2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

Tamanho: px
Começar a partir da página:

Download "2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;"

Transcrição

1 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada e ão crescete; (e) ão limitada e ão moótoa. 2.2 Esboce o grá co da seqüêcia de termo geral a = e veri que quatos potos da + 1 forma (; a ) estão fora da faixa horizotal determiada pelas retas y = 4=5 e y = 6=5: 2.3 Dê exemplo de uma seqüêcia limitada e ão moótoa que possui uma subseqüêcia estritamete crescete. 2.4 Expresse pelo seu termo geral cada seqüêcia dada abaixo. (a) 1; 1=2; 1=3; 1=4; (c) 1; 0; 1; 0; 1; (e) 1; 9; 25; 49; 81; (b) 1=2; 1=4; 1=8; 1=16; (d) 0; 2; 0; 2; 0; 2; 0; (f) 1; 3=2; 2; 5=2; 3; (g) 2; 1; 3=2; 1; 4=3; 1; (h) 0; 3=2; 2=3; 5=4; 4=5; (i) 0; 3; 2; 5; 4; (j) 1; 10; 2; 10 2 ; 3; 10 3 ; 2.5 Classi que as seqüêcias do Exercício 2.4 quato a limitação e mootoia e selecioe de cada uma delas uma subseqüêcia moótoa. Qual daquelas seqüêcias possui um subseqüêcia costate? 2.6 Determie o sup e o if das seguites seqüêcias: ; ; ; 1 ; fl g ;! ; f( 2) g : 2.7 Para que uma seqüêcia possua uma subseqüêcia costate é ecessário e su ciete que algum termo da seqüêcia se repita uma i idade de vezes.

2 20 ANÁLISE NA RETA MARIVALDO P MATOS Nos Exercícios 2.8 a 2.13 use o Método de Idução Fiita para demostrar as seteças. 2.8 Se 1 < 2 < 3 < são úmeros aturais, mostre que j j, 8j 2 N: 2.9 Mostre que : : : (2 1) : : : (2) 1 ; 8 2 N Uma seqüêcia fb g é de ida por: b 1 = 1 e b = 1 2 b 1 ; 2: Mostre que b = ( 1)! : 2.11 Cosidere a seqüêcia de Fiboacci: a 1 = 1; a 2 = 1 e a = a 1 + a 2 ; para 2. Mostre que a = 1 h 2 p 1 + p Mostre que (1 + x) 1 + x + 1 p 5 i : ( 1) x2 ; x 0; 8 2 N Se a 1 ; a 2 ; a 3 ; : : : ; a são úmeros reais, demostre que as seguites relações são válidas: ja 1 + a 2 + a a j ja 1 j + ja 2 j + ja 3 j + + ja j ja 1 + a 2 + a a j ja 1 j ja 2 j ja 3 j ja j 2.14 Verdadeiro (V) ou Falso (F). Justi car as a rmações falsas com um cotra-exemplo. ( ) toda seqüêcia covergete é limitada; ( ) toda seqüêcia limitada é covergete; ( ) toda seqüêcia limitada é moótoa; ( ) toda seqüêcia moótoa é covergete; ( ) a soma de duas seqüêcias divergetes é divergete; ( ) toda seqüêcia divergete é ão moótoa; ( ) se uma seqüêcia covergete possui uma i idade de termos ulos, seu limite é zero; ( ) toda seqüêcia divergete é ão limitada; ( ) se uma seqüêcia possui uma subseqüêcia covergete, ela própria coverge; ( ) toda seqüêcia alterada é divergete; ( ) toda seqüêcia decrescete limitada é covergete e seu limite é zero;

