MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP"

Transcrição

1 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

2 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas não ambas. As proposições podem ser divididas em proposições simples e compostas Proposições simples a) Pedro é aluno do Curso de Informática. b) A terra gira em torno do sol. c) O leite é branco. d) 7 é quadrado perfeito Proposições compostas e) Cabral descobriu o Brasil e Colombo a América. f) Bruno cursa Informática e Mariel Estatística. g) O triângulo ABC é isóscele ou retângulo. h) Se Pedro é estudioso, então será aprovado. i) ABC é triângulo eqüilátero se, e somente se, é eqüiângulo Princípio da não contradição Uma proposição não pode ser verdadeira e falsa ao mesmo tempo. São verdadeiras (a), (b) e (c) e falsa (d) Princípio do terceiro excluído. Toda proposição ou é verdadeira ou falsa. Sempre ocorre esses casos e nunca um terceiro. 2. Operações lógicas O cálculo das proposições consiste nas operações fundamentais que partem de proposições simples para se chegar às proposições compostas. As operações que podem ser efetuadas são: A negação, a conjunção, a disjunção, a condicional e a bicondicional Conectivos O Cálculo das proposições destaca cinco operadores lógicos, a saber:...não...(denota-se )... e... (denota-se )...ou...(denota-se )...se,... então... (denota-se )...se, e somente se... (denota-se )

3 3 O primeiro operador é dito unário, pelo fato de operar sobre um só operando; os demais são operadores binários, já que operam sobre dois operandos Negação É a mais simples operação-verdade. Se a proposição A é verdadeira, então falsa, se A é falsa, então A é verdadeira. A é A: 2/3 é um número racional. (verdade) A: 2/3 não é um número racional. (falso) ou A: 2/3 é um número irracional. (falso) Tabela verdade para a negação A A A A V F 1 0 F V Conjunção ( ) Essa operação-verdade corresponde ao termo e e seu símbolo é. Por meio da conjunção é possível, dadas duas proposições simples A e B obter-se outra composta A B que será verdadeira somente quando A e B forem verdadeiras. A: Recife é a capital de Pernambuco. B: Manaus é a capital do Amazonas. A B: Recife é a capital de Pernambuco e Manaus é a capital do Amazonas. Exemplo 01. A B A B A B A B V V V V F F F V F F F F José de Alencar escreveu o Guarani e Machado de Assis Capitu. ( V V = V) 5+2=7 e 3> 5. ( V F = F ) > 4 e 7 é número primo. ( F V = F ) > 4 e 8 é número ímpar. ( F F = F )

4 Disjunção ( ) Essa operação-verdade corresponde ao termo ou e seu símbolo é. Por meio da disjunção é possível, dadas duas proposições simples A e B obter-se outra composta A B que será falsa somente quando A e B forem falsas. A: Recife é a capital de Pernambuco. B: Manaus é a capital do Amazonas. A B: Recife é a capital de Pernambuco ou Manaus é a capital do Amazonas. Exemplo 02. A B A B A B A B V V V V F V F V V F F F =4 ou 5>3 ( V V = V) 4 ou 7 é número primo. ( F V =V) 4 ou 8 é número primo. ( F F =F ) 2.5. Condicional ( ) Se chover, então irei ao cinema. Se estudar, então serei aprovado. Seja A: estudar B: serei aprovado A partir de duas proposições A e B, construímos uma nova proposição A B (se A, então B) ou A implica B. A tabela verdade é dada por: A B A B A B A B V V V V F F F V V F F V 0 0 1

5 5 Observação 01: Da teoria dos conjuntos sabemos que A B B ou A B A, assim, se x A B, então x B, isto é, sempre é verdade que se x está em A B, então x B Logo, na tabela A B B é sempre verdadeira. está em. A B A B A B B V V V V V V V F F F V F F V F F V V F F F F V F Observando as três últimas colunas podemos escrever: V V = V F F = V F V = V Observação 02: Uma proposição A independente do valor de B. Observação 03: Uma proposição A B é sempre Verdadeira (V) desde que A seja Falsa (F), B é Verdadeira sempre que B é verdadeira. Exemplo 03. 1) Se =5, então 1 1 (verdade) 2) Se =5, então 1 = 1 (verdade) 3) Se o Papa joga no Corinthians, então o Palmeiras será campeão. 3) Se o Papa joga no Corinthians, então todos os alunos de Matemática Discreta serão aprovados. Observação 04: As proposições no Exemplo 03 são trivialmente verdadeiras pois, A : =5 ou A: O Papa joga no Corinthians,são falsas Bicondicional ( ) Encontramos com freqüência a forma: A se, e somente se, B que é definida por (A B) ( B A) A B A B B A (A B) ( B A) V V V V V V F F V F F V V F F F F V V V

