SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA"

Transcrição

1 Título do Podcast Área Segmento Duração SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Geometria: características de figuras planas presentes em objetos Matemática Ensino Fundamental Programa de Alfabetização de Jovens e Adultos 4min44seg Habilidades: H20, H21, H22 Tempo Estimado: 30 minutos Materiais e recursos necessários: Podcast, cópia da Sequência Didática para resolução das atividades propostas cadernos de anotações. Conteúdos: Características de figuras planas presentes em objetos. Desenvolvimento: A sequência de atividades a seguir poderá auxiliar você no aprofundamento e aprendizagem das características de figuras planas presentes em objetos. Utilizaremos o Podcast Geometria: características de figuras planas presentes em objetos como ponto de partida. Vamos lá! Ouça com atenção o Podcast disponível no Portal Área Aluno: Podcast Fundação Bradesco 1

2 Depois de ouvir o Podcast, pense onde a geometria pode ser encontrada: A geometria está presente nas ruas, basta você observar ou imaginar as construções, os edifícios, os cruzamentos entre as avenidas na pavimentação das calçadas e até mesmo na escola, (lousas, cestos de lixo, globos terrestres, no formato cilíndrico das lâmpadas fluorescentes e outros). Ela também está presente na natureza: na forma hexagonal nos favos das colmeias, nas gotas d água presentes em plantas e até mesmo na simetria das asas de borboletas. Voltando ao nosso entorno, percebemos a geometria quando manipulamos diversas caixas, como as de perfumes, de sabão em pó, de remédios e de creme dental. Ao tocá-las, percebemos que são tridimensionais, ou seja, têm largura, altura e comprimento. Ao desmontá-las, ou seja, ao planificá-las, conseguimos decompor o sólido geométrico. (Texto adaptado do Roteiro do Podcast: Geometria: características de figuras planas presentes em objetos, Fundação Bradesco. 2012) Percebemos que ao desmontar (planificar) uma caixa de creme dental (por exemplo), é possível identificar figuras planas: formadas por quatro retângulos de mesmo tamanho e dois de outro tamanho. Observe as imagens: Disponível em: <http://tikaarts.blogspot.com.br/2010/04/caixa-de-creme-dental.html>. Acesso em: 07 jun h10min. Disponível em: <http://crv.educacao.mg.gov.br/sistema_crv/index.aspx?id_objeto=42898&tipo=ob&cp=b53c97&cb=&n1=&n2=r oteiros%20de%20atividades&n3=fundamental%20- %206%EF%BF%BD%20a%209%EF%BF%BD&n4=Matem%EF%BF%BDtica&b=s>. Acesso em: 07 jun h25min. Podcast Fundação Bradesco 2

3 O retângulo possui quatro lados. Seus lados formam ângulos retos entre si. Dois lados paralelos verticalmente e os outros dois, paralelos horizontalmente. Muito diferente de um círculo é constituído pela reunião da circunferência (apenas o contorno) com o conjunto de pontos localizados dentro dela, as características do retângulo e do círculo são diferentes. Círculo não tem lados. Temos também outro exemplo de planificação de um cubo no Podcast. Por meio deste exemplo podemos identificar também, figuras planas. Temos seis quadrados de mesmo tamanho e cada um deles com quatro lados de mesmo tamanho, e todos os seus lados formam ângulos retos entre si. Observe as imagens: Disponível em: <http://maravilhasnossaterra-anexo1.blogspot.com.br/2009_11_01_archive.html>. Acesso em: 07 jun h42min. Se compararmos as características do quadrado com as do retângulo, podemos perceber o número de lados e os ângulos retos como semelhanças entre as figuras planas, porém a diferença marcante entre eles é que, no quadrado, todos os lados têm o mesmo comprimento, já no retângulo são diferentes, pois todo quadrado também é um retângulo. No Podcast observamos que é possível identificar semelhanças e diferenças entre formas tridimensionais e bidimensionais, compondo, decompondo e representando diferentes objetos. Podcast Fundação Bradesco 3

4 Observe as imagens: Formas Bidimensionais: Disponível em: < Acesso em: 07 jun h48min. Formas Tridimensionais: Disponível em: < Acesso em: 07 jun h48min. Que tal realizar mais algumas atividades envolvendo a Geometria. Vamos lá! Podcast Fundação Bradesco 4

