Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos"

Transcrição

1 Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio {Ø} Ø (são diferentes) a = letra minúscula representa o elemento A = letra maiúscula representa o conjunto Inclusão С (contido) ou Ȼ (não está contido) Ɔ (contém) ou Ɔ (não contém) Sempre verificando de conjunto para conjunto A = {x Є N x é ímpar} 3 A 8 A A = {1,3,5,7,9} B = {1,3,5} C = {6,7,8} A B B A A C C A Operações com conjuntos A U B (União) Somatório dos elementos A = {1,2,3,4,7} B = {3,4,5} A U B = {1,2,3,4,5,7}

2 A B (Interseção) A B = {3,4} Elementos em comum A B (Diferença) A B = {1,2,7} B A = {5}

3 Fatorial Ao produto dos números naturais N = {0,1,2,3,... }, começando em n e decrescendo até 1 denominamos de fatorial de n e representamos no n! Segundo tal definição, o fatorial de 5 é representado por 5! e lê-se 5 fatorial. 5! é igual a que é igual a 120, assim como 4! é igual a que é igual a 24, como 3! é igual a que é igual a 6 e que 2! é igual a 2. 1 que é igual a 2. Por definição tanto 0!, quanto 1! são iguais a 1. Escrevendo um fatorial a partir de um outro fatorial menor Vimos que 5! é equivalente a , mas note que também podemos escrevê-lo de outras formas, em função de fatoriais menores, tais como 4!, 3! e 2!: 5! = 5. 4! 5! = ! 5! = ! Para um fatorial genérico temos: n! = n. (n - 1)! = n. (n - 1). (n - 2)! = n. (n - 1). (n - 2). (n - 3) ! Observe atentamente os exemplos seguintes: (n + 3)! = (n + 3). (n + 2)! (n + 3)! = (n + 3). (n + 2). (n + 1)! (n + 1)! = (n + 1). n! Vamos atribuir a n o valor numérico 6, para termos uma visão mais clara destas sentenças: 9! = 9. 8! 9! = ! 7! = 7. 6! Estes conceitos são utilizados em muitos dos problemas envolvendo fatoriais. Simplificação envolvendo fatoriais Observe a fração abaixo: Vimos que 5! é equivalente a 5! = !. Então podemos escrever a fração da seguinte forma: Agora podemos simplificar o 3! do numerador com o 3! do denominador. Temos então: Permutação Simples A cada um dos agrupamentos que podemos formar com certo número de elementos distintos, tal que a diferença entre um agrupamento e outro se dê apenas pela mudança de posição entre seus elementos, damos o nome de permutação simples.

4 Neste caso o agrupamento de livros (português, matemática, história, geografia), difere do agrupamento (matemática, história, português, geografia), pois embora os elementos de ambos os grupos sejam os mesmos, há mudança no posicionamento de ao menos um dos seus elementos. Fórmula da Permutação Simples Segundo o princípio fundamental da contagem vimos que o número de agrupamentos possíveis deste exemplo era dado por: = 24 Em fatoriais vimos que é igual a 4!, então se chamarmos de Pn a permutação simples de n elementos distintos, podemos calculá-la através da seguinte fórmula: Pn = n! Resolvendo o exemplo com o uso da fórmula temos: Exemplo Quantos anagramas podemos formar a partir da palavra ORDEM? Um anagrama é uma palavra ou frase formada com todas as letras de uma outra palavra ou frase. Normalmente as palavras ou frases resultantes são sem significado, como já era de se esperar. Como a palavra ORDEM possui 5 letras distintas, devemos calcular o número de permutações calculando P5. Temos então: P5 = 5! = = 120 Portanto: O número de anagramas que podemos formar a partir da palavra ORDEM é igual 120. Combinação Simples Este exemplo é o típico caso, onde agrupamentos com elementos distintos, não se alteram mudando-se apenas a ordem de posicionamento dos elementos no grupo. A diferenciação ocorre apenas, quanto à natureza dos elementos, quando há mudança de elementos. Neste caso estamos tratando de combinação simples. Fórmula da Combinação Simples Ao trabalharmos com combinações simples, com n elementos distintos, agrupados p a p, com p n, podemos recorrer à seguinte fórmula: Ao utilizarmos a fórmula neste nosso exemplo, temos: Exemplo Com 12 bolas de cores distintas, posso separá-las de quantos modos diferentes em saquinhos, se o fizer colocando 4 bolas em cada saco? Como a ordem das bolas não causa distinção entre os agrupamentos, este é um caso de combinação simples. Vamos então calcular C12, 4: Portanto: Posso separá-las de 495 modos diferentes.