6 6 Segue, portanto, a tabela verdade para a bicondicional. A B A B A B A B V V V V F F F V F F F V Exercícios de aplicação 01: Escreva em linguagem corrente. 1) A: Está frio. B: Está chovendo. a) A: b) A B: c) A B: d) A B; e) A B: f) A B: g) A B: 2) Analogamente: A: Pedro é aluno de ADS B: ADS é Curso da Fatec SP 3) Escreva em linguagem simbólica as sentenças. p: Carolina é alta. q: Carolina é elegante. a) Carolina é alta e elegante. b) Carolina é alta mas não é elegante. c) É falso, que Carolina é baixa ou elegante. d) Carolina não é nem baixa nem elegante. e) Carolina é alta, ou ela é baixa e elegante. 4) Dar o valor lógico das proposições. a) Porto Alegre é a capital do Estado do Paraná ou 10 é par. ( )

7 7 b) Se 3 >, então 2 é racional. ( ) c) Se 3 >, então o Corinthians será campeão Paulista de ( ) d) Se 1 1, então ( ) e) 2+3=5 se, e somente se ( ) f) se, e somente se 2+2+2=6. ( ) 2.7. Formas sentenciais Quando estudamos as expressões numéricas, observamos expressões com as operações de adição, subtração, multiplicação e divisão organizadas com parênteses, colchetes e chaves. Da mesma forma ocorrem as formas sentenciais usando,,, e Tabelas-verdade Para cada forma sentencial podemos montar uma tabela-verdade. Exemplo 04. Construir a tabela verdade relativa à forma sentencial [( A B) ( A C)] ( B C ) A B C A B A A C C B C V V V V F V F F F V V F V F F F V V V F V F F V V F F V F F F F F V V F F V V V V V F F F F V F V V V V V V F F V V V V F F F F F F V V V F V F

8 8 Exemplo 05. Construir a tabela verdade relativa à forma sentencial [( A B) ( B C] ( A C ) A B C A B B C A C V V V V V V V V V F V F V F V F V F V V V V F F F V V F F V V V V V V F V F V F V V F F V V V V V F F F V V V V Exemplo 06. Tabela-verdade simplificada. ( A B) ( A B ) V V V V F V V V F F V F F F F V V V V V V F V F V V V F Exercícios de aplicação 02: Construir a tabela verdade relativa à forma sentencial (Simplificada ou não). 1) ( p q) ( p q ) 2) [ A ( B C)] ( A C ) 3) [( A B) ( C D)] ( D A ) 4) [( A C) ( B C)] [( B A) ( A C )] 5) [( A B) ( C A)] [( A B) ( C A )] 6) [( A B) ( C A)] [( A B) ( C B )]

9 Tautologia Contradição Uma forma sentencial diz-se tautologia, se assumir valor V para quaisquer que sejam os valores atribuídos às variáveis e se assumir o valor F diremos que é uma contradição. Exemplo 07. A forma sentencial que segue é uma tautologia. ( A B) ( A B ) V V V V F V V V F F V F F F F V V V V V V F V F V V V F Exemplo 08. A forma sentencial que segue é uma contradição. Exemplo 09. ( A B) ( A B ) V V V F F F F V V F F F F V F V V F V F F F F F F V V V Se a forma sentencial ( A ( B C)) ( B C ) é falsa, quais valores possíveis de verdade, que podem assumir A, B e C? ( A ( B C)) ( B C ) 0 1ª conclusão 1 0 2ª conclusão ª conclusão 0 4ª conclusão _0 0 5ª conclusão Assim, A=0, B=1 e C=0 Exercícios de aplicação 02: As formas sentencias que seguem são falsas, quais valores possíveis de verdade, que podem assumir A, B, C e D? 1) [ A ( B D)] A ( B C ) 2) ( A B) [( B C) C ] 3) A ( ( B C) D) (( B E) ( C D )