5 1- As formas geométricas estão presentes nas obras de artes. Alguns artistas utilizam figuras geométricas para compor e criar suas obras. Observe as imagens a seguir do artista Alfredo Liberman: Casinhas. Óleo sobre tela. 70cm x 50cm Geométrico. Óleo sobre tela. 50cm x 70cm Imagens: Disponível em: <http://www.portaldoartesao.com.br/alfredoliberman/index.html>. Acesso em: 26 mai h52 min. 1 A- Você consegue ver figuras geométricas nas obras do pintor Alfredo Liberman? Escreva nas linhas abaixo quatro delas: 1 B- Na parte externa da escola ou sala de aula existem alguns objetos com as formas geométricas usadas nas telas? Cite os nomes de dois desses objetos? Podcast Fundação Bradesco 5

6 2) Uma linha reta possui apenas uma dimensão que pode ser medida: o seu comprimento. Um quadrado, por sua vez, possui duas dimensões: seu comprimento e sua altura. Mas, quando olhamos ao nosso redor, podemos perceber que todas as coisas com as quais lidamos diariamente possuem três dimensões: comprimento, largura e altura e, por isso, são denominados tridimensionais. Nada do que conhecemos pode ser considerado diferente disso, nem mesmo uma folha de papel. Por mais fina que seja, ela tem uma espessura. Alguns elementos presentes nesse mundo tridimensional, principalmente os criados pelo homem, são inspirados em sólidos geométricos, bastante conhecidos. Observe as imagens a seguir de alguns prédios famosos pelo Brasil: Figura 1: Edifícios do Brasil e suas formas geométricas Como você pode ver, podemos comparar algumas partes das construções com formas geométricas. Algumas delas são denominadas poliedros. Por falar nisso, você sabe o que é um poliedro? Pesquise em livros, dicionários, Internet ou com amigos o que é um poliedro. Liste algumas de suas características nas linhas a seguir: Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. (adaptada). Acesso em: 27 mai h30min. Podcast Fundação Bradesco 6

7 Vamos aprender um pouco mais sobre poliedros A partir da definição de poliedro, classifique os sólidos a seguir como poliedro ou não poliedro. Os elementos de um poliedro são Face, Vértice e Aresta, como mostrado na figura, e os poliedros são denominados de acordo com o seu número de faces. Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. (adaptado). Acesso em: 27 mai h33min. Podcast Fundação Bradesco 7

8 4- Alguns sólidos, poliedros ou não, possuem nomes especiais. A seguir, encontram-se alguns desses sólidos para que você, a partir de conhecimentos que já possui, possa ligar as figuras aos seus nomes: Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. (adaptado). Acesso em: 27 mai h38min. Podcast Fundação Bradesco 8

9 5- As figuras a seguir são planificações de sólidos geométricos. Pesquise e dê o nome desses sólidos. Caso seja necessário, desenhe essas planificações e monte os sólidos que elas representam. É um bom exercício de visualização. Mãos a obra! Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. Acesso em: 27 mai h40min. Podcast Fundação Bradesco 9

10 6- Identifique quais das figuras abaixo representam planificações do cubo. Tente primeiro identificar as planificações pedidas, apenas observando as formas. Caso sinta necessidade, recorte as figuras e tente montá-las. Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. Acesso em: 27 mai h45min. Podcast Fundação Bradesco 10

11 7- Em algumas situações, precisamos olhar para uma figura espacial desenhada em um plano e imaginar como ela realmente é. As atividades a seguir ilustram bem isso. A figura abaixo representa um cubo planificado. Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. Acesso em: 27 mai h50min. 8- Para complementar, assista a Web Aula: Figuras planas e espaciais disponível no Portal Para acessá-la clique na imagem a seguir: Podcast Fundação Bradesco 11