5 Permutação com repetição Pn,p CASA P4,2 = 4! 2! = 12 Combinação com repetição => Cn+p-1,p => Cn,p = C n,p n! p!(n p)! n elementos distintos e queremos formar grupos com p elementos não necessariamente distintos, onde a ordem dos elementos dos grupos formados não é importante. Portanto, não é feita a permutação dos p elementos dos grupos formados. Uma sorveteria dispõe de 5 sabores de sorvete. De quantas maneiras uma pessoa pode saborear 2 bolas de sorvete? C5+2-1,2 = C6,2 = 6! = 6.5.4! = 15 maneiras 2!(6 2)! 2!4! Proposições ou lógica proposicional Lógica Matemática Proposições (ou declaração): é uma sentença declarativa que pode ser verdadeira ou falsa, mas não ambas. a) Paris fica na França b) = 2 c) = 3 d) Londres fica na Dinamarca e) 9 < 6 f) x = 2 é solução de x 2 = 4 g) Aonde você está indo? h) Faça seu dever de casa Todas são proposições, exceto g e h a, b e f são verdadeiras c, d e e são falsas Proposições compostas Proposições compostas estão ligadas por conectivos e são formadas por subproposições. As rosas são vermelhas e violetas são azuis. Subproposições: Rosas são vermelhas, violetas são azuis Conectivo: e As proposições anteriores, de a até f são primitivas, pois não podem ser subdivididas em proposições mais simples. Conectivos e valores lógicos e, ou, ~, então, se e somente se a) Windows é um sistema operacional e pascal é uma linguagem de programação. b) Vou comprar um computador desktop ou um notebook

6 c) Linux não é um software livre d) Se chover canivetes, então todos os alunos estarão aprovados em matemática discreta. e) A = B se e somente se (A C B e B C A) E p ^ q (Conjunção) a) Paris fica na França e = 4 b) Paris fica na França e = 5 c) Paris fica na Inglaterra e = 4 d) Paris fica na Inglaterra e = 5 P Q P ^ Q V V V V F F F V F F F F OU p v q (Disjunção) a) Paris fica na França ou = 4 b) Paris fica na França ou = 5 c) Paris fica na Inglaterra ou = 4 d) Paris fica na Inglaterra ou = 5 P Q P v Q V V V V F V F V V F F F ~ não ~p (negação) Se p é verdade então ~p é falso Se p é falso então ~p é verdade P ~P V F F V Condicional (ou implicação) A B onde A implica B A verdade de A implica, ou leva, a verdade de B A é a proposição antecedente e B é a consequente. Se A então B É falsa quando A é verdadeira e B é falsa.

7 Bicondicional Verdadeira, no caso contrário. A B = (A B) ^ (B A) A se e somente se B É verdadeira, quando A e B são ambas verdadeiras ou falsas. É falsa, quando as proposições A e B possuem valor-verdade distintos. Tabela verdade A B A B B A (A B) ^ (B A) V V V V V V F F V F F V V F F F F V V V Argumentos válidos Um argumento é uma afirmação de que um dado conjunto de proposições P1,P2,P3,...,Pn chamadas de premissas ou hipóteses, conduz (tem como consequência) a uma outra proposição Q, chamada de conclusão. P1,P2,P3,...,Pn Q P1 ^ P2 ^ P3 ^... ^ Pn Q Um argumento é dito válido se Q for verdade sempre que todas as premissas/hipóteses são verdade. Português Conectivo Lógico Expressão Lógica e; mas; também; além disso Conjunção A ^ B Ou Disjunção A v B Se A então B Condicional A B A implica B A, logo B A só se B; A somente se B B segue de A A é uma condição suficiente para B B é uma condição necessária para A A se e somente se B Bicondicional A B A é condição necessária e suficiente para B Não A É false que A... Não é verdade que A... Negação ~A; A ; A Escreva as proposições compostas a seguir através de notações simbólicas. Se os preços subirem, então haverá muitas casas para vender e elas serão caras; mas se as casas não forem caras, então, ainda assim, haverá muitas casas para vender. A: os preços subirem B: haverá muitas casas C: casas serão caras (A B ^ C) ^ (C B) Ou Jane irá vencer ou, se perder, ela ficará cansada. A: Jane irá vencer

8 B: Jane irá perder C: Jane ficará cansada A v (B C) Exercícios Conjuntos Complete as lacunas verificando a pertinência entre os elementos e os conjuntos, dado que A = {x E IN / x é ímpar}. 1 A 4 A Descreva cada um dos elementos a seguir: a. {x x é um inteiro e 5 x < 12} b. {x x é um mês que começa com J} c. {x x é um inteiro e x -3} Operações Sejam: A = {1, 2, 3, 5, 10} B = {2, 4, 7, 8, 9} C = {5, 8, 10} a. A U B b. A C Fatoriais Resolva os exercícios abaixo demonstrando como chegou ao resultado. 6! = 4! = 3! = 7! = 5! 3! = 2! 4! + 2 = 9! + 5 = P 7 = P 10 = C 12,8 = C 6,4 = Combinação e Permutação a) Quantos são os anagramas que podemos formar a partir das letras da palavra ERVILHAS, sendo que eles comecem com a letra E e terminem com vogal? b) Quantas mãos de pôquer, com 5 cartas cada, podem ser distribuídas com um baralho de 52 cartas? Aqui a ordem não importa. Qual é o número de maneiras de escolher 5 objetos entre 52?