10 10 4) A B B C 5) Se a forma sentencial ( A B) C ( B C) A é falsa, e a sentença C Bé verdadeira. Quais os valores possíveis de verdade, que podem assumir A, B e C? Respostas dos exercícios de aplicação 02: 1) A=B=1 e C=D=0 2) A=B=1 e C=0 3)A=B=C=D=E=1 4) A=B=0e C=1 5) A=C=0 e B= Implicações e equivalências lógicas (~) Dizemos que uma forma sentencial X implica logicamente uma forma sentencial Y, se a forma sentencial X Y for uma tautologia. Exemplo 10. Seja X: A B e Y: A B, mostremos que X ~ Y isto é ( A B ) ( A B ) A B A B A B V V V V F V V V F F V F F F F V V V V V V F F V V V V F Equivalências lógicas Fundamentais E : Lei da dupla negação: A~ 1 A A A A V F V F V F Exemplo 11. Não entendi nada desta explicação ~ entendi tudo. A : Entendi essa explicação. A: Não entendi essa explicação. A: Não entendi nada essa explicação ~ A : entendi tudo.

11 11 E : Lei da idempotência: 2 A A ~ A e A A ~ A A A A A V V V V F F V F A A A A V V V V F F V F E : Lei da Comutatividade: 3 a) A B ~ B A A B B A V V V V V V V V F F V F F V F F V V V F F F F F V F F F b) A B ~ B A A B B A V V V V V V V V F F V F F V F F V V V F F F F F V F F F E : Leis da associatividade: 4 a) ( A B) C ~ A ( B C ) b) ( A B) C ~ A ( B C )

12 12 E : Leis de De Morgan 5 a) ( A B) ~ ( A B ) b) ( A B) ~ ( A B ) Demonstração: Usaremos 1 para V e 0 para F a) ( A B) ~ ( A B ) A B A B b) ( A B) ~ ( A B ) A B A B Mostre as propriedades que seguem usando as tabelas- verdade. E : Leis distributivas ou de fatoração 6 a) A ( B C) ~ ( A B) ( A C ) b) A ( B C) ~ ( A B) ( A C ) E : Leis de absorção 7 1) A ( A B) ~ A 2) A ( A B) ~ A 3) ( A B) B ~ ( A B ) 4) ( A B) B ~ ( A B )

13 13 5) Se T é tautologia e F uma contradição, então a) ( T A) ~ A b) ( T A) ~ T c) ( F A) ~ F d) ( F A) ~ A Mostremos a) ( T A) ~ A T A A Mostre as propriedades b) c) d) usando as tabelas- verdade. E : Contrapositivo. 8 ( A B) ~ ( B A ) A B B A E : Eliminação da condicional 9 a) ( A B) ~ ( A B ) A B A B b) ( A B) ~ ( A B ) A B A B B

14 14 E : Eliminação da Bicondicional 10 a) ( A B) ~ ( A B) ( A B ) A B A B A B b) ( A B) ~ ( A B) ( B A ) A B A B B A Exercícios de aplicação 03: Nota: Nos exercícios que seguem use as leis apresentadas, indicando qual esta sendo usada. 1)A forma sentencial ( A B) ( A B) B é logicamente equivalente a A) A B b) A B c) A B d) A B 2)A forma sentencial [( B C) A] ( C B ) é logicamente equivalente a a) C ( A B ) b) C ( A B ) c) C ( A B ) 3)A forma sentencial ( A A) B [ A ( B B )] é logicamente equivalente a a) ( A B ) b) A B c) A B d) ( B A ) 4) A forma sentencial A ( B C) [( A B) C ] é logicamente equivalente a a) C ( A B ) b) C ( A B ) c) A ( B C )