12 As figuras geométricas são percebidas em função das características. Assim, ao manipulálas e ao agrupá-las, estamos classificando de acordo com diferenças e semelhanças entre elas. As figuras se caracterizam por serem portadoras de propriedades, como os lados e ângulos, por exemplo. É justamente esta rede de relações que facilita a compreensão das características das figuras planas! Nesta sequência didática, você teve a oportunidade de trabalhar a visualização e planificação de sólidos geométricos e de conhecer um pouco sobre poliedros. Podemos observar ao realizar as atividades propostas que existem vários exemplos de sólidos geométricos, encontrados principalmente em construções feitas pelos homens e na natureza. Na próxima vez que você sair à rua, observe a sua volta e tente identificar exemplos de sólidos geométricos presentes nos lugares por onde você passa ou mora! Chegamos ao final da atividade e esperamos que você tenha aprofundado seus conhecimentos sobre características de figuras planas presentes em objetos. Indicações: Esperamos você em outras atividades envolvendo os Podcasts! Coletânea de Materiais e Jogos Manipuláveis - Disponível no Portal - Mapa Curricular; Web Aula: Figuras planas e espaciais- Disponível no Portal Digital - Fundação Bradesco. Visualizando formas geométricas Módulo 1 - Unidade 6 - Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. Acesso em: 27 mai h30min. Anexos: Gabarito: Confira suas respostas: Podcast Fundação Bradesco 12

13 Atividade 1 1 A - Você consegue ver figuras geométricas nas obras do pintor Alfredo Liberman? Escreva nas linhas abaixo quatro delas: quadrado. retângulo. círculo. triângulo. 1 B- Na parte externa da escola ou sala de aula existem alguns objetos com as formas geométricas usadas nas telas? Cite os nomes de dois desses objetos? Atividade 2 livros, janelas, portas, lousa, luminárias, cesto de lixo, vasos e outros. Como você pode ver, podemos comparar algumas partes das construções com formas geométricas. Algumas delas são denominadas poliedros. Por falar nisso, você sabe o que é um poliedro? Pesquise em livros, dicionários, Internet ou com amigos o que é um poliedro. Liste algumas de suas características nas linhas a seguir: Poliedro é um sólido geométrico cuja superfície é composta por um número finito de faces, cujos vértices são formados por três ou mais arestas em três dimensões (eixo dos "X", "Y", "Z",...) em que cada uma das faces é um polígono. Os seus elementos mais importantes são as faces, as arestas e os vértices. Poliedros Disponível em: <http://pt.wikipedia.org/wiki/poliedro>. Acesso em: 27 mai h45min. São figuras geométricas formadas por três elementos básicos: vértices, arestas e faces. Disponível em: <http://www.brasilescola.com/matematica/poliedros.htm.>. Acesso em 27 mai h35min. Podcast Fundação Bradesco 13

14 Atividade 3 Atividade 4 Podcast Fundação Bradesco 14

15 Atividade 5 Podcast Fundação Bradesco 15

16 Atividade 6 Atividade 7 Solução: letra e. Podcast Fundação Bradesco 16

17 Referências: Podcast: Geometria: características de figuras planas presentes em objetos. Fundação Bradesco. Setor de Educação de Jovens e Adultos, Visualizando formas geométricas Módulo 1 - Unidade 6- Disponível em: <http://cejarj.cecierj.edu.br/pdf_mod0/matematica_unidade_6_seja.pdf>. Acesso em 27 mai h30min. Podcast Fundação Bradesco 17

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Geometria do Cotidiano Ciências da Natureza I Matemática Ensino

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Ângulos Matemática Ensino fundamental e ensino médio 5min44seg. Habilidades: Ensino

Leia mais

é um círculo A tampa A face é um retângulo

é um círculo A tampa A face é um retângulo No cotidiano, estamos cercados de objetos que têm diferentes formas. Por exemplo, uma caixa de papelão: suas faces são retângulos, e a caixa é um paralelepípedo. Outro exemplo: uma lata de óleo tem a forma

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Relações matemáticas entre grandezas físicas Ciências da Natureza Física e Matemática

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

Gabarito Caderno do Aluno Matemática 5 a série/6 o ano Volume 3

Gabarito Caderno do Aluno Matemática 5 a série/6 o ano Volume 3 SITUAÇÃO DE APRENDIZAGEM 1 DEFINIR E CLASSIFICAR EXPERIMENTANDO Páginas 4-7 1. Seguem abaixo cinco características que podem ser listadas, com a respectiva correspondência nas figuras. Note que explicitamos

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE

Leia mais

Descritores de Matemática Fundamental I

Descritores de Matemática Fundamental I Descritores de Matemática Fundamental I Tema I. Espaço e Forma Descritores de Matemática Fundamental I Tema I. Espaço e Forma D2 - Identificar propriedades comuns e diferenças entre poliedros e corpos

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA ENSINO FUNDAMENTAL E ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA ENSINO FUNDAMENTAL E ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Razões e proporções Ciências da Natureza I Matemática Ensino