9 c) Utilizando a palavra COPACABANA, calcule o número de anagramas formados desconsiderando aqueles em que ocorrem repetições consecutivas de letras. d) Em um torneio de futsal um time obteve 8 vitórias, 5 empates e 2 derrotas, nas 15 partidas disputadas. De quantas maneiras distintas esses resultados podem ter ocorrido? e) Em uma prova composta de 20 questões envolvendo V ou F, de quantas maneiras distintas teremos doze respostas V e oito respostas F? f) Podendo escolher entre 5 tipos de queijo e 4 marcas de vinho, de quantos modos é possível fazer um pedido num restaurante, com duas qualidades de queijo e 3 garrafas de vinho? Observação: temos que escolher os dois tipos de queijo, entre os 5 disponíveis, e em seguida, temos que escolher 3 garrafas entre os 4 vinhos disponíveis (distintos ou não). g) Um menino encontra-se no balcão de uma sorveteria que oferece 7 opções diferentes de sabores. Ele tem dinheiro para comprar 4 sorvetes e ele também pode escolher sabores repetidos. De quantos modos ele poderá fazer a escolha desses quatro sabores de sorvete? Lógica Matemática 1) Seja p a sentença Faz frio e q a sentença Chove. Dê uma sentença verbal simples que descreva cada uma das proposições a seguir: a) ~p b) P ^ q c) P v q d) q v ~p 2) Seja p a sentença João gosta de Matemática, q a sentença João gosta de Álgebra e r João gosta de Cálculo. Escreva cada uma das seguintes declarações na forma simbólica. a) João gosta de Matemática ou Álgebra. b) João gosta de Matemática e Álgebra. c) João não gosta de Cálculo. d) João gosta de Álgebra e não gosta de Matemática. 3) Preencha a tabela: p q P ^ q P v q ~p ~q V V V F F V F F 4) Ache a tabela-verdade de ~p ^ q. 5) Verifique se a proposição p v ~(p ^q) é uma tautologia. Construa a tabela-verdade para demonstrar. 6) Mostre que as proposições ~(p ^ q) e ~p v ~q são equivalentes (ou seja, ambas são iguais). 7) Mostre que o argumento seguinte é uma falácia: [(p q) ^ ~p] ~q. 8) Determine a validade do seguinte argumento: [(p q) ^ ~q] ~p. 9) Prove que o seguinte argumento é válido: [(p ~q) ^ (r q) ^ r] ~p. 10) Construir a tabela-verdade para as seguintes proposições. a) a ^ b

10 b) a v b c) ~a e ~b d) a b e) a b f) (a b) (b a) g) (a v ~a) (b ^ ~b) h) ~[(a ^ ~b) ~c] i) (a b) ( ~b ~a) j) (a b) (~a v b) k) a (b c) (a ^ b) c l) (a ^ b) v c a ^ (b v c)

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

ARRANJO OU COMBINAÇÃO?

ARRANJO OU COMBINAÇÃO? ARRANJO OU COMBINAÇÃO? As principais ferramentas da Análise Combinatória são a Permutação, o Arranjo e a Combinação, mas muitos estudantes se confundem na hora de decidir qual delas utilizar para resolver

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu. Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

Lógica das Proposições

Lógica das Proposições Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

PROBABILIDADE. Prof. Patricia Caldana

PROBABILIDADE. Prof. Patricia Caldana PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,

Leia mais

5) São quantos os números ímpares com três algarismos, que não possuem dígitos repetidos e que de trás para frente também são ímpares?

5) São quantos os números ímpares com três algarismos, que não possuem dígitos repetidos e que de trás para frente também são ímpares? ANÁLISE COMBINATÓRIA PRINCÍPIO FUNDAMENTAL DA CONTAGEM O princípio fundamental da contagem diz que um evento que ocorre em n situações independentes e sucessivas, tendo a primeira situação ocorrendo de

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

INSS 2016 Técnico CESPE

INSS 2016 Técnico CESPE INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

Introdução a computação

Introdução a computação Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

Algoritmos e Programação I

Algoritmos e Programação I Algoritmos e Programação I Operadores Relacionais, Lógicos e Aritméticos Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Expressões Uma expressão relacional, ou

Leia mais

Análise Combinatória

Análise Combinatória Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.