15 15 5) A forma sentencial ( A B) ( B A) [ ( A B) ( B A) ( C A) ( C C)] é logicamente equivalente a a) ( A B ) b) C ( A B ) c) A ( B C ) Respostas dos exercícios de aplicação 03: 1)c 2) a 3) d 4) c 5)a Observação: Nos exercícios que seguem é importante conhecer a leitura das proposições e sua simbologia. Assim A B: lê-se: Se A, então B A somente se B A é condição suficiente para B. B é condição necessária para A. A B: A é condição necessária é suficiente para B. Exemplo 12. Indique em quais casos temos c.s, c.n e c.n.s. Exemplo 13. a) A: n é divisível por 6 B: n número par (c.s) b) A: x < 0 e y < 0 B: x.y > 0 (c.s) c) A: x é ímpar 2 B: x é impar (c.n.s) d) A: x = 2 2 B: x =4 (c.s) 2 e) A: x =4 B: x = 2 (c.n) Dar a negação em linguagem corrente das proposições. As rosas são amarelas e os cravos brancos. Solução: Definindo: A: As rosas são amarelas. B: Os cravos brancos. Assim, podemos escrever A B Negação de A B é ( A B ) ~ A B (Leis de De Morgan) As rosas não são amarelas ou os cravos não são brancos.

16 16 Exemplo 14. Dar a negação em linguagem corrente das proposições. Se estiver cansado ou com fome, não consigo estudar. Definindo: C: estiver cansado F: com fome E: consigo estudar E: não consigo estudar. Assim, podemos escrever:( ) C F E, negando: [( C F) E] ~ [ ( C F) E ] ~( C F) E. Portanto, Mesmo cansado ou com fome eu estudo. Estando cansado ou com fome consigo estudar. Exemplo 15. Dar a negação em linguagem corrente das proposições. A temperatura diminuirá somente se chover ou nevar. Definindo: D: A temperatura diminuirá C: chover N: nevar Assim, podemos escrever: D ( C N ), negando [ D ( C N )] ~ [ D ( C N )] ~ D ( C N ) ~ D C N ) A temperatura diminuirá mesmo não chovendo e não nevando. Não choverá e não nevará e mesmo assim a temperatura diminuirá. Exercícios de aplicação 04: Dar a negação em linguagem corrente das proposições. 1) Fará sol se, e somente se não chover. 2) Bruno é aluno MD ou pesquisador. 3) Existe menina feia. 4)Todo menino gosta de futebol. 5) Nenhuma menina gosta do Corinthians. 6) Tudo que é bom engorda. 7)Todos os homens são mortais. 8)Thaís é inteligente e estuda.

17 17 9)O Corinthians ganhará o campeonato brasileiro se o juiz roubar ou os santos ajudarem. Respostas dos exercícios de aplicação 04: 1) Fará sol se, e somente se chover. 2) Não é aluno Bruno MD e não é pesquisador. 3) Todas as meninas não são feias. 4) Existe menino e que não gosta de futebol. 5) Existem meninas que não gostam do Corinthians. 6) Nem Tudo que é bom engorda.( Existe coisa boa e que não engorda) 7) Existem homens que não são mortais. 8) Thaís não é inteligente ou não estuda. 9) Mesmo o juiz roubando ou os santos ajudando, o Corinthians não ganhará o campeonato brasileiro Argumentos Sejam 1 2 P, P,..., P e Q proposições. Denomina-se argumento a toda afirmação n P, P,..., P acarreta uma proposição n de que uma dada seqüência finita de proposições 1 2 final Q. P, P,..., P denominam-se premissas, e Q conclusão. Lê-se 1 2 n P, P,..., P acarreta Q ou 1 2 n Q decorre de P, P,..., P. 1 2 n Um argumento que consiste em duas premissas e uma conclusão, denomina-se silogismo. P, P,..., P Q n Um argumento é valido se, e somente se a condicional 1 2 ( P P... P ) 1 2 n Q é uma tautologia. Exemplo 16. Verifique em cada um dos casos abaixo, se a argumentação é válida ou é uma falácia. 1) Sejam as Premissas: i) Se um homem é feliz, ele não é solteiro. ii) Se um homem não é feliz, ele morre cedo. Conclusão: Homens solteiros morrem cedo. Chamando

18 18 F: Homem é feliz S: Solteiro C: morre Cedo Podemos escrever a forma simbólica (argumentação) como: [( F S) ( F C)] ( S C ) ª conclusão 1 2ª conclusão 0 3ª conclusão 0 0 4ª conclusão 1 1 1_ 5ª conclusão 1 1 final Portanto, a argumentação é verdadeira. 2) Sejam as Premissas: i) Se um homem não fuma, então é atleta ou não é alcoólatra. ii) Se um homem fuma, então tem câncer. iii) Paulo não é atleta mas alcoólatra. Conclusão: Paulo tem câncer. Chamando F: Fuma C: Câncer A t : Atleta A l : Alcoólatra ( F ( A A)) F C ( A A) C t l t l ª conclusão 1 1 2ª conclusão ª conclusão 0 4ª conclusão 0 5ª conclusão 0 6ª conclusão _ 7ª conclusão 1 Verdade Portanto, a argumentação é verdadeira. 3) Sejam as Premissas: i) Se eu não jogar xadrez,jogarei futebol. ii) Se estiver machucado, não jogarei futebol Conclusão: Se estiver machucado jogarei xadrez.