Leia mais

Características das Figuras Geométricas Espaciais

Características das Figuras Geométricas Espaciais Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Prismas e Pirâmides Observa as seguintes tabelas, copia-as para o teu caderno (não precisas de desenhar os sólidos) e completa-as. O Sólido Certo Copia as seguintes frases para o teu caderno e tenta descobrir

Leia mais

MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x

MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo

Leia mais

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio

Leia mais

PLANEJAMENTO ANUAL 2014

PLANEJAMENTO ANUAL 2014 PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão

Leia mais

Nome do autor E-mail para contato Escola Município / Estado Conteúdo Série Relato

Nome do autor E-mail para contato Escola Município / Estado Conteúdo Série Relato Nome do autor: Valmir Pereira dos Santos E-mail para contato: valmirefabio@hotmail.com Escola: Colégio Estadual Professor Jaime Rodrigues Município / Estado: Guaira / Paraná Conteúdo: Sólidos Geométricos

Leia mais

Descobrindo medidas desconhecidas (I)

Descobrindo medidas desconhecidas (I) Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir cesse: http://fuvestibular.com.br/ alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma

Leia mais

Figuras geométricas planas. Joyce Danielle. e espaciais

Figuras geométricas planas. Joyce Danielle. e espaciais Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7 11 do total de shapes, 2. segunda semana, na terceira semana,

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7 11 do total de shapes, 2. segunda semana, na terceira semana, GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7 o ano do Ensino Fundamental Turma 2 o semestre de 2014 Data / / Escola Aluno 16 Questão 01 A empresa

Leia mais

Novo Programa de Matemática do Ensino Básico 3º ANO

Novo Programa de Matemática do Ensino Básico 3º ANO Novo Programa de Matemática do Ensino Básico 3º ANO Tema: Geometria Tópico: Orientação Espacial Posição e localização Mapas, plantas e maquetas Propósito principal de ensino: Desenvolver nos alunos o sentido

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

Tecnologias no Ensino de Matemática

Tecnologias no Ensino de Matemática Tecnologias no Ensino de Matemática Profa. Andréa Cardoso ROTEIRO DA ATIVIDADE PRÁTICA 2 Data da realização: 10 de março de 2015 Objetivo da atividade: Explorar funcionalidades do GeoGebra. ATIVIDADE 01:

Leia mais

Copyright de todos artigos, textos, desenhos e lições. A reprodução parcial ou total deste ebook só é permitida através de autorização por escrito de

Copyright de todos artigos, textos, desenhos e lições. A reprodução parcial ou total deste ebook só é permitida através de autorização por escrito de 1 Veja nesta aula uma introdução aos elementos básicos da perspectiva. (Mateus Machado) 1. DEFINIÇÃO INTRODUÇÃO A PERSPECTIVA Podemos dizer que a perspectiva é sem dúvida uma matéria dentro do desenho

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Acesse: Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Acesse:  Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Projeção ortográfica e perspectiva isométrica

Projeção ortográfica e perspectiva isométrica Projeção ortográfica e perspectiva isométrica Introdução Para quem vai ler e interpretar desenhos técnicos, é muito importante saber fazer a correspondência entre as vistas ortográficas e o modelo representado

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. Ficha Informativa/Formativa. Poliedros, Duais e Relação de Euler

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. Ficha Informativa/Formativa. Poliedros, Duais e Relação de Euler ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Ficha Informativa/Formativa MATEMÁTICA - A 10º Ano 2011/2012 Poliedros, Duais e Relação de Euler Poliedro - Um Poliedro é um sólido geométrico limitado por faces que

Leia mais

A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.

A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem. DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi

Leia mais

Medida de ângulos. Há muitas situações em que uma pequena

Medida de ângulos. Há muitas situações em que uma pequena A UUL AL A Medida de ângulos Há muitas situações em que uma pequena mudança de ângulo causa grandes modificações no resultado final. Veja alguns casos nos quais a precisão dos ângulos é fundamental: Introdução

Leia mais

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro

Leia mais

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa Geometria plana Congruência de figuras

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Polígonos e mosaicos

Polígonos e mosaicos A UUL AL A Polígonos e mosaicos A regularidade de formas encontradas na natureza tem chamado a atenção do ser humano há muitos séculos. Ao observar e estudar essas formas, o homem tem aprendido muitas