3 SEQUÊNCIAS E SÉRIES NUMÉRICAS VERÃO lim y : ( ) se uma seqüêcia fa g diverge, etão fja jg também diverge; ( ) se ja +1 a j! 0; etão a seqüêcia fa g coverge; ( ) se a seqüêcia fja jg coverge etão fa g também coverge; ( ) se a seqüêcia fja jg coverge para zero, etão fa g também coverge para zero; ( ) se a b ; 8; fa g crescete e fb g covergete, etão fa g coverge; ( ) se fa g é covergete, etão f( 1) a g também coverge; ( ) a seqüêcia fa g de ida por a 1 = 1 e a +1 = a + 1 é covergete; ( ) a seqüêcia fa g de ida por a 1 = 1 e a +1 = 1 a é covergete; ( ) se a 6= 0; 8; e lim a +1!1 a = l < 1, etão lim a = 0;!1 ( ) a seqüêcia a = ( 1) cos 2 + possui uma subseqüêcia covergete; ( ) se a série P a é covergete, etão as séries P a 2 e P a 2 1 também covergem; ( ) se as séries P a 2 e P b 2 são covergetes, etão P a b também coverge; ( ) se a série P a 2 é covergete, etão P a = também coverge; ( ) se a série P a é covergete e a > 0; 8; etão P a 2 e P a = (1 + a ) covergem; ( ) se fx g e fy g são covergetes e x y ; a partir de um certo ídice, etão lim x 2.15 Em cada caso, e quado possível, costrua seqüêcias fa g ; fb g e fc g em R tais que a! 1; b! 1; c! 0 e que veri quem: (a) a + b! 1 (b) a + b! 1 (c) a + c! 1 (c) a c! 0 (d) a c! 1: 2.16 Usado a de ição de limite, prove que: (a) lim!1 2 1 = (d) lim! = 1 3 se 5 + (b) lim = 0 (c) lim!1!1 (e) lim!1 5 = 0 (f) lim 2 + 3! = = 2: 2.17 Calcule o limite de cada seqüêcia dada abaixo pelo seu termo geral.

4 22 ANÁLISE NA RETA MARIVALDO P MATOS (a) (e) (i) 3p p (m) p (b) se (f) (j) (c) l e (g) e (k) 1 (d) (h) (l) p! + e 2 5 p! e p () p 2 + (o) 2 e (p) p a; a > Em cada caso abaixo veri que se a seqüêcia dada pelo seu termo geral é covergete ou divergete. (a) p (d) (e) (g) 2 + ( 1) (j) 2 p (b) 1 p (h) (k) p (c) 2! (f) ( 1) ::: (2 1)!2 (i)!! ::: (2 1) (l) 2 l ( + 1) (m) se () () 8p p + 1 (o) 1 + ( 1) 2.19 Prove que lim!1 (3 + 4 ) 1= = 4. Geeralização: lim!1 (a + b ) 1= = max fa; bg : 2.20 Se jrj < 1, mostre que lim!1 r = 0: Se r > 1, mostre que lim!1 r = 1: E se r < 1? 2.21 Se 0 < a < 2, mostre que a < p 2a < 2. Usado este fato prove que a seqüêcia q p 2; 2 p r q 2; 2 2 p 2; ::: é moótoa limitada e portato covergete. Calcule seu limite Seja fb g é uma seqüêcia covergete, com b 6= 0; 8; e lim!1 b 6= 0: A partir da de ição de limite, mostre que a seqüêcia f1=b g é limitada Mostre que lim hse(!1 2 2 ) se( 3 2 ) se( 4 2 ) : : : se( i 2 ) = 0: 2.24 Cosidere a seqüêcia cujos termos são de idos pela recorrêcia: a 1 = 5 e a +1 = p a : Estes termos podem ser gerados em uma calculadora, itroduzido-se o úmero 5 e pressioado-se a tecla p x.

5 SEQUÊNCIAS E SÉRIES NUMÉRICAS VERÃO (a) descreva o comportameto de fa g quado aumeta; (b) se coveça que a = 5 1=2 e calcule lim!1 a : 2.25 Em uma calculadora uma seqüêcia é gerada itroduzido-se um úmero e pressioadose a tecla 1=x. Em que codições a seqüêcia tem limite? 2.26 Seja fx g uma seqüêcia com a seguite propriedade: existe um úmero atural p tal que x +p = x ; 8: Costrua uma sequêcia divergete com esta propriedade e mostre que a úica seqüêcia covergete com esta propriedade é a seqüêcia costate. (sug. x +kp = x ; 8k 2 N) 2.27 Recorde-se que um úmero real x é valor de aderêcia de uma seqüêcia (x ) quado alguma subseqüêcia de (x ) covergir para x: Determie uma seqüêcia cujo cojuto de valores de aderêcia é: (a) A = f1; 2; 3; 4g (b) A = N (c) A = [0; 1] : 2.28 Sejam a : 1; 1; 1; 1; 1; 1; 1; 1; : : : e b : 1; 2; 1; 2; 3; 1; 2; 3; 4; 1; 2; 3; 4; 5; : : :. Determie: (a) Todas as subsequêcias de (a ) e (b ) covergetes; (b) Todos os valores de aderêcia de (a ) e (b ) : x < y : 2.29 Se lim x = a e lim y = b; com a < b; prove que existe um 0 2 N a partir do qual 2.30 Supoha que um úmero real a ão é limite de uma seqüêcia limitada fx g. Mostre que a seqüêcia fx g possui uma subseqüêcia covergete com limite 6= a: 2.30 De a a seqüêcia fx g por: x 2 = 1= e x 2 1 = p : Quatos valores de aderêcia a seqüêcia fx g possui? Ela é covergete? 2.32 Se lim x = a; prove que: lim!1 x 1 + x x = a: 2.33 Se X R é um subcojuto ão vazio, mostre que a 2 X 0 se, e somete se, existe em X fag uma seqüêcia com limite a:

6 24 ANÁLISE NA RETA MARIVALDO P MATOS 2.34 Cosidere duas seqüêcias fx g e fy g, sedo fx g covergete. Se para cada " > 0 existir uma úmero N tal que jx seqüêcia fy g? y j < "; 8 N; o que se pode dizer sobre a covergêcia da 2.35 De a por recorrêcia uma seqüêcia fx g da seguite maeira: xe x 1 > 1 e para 1 de a x +1 = 2 1=x : Mostre que a seqüêcia fx g é covergete e calcule o seu limite Repita o exercício precedete com a seqüêcia: y 1 = 1 e y +1 = p 2 + y ; para 1: 2.1 Limite superior & Limite iferior 2.37 Seja fx g uma seqüêcia limitada e para cada 2 N sejam S = sup fx k ; k g e s = if fx k ; k g : Veri que que as seqüêcias fs g e fs g são covergetes e que fx g coverge se, e somete se, lim S = lim s : O úmero real lim S é deomiado limite superior da seqüêcia fx g e aota-se lim sup x ou limx : O úmero real lim s é deomiado limite iferior da seqüêcia fx g e aota-se lim if x ou limx : Da de ição segue diretamete que: lim sup x = if sup fx k g e lim if x = sup if fx kg : k k 2.38 Estabeleça as seguites propriedades para o lim sup e lim if. (a) lim if x lim sup x ; (b) se c 0, etão lim sup (c x ) = c lim sup x e lim if (c x ) = c lim if x ; (c) se c 0, etão lim if (c x ) = c lim sup x e lim sup (c x ) = c lim if x ; (d) lim if x + lim if y lim if (x + y ) ; (e) lim sup (x + y ) lim sup x + lim sup y ; (f) se x y ; 8; etão lim if x lim if y e lim sup x lim sup y : 2.39 Com relação a uma seqüêcia limitada fx g ; mostre que as seguites a rmações são equivaletes: (a) x = lim sup x ; (b) se " > 0; existe apeas uma quatidade ita de úmeros aturais tais que x + " < x ; mas existe uma quatidade i ita de ídices tais que x " < x ;

7 SEQUÊNCIAS E SÉRIES NUMÉRICAS VERÃO (c) x = if X; ode X é o cojuto dos úmeros reais tais que < x ; para o máximo uma quatidade ita de termos x Estabeleça um resultado aálogo ao exercício precedete para o lim if : lim if : 2.41 As seqüêcias abaixo são divergetes. Por quê? Em cada caso, calcule o lim sup e o (a) a = ( 1) (b) b = 1 + ( 1) (c) c = ( 1) + 1=: 2.42 Se fx g é uma seqüêcia limitada, prove que alguma subseqüêcia de fx g coverge para lim sup x. Idem para lim if x : Isso estabelece o seguite resultado devido a Bolzao-Weierstrass: Toda seqüêcia limitada de úmeros reais possui uma subseqüêcia covergete. 0 : 2.43 Mostre que toda seqüêcia de Cauchy em Z permaece costate a partir de certo ídice 2.44 Se 0 < r < 1 e uma seqüêcia fx g satisfaz à relação jx +1 x j < r ; 8 2 N, mostre que fx g é de Cauchy Usado a de ição, mostre que as seqüêcias x = ( + 1) = e y = 1 + 1=2! + 1=3! + 1=! são de Cauchy Dizemos que fx g tede para +1; e escrevemos x! +1 ou lim x = +1; se para cada 2 R existir um úmero atural N () tal que x ; para qualquer ídice N (). Dizemos que fy g tede para 1; e escrevemos y! 1 ou lim y = 1; se para cada 2 R existir um úmero atural N () tal que y ; para qualquer ídice N (). Sejam fx g e fy g seqüêcias em R + tais que lim (x =y ) = L > 0: Mostre que: lim x = +1, lim y = +1: 2.47 Sejam fx g e fy g seqüêcias em R + tais que lim (x =y ) = 0: Mostre que: (a) se x! +1, etão y! +1 (b) se fy g é limitada, etão lim x = 0: 2.48 Sejam t 0 ; t 1 ; : : : ; t p úmeros reais tais que t 0 + t 1 + : : : + t p = 0. Mostre que a seqüêcia (a ) de ida por a = P p k=0 t kp + k coverge para zero.