Leia mais

Mais Permutações e Combinações (grupo 2)

Mais Permutações e Combinações (grupo 2) Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

Modus ponens, modus tollens, e respectivas falácias formais

Modus ponens, modus tollens, e respectivas falácias formais Modus ponens, modus tollens, e respectivas falácias formais Jerzy A. Brzozowski 28 de abril de 2011 O objetivo deste texto é apresentar duas formas válidas de argumentos o modus ponens e o modus tollens

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Alfabeto da Lógica Proposicional

Alfabeto da Lógica Proposicional Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de

Leia mais

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO RACIOCÍNIO LÓGICO AULA 01 LÓGICA PROPOSICIONAL DEFINIÇÃO A Lógica estuda o pensamento como ele deveria ser, sem a influência de erros ou falácias. As falácias em torno do raciocínio humano se devem a atalhos

Leia mais

CAPÍTULO 2 ANÁLISE COMBINATÓRIA

CAPÍTULO 2 ANÁLISE COMBINATÓRIA CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos Período: 1 o Bimestre Série/Turma: 3 a série EM Professor: Wysner Max Valor: Aluno(a): 01 - Na palavra

Leia mais

PROBABILIDADE. Aula 3 Arranjo, Permutação e Análise Combinatória. Fernando Arbache

PROBABILIDADE. Aula 3 Arranjo, Permutação e Análise Combinatória. Fernando Arbache PROBABILIDADE Aula 3 Arranjo, Permutação e Análise Combinatória Fernando Arbache Princípio fundamental da contagem Exemplo: Uma menina quer sair com o namorado. Ela quer saber de quantas maneiras diferentes

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

Aula 3: Estudando Arranjos

Aula 3: Estudando Arranjos Aula 3: Estudando Arranjos No campeonato mundial de Fórmula 1 de 2012, participaram 25 pilotos, entre quais se destacaram o alemão Sebastian Vettel, que foi o campeão, o espanhol Fernando Alonso, que foi

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista

Leia mais

Teoria dos Conjuntos FBV. Prof. Rossini Bezerra

Teoria dos Conjuntos FBV. Prof. Rossini Bezerra Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.

Leia mais

Raciocínio Lógico Matemático

Raciocínio Lógico Matemático Raciocínio Lógico Matemático Cap. 4 - Implicação Lógica Implicação Lógica Antes de iniciar a leitura deste capítulo, verifique se de fato os capítulos anteriores ficaram claros e retome os tópicos abordados

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti Unidade I LÓGICA Profa. Adriane Paulieli Colossetti O que é lógica A lógica ensina a colocar ordem no pensamento. Sistemas Dicotônicos Proposições: São sentenças declarativas, que satisfazem três princípios

Leia mais

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz Aula 03 Estruturas Condicionais Prof. Filipe Wall Mutz Agenda Operadores Relacionais Estrutura Condicional Operadores Lógicos É comum nos algoritmos surgirem situações em que a execução de uma ação está

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas.

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas. MAT I 2004-2 Solução dos Exercícios para os dias 20, 25 e 27/08/04 1. Simbolize as sentenças a seguir, definindo as letras de proposição usadas. a. A B, onde A:= Alfredo gosta de dançar e B:= Alfredo gosta

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 2007/2008 Álgebra Linear e Geometria Analítica

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

Lista de exercícios de análise combinatória_permutações_gabarito

Lista de exercícios de análise combinatória_permutações_gabarito Lista de exercícios de análise combinatória_permutações_gabarito 1. Quantos números de cinco s podemos escrever apenas com os dígitos 1, 1, 2, 2 e 3 respeitadas as repetições apresentadas? a) 12 b) 30

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Introdução à Programação I

Introdução à Programação I Introdução à Programação I Programação Estruturada Álgebra Booleana e Expressões Compostas Material da Prof. Ana Eliza Definição: Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Carnes: filé de peixe, filé de frango, carne de porco e bife de carne bovina.

Carnes: filé de peixe, filé de frango, carne de porco e bife de carne bovina. ANÁLISE COMBINATÓRIA CONTEÚDOS Princípio multiplicativo Permutações simples Arranjos simples Combinações simples Permutações com elementos repetidos AMPLIANDO SEUS CONHECIMENTOS Princípio multiplicativo

Leia mais

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3. Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d

Leia mais

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0. Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane

Leia mais

Fundamentos de Lógica e Algoritmos

Fundamentos de Lógica e Algoritmos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #EquivalênciaLógica Eliezio Soares elieziosoares@ifrn.edu.br

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

ESTUDO DA ANÁLISE COMBINATÓRIA

ESTUDO DA ANÁLISE COMBINATÓRIA ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Álgebra de Boole Roteiro no. 10 - Atividades didáticas de 2007 8 de Outubro de 2007- Arq: elementos10.tex Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses(at)matematica(pt)uel(pt)br

Leia mais

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem 2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais

Leia mais