Leia mais

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens TEMA I ESPAÇO E FORMA Os conceitos geométricos constituem parte importante

Leia mais

PLANO DE TRABALHO 2 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PLANO DE TRABALHO 2 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática PLANO DE TRABALHO 2 MATEMÁTICA 4º ANO GEOMETRIA Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Maio/2015 1 CONTEÚDOS - Poliedros: prismas e pirâmides. - Corpos Redondos: cone, cilindro

Leia mais

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel 18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 6/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 6/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 6/5: 14. Perspectivas Prof. Víctor O. Gamarra Rosado

Leia mais

Uma abordagem geométrica da cinemática da partícula

Uma abordagem geométrica da cinemática da partícula Uma abordagem geométrica da cinemática da partícula André da Silva Ramos de Faria MPEF Orientador: Professor Vitorvani Soares Objetivos Objetivos Discussão geométrica dos conceitos físicos relevantes para

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma: As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais

Leia mais

BLOCO: ESPAÇO E FORMA

BLOCO: ESPAÇO E FORMA 2ª Matemática 4º Ano E.F. Competência Objeto de aprendizagem Habilidade BLOCO: ESPAÇO E FORMA C1. Compreender os conceitos relacionados às características, classificações e propriedades das figuras geométricas,

Leia mais

Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro são polígonos.

Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro são polígonos. Ficha formativa para o 10.º ano - Poliedros Poliedros são sólidos geométricos cujas faces são superfícies planas. Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Das figuras geométricas abaixo, qual delas não apresenta

Leia mais

ROTEIRO DE RECUPERAÇÃO DO 2º BIMESTRE MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO DO 2º BIMESTRE MATEMÁTICA ROTEIRO DE RECUPERAÇÃO DO 2º BIMESTRE MATEMÁTICA Nome: Nº 6º Ano Data: / / Professores: Leandro e Décio Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do

Leia mais

Questões Gerais de Geometria Plana

Questões Gerais de Geometria Plana Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa

Leia mais

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var.

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var. PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ 6. ASSUNTO: MATEMÁTICA BÁSICA gotas ml 1 0, 5 5 ml em um minuto ml minutos 5 1 y 4 60 y 700 ml 7, litros 60per 7. ASSUNTO: MATEMÁTICA BÁSICA 60

Leia mais

24/03/2014. AULA 02c Elementos, figuras e sólidos primários. Os elementos primários da forma:

24/03/2014. AULA 02c Elementos, figuras e sólidos primários. Os elementos primários da forma: 1 2 Os elementos primários da forma: Consideramos como elementos primários da forma, na ordem de seu desenvolvimento, o ponto, a reta, o plano e o volume. Conceitualmente, esses elementos não são visíveis.

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º 1- Função exponencial Propriedades de potenciação Equações exponenciais Função exponencial Condição de existência: Domínio Inequações exponenciais 2 - Logaritmos Definição

Leia mais

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados? o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos e de suas propriedades. Quer ver

Leia mais

diagonal Segmento de reta que liga dois vértices não consecutivos de um polígono.

diagonal Segmento de reta que liga dois vértices não consecutivos de um polígono. abscissa Ver coordenadas algarismo Símbolo utilizado para escrever os números. Em nosso sistema de numeração de base 10, existem dez algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 amostra Um conjunto escolhido

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 11 Geometria Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) Polígono é uma figura plana limitada por segmentos

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Geometria Espacial. Revisão geral

Geometria Espacial. Revisão geral Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Prezado (a) aluno(a): Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( x ) Fundamental ( ) Médio SÉRIE: 8ª TURMA: TURNO: DISCIPLINA: MATEMEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Seleção de módulos do Sistema de Ensino Ser 2014

Seleção de módulos do Sistema de Ensino Ser 2014 ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Números e Sistema de Numeração Decimal Podcast Área Matemática Segmento Ensino Fundamental Programa de Alfabetização de Jovens e Adultos Duração

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Conteúdos: Figuras semelhantes, razão de semelhança. Relações entre áreas e volumes de figuras semelhantes.