8 26 ANÁLISE NA RETA MARIVALDO P MATOS 2.49 Mostre que o cojuto costituído por uma seqüêcia covergete jutamete com o seu limite é compacto Se uma seqüêcia moótoa possui uma subseqüêcia covergete, prove que a seqüêcia é, ela própria, covergete. O mesmo ocorre com uma seqüêcia de Cauchy Mostre que a seqüêcia a = é covergete. P 2.52 Se a > 0; 8, mostre que a série 1 a é covergete se, e somete se, a série P a =1 1 + a o for Seqüêcias de quadrado somável. Seja l 2 = fx = fx g; P 1 =1 x2 < 1g: (a) Dados x; y 2 l 2 e 2 R, mostre que x + y 2 l 2 ; (b) Mostre que a fução ' : l 2! R + de ida por: ' (x) = P 1 =1 x2 1=2 ; x = fx g 2 l 2 ; goza das seguites propriedades: (i) ' (x) 0; 8~x e que ' (x) = 0, x = 0; (ii) ' (x) = jj ' (x) ; 8 (; x) 2 R l 2 ; (iii) ' (x + y) ' (y) + ' (y) ; 8x; y 2 l 2 :

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n:

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n: . SEQUÊNCIAS NUMÉRICAS SÉRIES & EDO - 207.2.. :::: ::::::::::::::::::::::::::::::::::::::: TERMO GERAL & CLASSIFICAÇÃO. Em cada caso abaixo, ecotre os quatro rimeiros termos da sequêcia: (a) a = 2 (b)

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares..A Dê exemlo de uma sequêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada e decrescete

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

an converge. a n converge.

an converge. a n converge. 2. SÉRIES NUMÉRICAS SÉRIES & EDO - 207.2 2.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se lim a = 0, etão a coverge.! (b) Se a diverge, etão lim

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL Grade parte do poder de fuções geratrizes vêm de composição delas! Observação. Sejam F (x) = 0 G(x) = 0 f x g x duas séries formais. A composição

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

(a) Calcule, justicando, o limite das seguintes sequências: = 1. x n = (n 1 n ) limn. x x 2 = lim. 2x = lim. 2n n

(a) Calcule, justicando, o limite das seguintes sequências: = 1. x n = (n 1 n ) limn. x x 2 = lim. 2x = lim. 2n n Turma A Questão : (3,5 potos) Istituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferecial e Itegral IV para Egeharia a. Prova - 2o. Semestre 23-9/9/23 (a) Calcule, justicado, o ite das seguites

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

Exercícios Complementares 2.2

Exercícios Complementares 2.2 Exercícios Complemetares 2.2 2.2A O que sigi ca uma série a ser divergete? 2.2B Falso ou Verdadeiro? Justi que. (a) se lim a = 0, etão a coverge;! (b) se a diverge, etão lim a 6= 0;! (c) se a coverge e

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018 Lista de Exercícios de Cálculo Módulo - Primeira Lista - 0/08. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 6 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 6 000 } { 4

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017 Lista de Exercícios de Cálculo 2 Módulo - Primeira Lista - 0/207. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 000 2 } { 4

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

Definição 1: Sequência é uma lista infinita de números reais ordenados.

Definição 1: Sequência é uma lista infinita de números reais ordenados. Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Istituto Uiversitário de Lisboa Departameto de Matemática Exercícios de Sucessões e Séries Exercícios: sucessões. Estude quato à mootoia cada uma das seguites sucessões. (a) (g) + (b) + + + 4 (c) + (h)

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 5 de Cálculo Diferencial e Integral II Sequências e Séries

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 5 de Cálculo Diferencial e Integral II Sequências e Séries Cetro de Ciêcias Tecológicas - CCT - Joiville Departameto de Matemática Lista 5 de Cálculo Diferecial e Itegral II Sequêcias e Séries. Determie os quatro primeiros termos de cada uma das sequêcias dadas

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente 650M MCÁLCULO 7-6 Determie se a sequêcia coverge ou diverge. Se ela covergir, ecotre o limite. 7. a (0,) 8. a 5 9. a 0. a. a e /. a. a tg ( ) p. a () 5. a 6. a 7. a cos(/) 8. a cos(/) ( )! 9. a ( )! 0.

