Ef 1. Em uma sala de aula, a professora realizou uma pesquisa

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014 1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

CHAMADA MCT / FINEP ENERGIA DE PRODUTOS E SERVIÇOS COM TECNOLOGIA INOVADORA NA ÁREA DE

CHAMADA MCT / FINEP ENERGIA DE PRODUTOS E SERVIÇOS COM TECNOLOGIA INOVADORA NA ÁREA DE CHAMADA MCT / FINEP Ministério da Ciência e Tecnologia / Financiadora de Estudos e Projetos IDENTIFICAÇÃO DE PRODUTOS E SERVIÇOS COM TECNOLOGIA INOVADORA NA ÁREA DE ENERGIA O Ministério da Ciência e Tecnologia

Leia mais

Os passos a seguir servirão de guia para utilização da funcionalidade Acordo Financeiro do TOTVS Gestão Financeira.

Os passos a seguir servirão de guia para utilização da funcionalidade Acordo Financeiro do TOTVS Gestão Financeira. Acordo Financeiro Produto : RM - Totvs Gestão Financeira 12.1.1 Processo : Acordo Financeiro Subprocesso : Template de Acordo Controle de Alçada Negociação Online Data da publicação : 29 / 10 / 2012 Os

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter.

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter. Leis de Kepler 1. (Ufpe 01) Um planeta realiza uma órbita elíptica com uma estrela em um dos focos. Em dois meses, o segmento de reta que liga a estrela ao planeta varre uma área A no plano da órbita do

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva

ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva ARQUITETURA DE COMPUTADORES Professor: Clayton Rodrigues da Siva OBJETIVO DA AULA Objetivo: Conhecer a estrutura da arquitetura da Máquina de Von Neumann. Saber quais as funcionalidades de cada componente

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

Método Simplex das Duas Fases

Método Simplex das Duas Fases Notas de aula da disciplina Pesquisa Operacional 1. 2003/1 c DECOM/ICEB/UFOP. Método Simplex das Duas Fases 1 Descrição do método Suponhamos inicialmente que tenham sido efetuadas transformações no PPL,

Leia mais

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR.

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. UNIDADE DE MASSA ATÔMICA Em 1961, na Conferência da União Internacional de Química Pura e Aplicada estabeleceu-se: DEFINIÇÃO DE MASSA

Leia mais

Disciplina: Economia & Negócios Líder da Disciplina: Ivy Jundensnaider Professora: Rosely Gaeta / /

Disciplina: Economia & Negócios Líder da Disciplina: Ivy Jundensnaider Professora: Rosely Gaeta / / Disciplina: Economia & Negócios Líder da Disciplina: Ivy Jundensnaider Professora: Rosely Gaeta NOTA DE AULA 03 MICROECONOMIA DEMANDA E OFERTA SEMANA E DATA / / 3.1. A curva de demanda Em uma economia

Leia mais

CADERNO DE EXERCÍCIOS 2F

CADERNO DE EXERCÍCIOS 2F CADERNO DE EXERCÍCIOS F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Números inteiros (positivos e negativos) H9 Proporcionalidade H37 3 Média aritmética H50 4 Comprimento

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

BPI αlpha O FEI que investe em Produtos Estruturados.

BPI αlpha O FEI que investe em Produtos Estruturados. O FEI que investe em Produtos Estruturados. UMA NOVA FORMA DE INVESTIR O BPI Alpha é o primeiro Fundo Especial de Investimento (FEI) do BPI e tem como objectivo principal dar aos clientes o acesso a uma

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.)

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Esta é uma área essencial para aumentar as taxas de sucesso dos projetos, pois todos eles possuem riscos e precisam ser gerenciados, ou seja, saber o

Leia mais

Módulo 8 Entradas Digitais 24 Vdc Monitorado. Os seguintes produtos devem ser adquiridos separadamente para possibilitar a utilização do produto:

Módulo 8 Entradas Digitais 24 Vdc Monitorado. Os seguintes produtos devem ser adquiridos separadamente para possibilitar a utilização do produto: Descrição do Produto O módulo, integrante da Série Ponto, possui 8 pontos de entrada digital +24 Vdc isolada e monitorada, é indicado para aplicações onde a situação de linha rompida necessita ser detectada

Leia mais