19 19 Chamando X: jogar Xadrez F: Futebol M: Machucado X F M F M X V V 1ª conclusão V V hip 2ª conclusão V 3ª conclusão F F 4ª conclusão F 5ª conclusão V V 6ª conclusão V 7ª conclusão V Verdade Portanto, a argumentação é verdadeira. Exercícios de aplicação 05: Verifique em cada um dos casos abaixo, se a argumentação é válida ou é uma falácia. 1) Sejam as Premissas: i) Os bebes não são lógicos. ii) Quem consegue amestrar um crocodilo não é desprezado. iii) Pessoas não lógicas são desprezadas. Conclusão: Bebes não conseguem amestrar crocodilo. 2) Sejam as Premissas: i) O professor não erra. ii) Andréia é distraída. iii) Quem é distraído erra Conclusão: a) Andréia não é professora. b) Nenhum professor é distraído. 3) Sejam as Premissas: i) Gracielli é estudiosa. ii) Todo estudioso é aprovado em Matemática discreta. Conclusão: Gracielli será reprovada em Matemática discreta. Respostas dos exercícios de aplicação 05: 1) e 2) A argumentação é verdadeira. 3) A argumentação é falsa.

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

Prof. João Giardulli. Unidade I LÓGICA

Prof. João Giardulli. Unidade I LÓGICA Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução

Leia mais

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: raquel@ic.uff.br 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Introdução à Programação I

Introdução à Programação I Introdução à Programação I Programação Estruturada Álgebra Booleana e Expressões Compostas Material da Prof. Ana Eliza Definição: Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem

Leia mais

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

LÓGICA EM COMPUTAÇÃO

LÓGICA EM COMPUTAÇÃO CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

Cálculo proposicional

Cálculo proposicional Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma

Leia mais

MATEMÁTICA Questões comentadas Daniela Arboite

MATEMÁTICA Questões comentadas Daniela Arboite MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível

Leia mais

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES Lógica Matemática e Computacional Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES 2. Conceitos Preliminares 2.1. Sentença, Verdade e Proposição Cálculo Proposicional Como primeira

Leia mais

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista

Leia mais

Lógica Proposicional (Consequência lógica / Dedução formal)

Lógica Proposicional (Consequência lógica / Dedução formal) Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César Lógica Matemática UNIDADE I Professora: M.Sc. Juciara do Nascimento César 1 A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

Introdução a computação

Introdução a computação Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

Prof. Tiago Semprebom, Dr. Eng. 09 de abril de 2013

Prof. Tiago Semprebom, Dr. Eng. 09 de abril de 2013 Lógica Clássica e Lógica Simbólica Prof. Tiago Semprebom, Dr. Eng. Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José tisemp@ifsc.edu.br 09 de abril de 2013 Prof. Tiago

Leia mais

Fundamentos de Lógica Lógica Proposicional

Fundamentos de Lógica Lógica Proposicional Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos

Leia mais

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 2007/2008 Álgebra Linear e Geometria Analítica

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

Antonio Paulo Muccillo de Medeiros

Antonio Paulo Muccillo de Medeiros Antonio Paulo Muccillo de Medeiros Conceito É a área da matemática que estuda os argumentos (premissas e conclusão). Estuda os métodos e princípios que permitam distinguir argumentos corretos e incorretos.