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

MATEMÁTICA A PREPARAR O EXAME. 12.º ano Ensino Secundário Ana Martins Helena Salomé Liliana dos Prazeres Silva José Carlos da Silva Pereira

MATEMÁTICA A PREPARAR O EXAME. 12.º ano Ensino Secundário Ana Martins Helena Salomé Liliana dos Prazeres Silva José Carlos da Silva Pereira MATEMÁTICA A PREPARAR O EXAME 12.º ao Esio Secudário Aa Martis Helea Salomé Liliaa dos Prazeres Silva José Carlos da Silva Pereira 4 ÍNDICE CAPÍTULO I CONTEÚDOS DE 10.º E 11.º ANOS LÓGICA E TEORIA DOS

Leia mais

(def) (def) (T é contração) (T é contração)

(def) (def) (T é contração) (T é contração) CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,

Leia mais

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: adilsobassa@adilsobassa.com JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb) Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV Escola Politécnica - 1 a Prova - 30/08/2010 Gabarito - Prova Tipo A.

MAT Cálculo Diferencial e Integral para Engenharia IV Escola Politécnica - 1 a Prova - 30/08/2010 Gabarito - Prova Tipo A. MAT2456 - Cálculo Diferecial e Itegral para Egeharia IV Escola Politécica - 1 a Prova - 30/08/2010 Gabarito - Prova Tipo A 1 a Questão: Determie se cada uma das sequêcias {a } IN abaixo coverge e, em caso

Leia mais

de n lados, respectivamente, inscritos e circunscritos a uma circunferência de diâmetro 1, mostre que para n>

de n lados, respectivamente, inscritos e circunscritos a uma circunferência de diâmetro 1, mostre que para n> ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa º 5 do plao de trabalho º Sucessões Covergetes Arquimedes e valores aproximados de π Arquimedes, matemático da atiguidade

Leia mais

Os testes da Comparação, Raiz e Razão e Convergência absoluta

Os testes da Comparação, Raiz e Razão e Convergência absoluta Os testes da Comparação, Raiz e Razão e Covergêcia absoluta Prof. Flávia Simões AULA 4 Os testes de Comparação Comparar uma série dada com uma que já sabemos se coverge ou diverge. Usamos geralmete as

Leia mais

I 01. Sequência Numérica. para a qual denotamos o valor de x em n por x n em vez de x ( n ).

I 01. Sequência Numérica. para a qual denotamos o valor de x em n por x n em vez de x ( n ). IME ITA Apostila ITA I 0 Sequêcia Numérica Defiição 4..: Uma sequêcia de úmeros reais é uma fução x : para a qual deotamos o valor de x em por x em vez de x ( ). Geralmete usamos a otação ( x ). Às vezes

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM123 - Cálculo Diferencial e Integral II Lista 3 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM123 - Cálculo Diferencial e Integral II Lista 3 - Tiago de Oliveira Uiversidade Federal de Ouro Preto Departameto de Matemática MTM - Cálculo Diferecial e Itegral II Lista - Tiago de Oliveira. Ecotre uma fórmula para a -ésima soma parcial de cada série e use-a para ecotrar

Leia mais

Equivalência de capitais a juros compostos

Equivalência de capitais a juros compostos Comercial e Fiaceira Equivalêcia de capitais a juros compostos Dois capitais são equivaletes se comparados em uma mesma data, descotados ou capitalizados por uma mesma taxa de juros produzem um mesmo valor

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Notas de Aula do Curso ET584: Probabilidade 4

Notas de Aula do Curso ET584: Probabilidade 4 Notas de Aula do Curso ET584: Probabilidade 4 Leadro Chaves Rêgo, Ph.D. 2010.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográcas tedo em vista o coteúdo

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

1 Resoluções dos exercícios de SÉRIES propostos nocaderno1

1 Resoluções dos exercícios de SÉRIES propostos nocaderno1 Resoluções dos exercícios de SÉRIES propostos ocadero. Dadoque = /,asérieumérica =+ + + + + = 5 / éumasériededirichletcomα=/,logoédivergete.. A série umérica = + 4 + 8 + 6 + + 04 + é uma série geométrica

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA SEQÜENCIAS E SÉRIES NUMÉRICAS Cláudio Martis Medes Primeiro Semestre de 2006 Sumário Seqüêcias e Séries Numéricas 2. Seqüêcias Numéricas............................... 2.2 Séries Numéricas..................................

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

Capitulo 10 Resolução de Exercícios

Capitulo 10 Resolução de Exercícios FORMULÁRIO Ivestimetos com Cláusulas de Correção Moetária, com pricipal e juros simples corrigidos S C i I Ivestimetos com Cláusulas de Correção Moetária, com apeas o pricipal corrigido e juros simples.

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8.

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8. MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de 6 - a Lista de exercícios. Obter uma expressão das somas das séries abaixo e os respectivos raios de covergêcia, usado derivação e itegração

Leia mais