Conteúdos: Figuras semelhantes, razão de semelhança. Relações entre áreas e volumes de figuras semelhantes. EE Líbero de Almeida Silvares Disciplina de Matemática Professoras Rosana Silva Bonfim BID Daiane dos Santos Cordeiro /Eliani Pereira de Souza Nascimento Público Alvo 9º ano do Ensino Fundamental Data

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CÓDIGOS E LINGUAGENS

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CÓDIGOS E LINGUAGENS SEQUÊNCIA DIDÁTICA PODCAST ÁREA CÓDIGOS E LINGUAGENS Título do Podcast Área Segmento Duração Discurso direto e discurso indireto Português Ensino Fundamental e Ensino Médio 4min55seg Habilidades: Ensino

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA

MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a

Leia mais

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero

Leia mais

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas. Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:

Leia mais

RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO E O TEOREMA DE PITÁGORAS: UMA APRENDIZAGEM ATRAVÉS DE QUEBRA-CABEÇAS

RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO E O TEOREMA DE PITÁGORAS: UMA APRENDIZAGEM ATRAVÉS DE QUEBRA-CABEÇAS 1 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO E O TEOREMA DE PITÁGORAS: UMA APRENDIZAGEM ATRAVÉS DE QUEBRA-CABEÇAS Alex Almeida de Souza- UEFS (alexalmeida2012@live.com) Andréa de Jesus Santos- UFES (andrea20santos@hotmail.com)

Leia mais

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado

Leia mais

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI PIBID. 16/04/2014 e 22/04/2014. Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui.

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI PIBID. 16/04/2014 e 22/04/2014. Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI PIBID 16/04/2014 e 22/04/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina: Matemática

Leia mais

Programa de Matemática 2º ano

Programa de Matemática 2º ano Programa de Matemática 2º ano Introdução: A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

Lista de exercícios do teorema de Tales

Lista de exercícios do teorema de Tales Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA 38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar

Leia mais

Objetivo. tica 3º ano EM. Oficina de Matemática

Objetivo. tica 3º ano EM. Oficina de Matemática Oficina de Matemática tica 3º ano EM Objetivo Análise, interpretação e utilização dos resultados do SAEPE para promoção da equidade e melhoria da qualidade da educação dos estudantes pernambucanos. Prof

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da

Leia mais

RACIOCÍNIO LÓGICO Simplif icado

RACIOCÍNIO LÓGICO Simplif icado Sérgio Carvalho Weber Campos RACIOCÍNIO LÓGICO Simplif icado Volume 21 2ª edição Revista, atualizada e ampliada Inclui Gráficos, tabelas e outros elementos visuais para melhor aprendizado Exercícios resolvidos

Leia mais

Aula 8 Segmentos Proporcionais

Aula 8 Segmentos Proporcionais MODULO 1 - UL 8 ula 8 Segmentos Proporcionais Nas aulas anteriores, aprendemos uma formação geométrica básica, através da Geometria Plana de Posição. prendemos que: 1. soma das medidas dos ângulos internos

Leia mais

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações 1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)

Leia mais

Caderno 1. Teste Intermédio Matemática. 2.º Ano de Escolaridade. Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05.

Caderno 1. Teste Intermédio Matemática. 2.º Ano de Escolaridade. Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05. Teste Intermédio Matemática 2.º Ano de Escolaridade Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05.2014 Nome do aluno: Assinatura do professor: Assinatura do encarregado

Leia mais

Prof Alexandre Assis profalexandreassis@hotmail.com

Prof Alexandre Assis profalexandreassis@hotmail.com 1 1. Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado 4 cm e altura 20Ë3 cm, com 2/3 de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando

Leia mais

Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.

Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim PLANO DE AULA I Escrito por Eliani Pereira de Souza Nascimento Funções no Geogebra 1 º Série do Ensino Médio (Matemática) Compreender a construção do gráfico de funções de 1o - grau, sabendo caracterizar

Leia mais

Módulo 2 Geometrias Plana e Espacial

Módulo 2 Geometrias Plana e Espacial 1. Geometria Plana Módulo 2 Geometrias Plana e Espacial Os conceitos da geometria são muito utilizados na área de logística, principalmente nas medidas das dimensões dos volumes; nos cálculos do espaço

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

Processo Seletivo 2016. Conteúdo Programático - 1º ano do Ensino Fundamental

Processo Seletivo 2016. Conteúdo Programático - 1º ano do Ensino Fundamental Conteúdo Programático - 1º ano do Ensino Fundamental Avaliação do Desenvolvimento e Desempenho da Criança nos aspectos cognitivo, afetivo, socialização e psicomotor, através de atividades compatíveis com

Leia mais