Leia mais

Raciocínio Lógico. Matemático. Lógica Proposicional

Raciocínio Lógico. Matemático. Lógica Proposicional Raciocínio Lógico Matemático Lógica Proposicional Proposições Lógicas Denomina-se proposição toda frase declarativa, expressa em palavras ou símbolos, que exprima um juízo ao qual se possa atribuir, dentro

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

ATA - Assistente Técnico Administrativo

ATA - Assistente Técnico Administrativo MINISTÉRIO DA FAZENDA Concurso Público 2016 ATA - Assistente Técnico Administrativo Introdução Conteúdo Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica

Leia mais

Elementos de Lógica Matemática. Uma Breve Iniciação

Elementos de Lógica Matemática. Uma Breve Iniciação Elementos de Lógica Matemática Uma Breve Iniciação Proposições Uma proposição é uma afirmação passível de assumir valor lógico verdadeiro ou falso. Exemplos de Proposições 2 > 1 (V); 5 = 1 (F). Termos

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Lógica Proposicional e Álgebra de Boole

Lógica Proposicional e Álgebra de Boole Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser

Leia mais

Tribunal de Justiça do Estado de Pernambuco

Tribunal de Justiça do Estado de Pernambuco Tribunal de Justiça do Estado de Pernambuco Introdução Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; dedução de novas informações das relações

Leia mais

Raciocínio Lógico (Professor Uendel)

Raciocínio Lógico (Professor Uendel) Raciocínio Lógico (Professor Uendel) Material (02); SEFAZ; JULHO DE 2017 (Álgebra das Proposições) PROPOSIÇÕES EQUIVALENTES P Q Lê se: P é LOGICAMENTE equivalent e a Q São proposições cujas tabelas-verdade

Leia mais

Ficha de trabalho n.º 1 (com resolução) Assunto: Lógica

Ficha de trabalho n.º 1 (com resolução) Assunto: Lógica Ficha de trabalho n.º 1 (com resolução) Assunto: Lógica 10.º ano Parte I - Escolha múltipla (Selecione a opção correta) 1. Considere a proposição: O quadrado de qualquer número real é um número real positivo.

Leia mais

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz Aula 03 Estruturas Condicionais Prof. Filipe Wall Mutz Agenda Operadores Relacionais Estrutura Condicional Operadores Lógicos É comum nos algoritmos surgirem situações em que a execução de uma ação está

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Unidade: Proposições Logicamente Equivalentes. Unidade I:

Unidade: Proposições Logicamente Equivalentes. Unidade I: Unidade: Proposições Logicamente Equivalentes Unidade I: 0 Unidade: Proposições Logicamente Equivalentes Nesta unidade, veremos a partir de nossos estudos em tabelas-verdade as proposições logicamente

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

Matemática Discreta - 01

Matemática Discreta - 01 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley

Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley 1 a Lista de Exercícios 1. Determinar o valor lógico (V ou F) de cada uma

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições.

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Capítulo 1 CÁLCULO PROPOSICIONAL 1. PROPOSIÇÕES E CONECTIVOS A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Uma proposição

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO Concurso Público 2016 Conteúdo Introdução Conceitos Básicos sobre as Estruturas Lógicas Lógica Matemática Lógica Sequencial Coletânea de Exercícios

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

MP - RJ Ministério Público do Estado do Rio de Janeiro. Cargo: Técnico Administrativo Área Administrativa

MP - RJ Ministério Público do Estado do Rio de Janeiro. Cargo: Técnico Administrativo Área Administrativa MP - RJ Ministério Público do Estado do Rio de Janeiro Cargo: Técnico Administrativo Área Administrativa Conteúdo 1ª Parte Proposições, valor-verdade, negação, conjunção, disjunção, implicação, equivalência,

Leia mais

Fundamentos de Lógica e Algoritmos

Fundamentos de Lógica e Algoritmos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #EquivalênciaLógica Eliezio Soares elieziosoares@ifrn.edu.br

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 07 Agentes Lógicos Edirlei Soares de Lima Introdução Humanos possuem conhecimento e raciocinam sobre este conhecimento. Exemplo: João jogou

Leia mais

Fundamentos da Computação 1. Aula 03

Fundamentos da Computação 1. Aula 03 Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise

Leia mais

Fundamentos da Lógica I

Fundamentos da Lógica I Fundamentos da Lógica I O conceito mais elementar no estudo da lógica primeiro a ser visto é o de Proposição. Trata-se, tão somente, de uma sentença algo que será declarado por meio de palavras ou de símbolos

Leia mais

n. 11 Argumentos e Regras de Inferência

n. 11 Argumentos e Regras de Inferência n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais