Modelação com Variáveis Discretas

Tamanho: px
Começar a partir da página:

Download "Modelação com Variáveis Discretas"

Transcrição

1 Engenhara de Processos e Sstemas Modelação com Varáves Dscretas Fernando Bernardo Fev 2011 mn f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L x real y {0,1}) U Leque de aplcações. Tpos de problemas: Escolha múltpla, decsões dscretas, condções lógcas, síntese de processos. Modelação de condções lógcas Exemplos város. 1

2 Optmzação dscreta. Aplcações váras Localzação das almentações e produtos lateras de uma coluna de destlação Dmensões dscretas de equpamentos Nº de reactores em paralelo, eventualmente de dmensão gual, fxa ou não Estrutura do dagrama de fabrco e opções de equpamento alternatvo Problemas de formulação (e.g. no máxmo 10 ngredentes, 3 dos quas préespecfcados) Selecção de grupos funconas numa molécula Planear/calendarzar a produção. O que produzr e quando, face a prevsões na curva de procura. Comprar produtos ntermédos ou produz-los a partr de percursores? Expandr capacdade? s/n?) max f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L U x real y ntero (habtualmente, y {0,1}) 2

3 Modelação de problemas Nesta aula vamos preocupar-nos em como formular os problemas, envolvendo decsões dscretas e não em como resolvê-los (enumeração explícta, branch and bound ; aula anteror) De um ponto de vsta mas geral, o modelo ou formulação do problema envolve: - análse prelmnar do problema - representação do problema (dagrama de blocos, rede, representação de alternatvas) - dentfcação de graus de lberdade (varáves de decsão) - defnção da função objectvo - modelação de restrções - modelação de condções lógcas - Submodelos ncorporados (balanços, dmensonamento, estmatva de custos, ) 3

4 Modelação de problemas Formulação geral: mn f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L x real y {0,1}) U f escalar x, y vectores h e g vectores MILP: Mxed-nteger lnear programmng, se f convexa, h e g lneares em x e y MINLP: Mxed-nteger non-lnear programmng Óptmo global se f convexa, h lnear e g <=0 regão convexa 4

5 Um prmero exemplo Problema de formulação: mnmzar o custo de uma formulação, sujeto a um desempenho mínmo. a) Sem lmtação no número de ngredentes b) Lmtando o número de ngredentes a N x fracção mássca do componente V valor nutrtvo (U/kg) C custo (EUR/kg) Avea, trgo, mlho amêndoas, etc Cereas de pequenoalmoço Nível nutrtvo 5

6 Custo= Valor= x C x V Um prmero exemplo Sem lmtação no número de ngredentes mn x s. t. x V V x C x = 1 0 x 1 mn 6

7 E agora lmtando o número de ngredentes a N: Um prmero exemplo Varáves bnáras y: y = 1, se o componente está presente na formulação y = 0, caso contráro mn x s. t. x y V V = 1 0 x 1 x y C x y mn Será esta uma formulação razoável? 7

8 Um prmero exemplo Devemos evtar termos não-lneares, neste caso do tpo x*y Isso é possível se consegurmos modelar a condção lógca y = 0 x = 0 Restrção do tpo bg-m : x My (1), sendo M um lmte superor para x, neste caso M=1 Tem-se também a restrção: 0 x M = 1 (2) Então, se y=1, (1) resulta em x <= M, o que é elemento neutro na formulação Se y=0, tem-se x <= 0, o q em conjunto com (2), resulta em x=0, tal como desejado 8

9 Um prmero exemplo (na aula, este slde estava em falta) A formulação adequada é então: mn x s. t. x V V x = 1 mn My, neste caso M = 1 0 x 1 x C x y mn x s. t. x y V V = 1 0 x 1 x y C x y MINLP mn MILP Óptmo global 9

10 Arte e Cênca Por agora, sto parece mas arte do que cênca. Vamos agora abordar alguns tpos de problemas e depos apresentar uma teora geral para a modelação de condções lógcas. Escolha múltpla - Selecconar um só tem: y = - Selecconar no máxmo N tens: 1 - Selecconar pelo menos duas opções de entre 3: y1 + y2+ y3 2 y - Selecconar ou a opção A ou a opção B (e não as duas): y A + y = 1 B 10

11 Decsões dscretas Bnáras: componente presente ou não na formulação; basta defnr varável y Optmzar o volume de um reactor de entre 5 dmensões específcas possíves: V = V y, y = 1 (trata-se no fundo de uma escolha múltpla) Coluna com N pratos entre 5 e , ' = 5 5 u= 45, 2 =32, r= 5 Então : ' = y + 2y + 4y + 8y + 16y + 32y Temos pos 6 varáves bnáras Representação bnára de nteros: 0 γ u, γ, u N { } γ = y + 2y + 4 y y, y 0,1 r onde 2 é a menor potênca de 2, r onde 2 é a maor potênca de 2, (errado, na aula) r r u u

12 Nota sobre conversão de ntero a bnáro Por exemplo: = Então: Em geral, é melhor usar o algortmo da dvsão ntera por 2 45 a dvdr por 2 dá 22 e resto 1 22 a dvdr por 2 dá 11 e resto 0 11 a dvdr por 2 dá 5 e resto 1 5 a dvdr por 2 dá 2 e resto 1 2 a dvdr por 2 dá 1 e resto 0 1 a dvdr por 2 dá 0 e resto 1 Então: (de baxo para cma) Ou seja: = Compreende-se agora melhor como representa todos os nteros entre 0 e 45. ' = y + 2y + 4y + 8y + 16y + 32y

13 Implcação lógca Se y=0, então função contínua assocada f(x)=0 (e.g.: exstênca de corrente e o seu caudal): f ( x) U y 0, f ( x) [0; U ] f f (restrção do tpo bg-m) Evta-se assm termos não-lneares do tpo F x y, F caudal. Exemplo: função custo, C = CF + CV*x, CF custo fxo, CV custo varável Se reactor selecconado com caudal x, então C = CF + CV*x Mas se reactor não selecconado, C = 0 y codfca a selecção do reactor Modelação não-lnear (ndesejável): C= ( C + C x) y Modelo lnear, com modelação de condção lógca: C= C y+ C x F V ( y= 0 x= 0) x U y 0 x F V CF C 13 x

14 Síntese de processos químcos A optmzação dscreta é um método sstemátco de explorar dferentes possbldades processuas Defne-se uma super-estrutura do processo, que codfca as váras alternatvas Formula-se um problema com varáves bnáras que seleccona a melhor alternatva (a menos de óptmos locas) 14

15 Exemplo 1 15

16 y= 0 x= 0 16

17 Exemplo 2: super-estrutura de separação Sstema de separação flash e/ou coluna com ou sem bypass s S 2 S 1 Varáves bnáras: yf flash exste yc coluna exste S 3 S 4 17

18 Exemplo 2: super-estrutura de separação S 2 S 1 S 3 S 4 18

19 Exemplo 2: super-estrutura de separação Se yf = 0, então S1 = 0 0 S1 yf S 2 S 1 Se yc = 0, então S4 = 0 0 S4 yc S 3 S 4 Se coluna exste então tem dâmetro entre 2.2 e 5.5 Se não exste, dâmetro é nulo e o respectvo custo também 2.2yC D 5.5yC C 19

20 Excerto do fchero GAMS S 2 S 1 S 3 S 4 20

21 S 2 S 1 S S 3 4 Conjunto de soluções para xamn e xbmn crescentes xamn xbmn Proft DC DF S2 S3 xa xb UNF Unfeasble 21

22 Método geral (apenas varáves bnáras y) - Condções lógcas smples têm tradução matemátca Modelação de condções lógcas Relação lógca Expressão lógca Restrção lnear equvalente OR P 1 P 2 y 1 + y 2 1 A D P 1 P 2 y 1 1, y 2 1 Implcação P 1 P 2 ~ P 1 P 2 1 y 1 + y 2 1 Equvalênca P 1 P 2 y 1 = y 2 OR (exclusvo) P 1 ɺ P 2 y 1 + y 2 = 1 - Condções lógcas compostas podem ser reduzdas à forma conjuntva normal, aplcando equvalêncas lógcas. A forma conjuntva normal corresponde depos a um sstema de restrções lneares. ( P P...) ( P P...) y y + y y

23 Método geral (apenas varáves bnáras y) Modelação de condções lógcas - Exemplo: Se produzmos A então pelo menos um dos produtos B, C e D tb. devem ser produzdos. Como traduzr matematcamente? P ( P P P ) A B C D ~ P ( P P P ) A B C D 1 y + y + y + y 1 A B C D 23

24 Modelação de condções lógcas Exemplo. Consdere a segunte condção lógca na síntese de um processo de separação: se a coluna de absorção para recuperar o produto é escolhda ou o separador de membrana é escolhdo, então não usar separação crogénca. Proposções: P A = selecconar absorção; P M = selecconar membrana; P C = selecconar separador crogénco Condção lógca: P A P M ~ P C Redução à forma conjuntva P 1 P 2 P 3... ~ (P A P M ) ~ P C (~ P A ~ P M ) ~ P C (~ P A ~ P C ) (~ P M ~ P C ) Modelo: 1 y A + 1 y C 1 y A + y C 1 1 y M + 1 y C 1 y M + y C 1 24

25 Modelação de condções lógcas Método geral (lgação varáves dscretas/varáves contínuas Como conclar esta teora com varáves e restrções contínuas? A base está em assocar uma varável bnára y à verfcação da restrção contínua f(x) <=0. Caso 1: y = 1 f ( x) 0 Restrção correspondente: f ( x) U (1 y) f (restrção do tpo bg-m) Caso 2 (nverso): f ( x) 0 y= 1 Podemos usar a lógca para deduzr a restrção para este caso ( A B) (~ B ~ A) Então ( f ( x) 0 y= 1) é equvalente a ( y= 0 f ( x) > 0) Faz-se f ( x) ε, ε pequeno f ( x) ε f ( x) + ε 0 Então: y= 0 f ( x) + ε 0 E a restrção correspondente é: f ( x) + ε U y f ( x) L y+ ε f f 25

26 Caso 1: y = 1 f ( x) 0 f ( x) U (1 y) f Caso 3: y = 1 g( x) 0 Pode converter-se no caso 1 y= 1 g( x) 0 E a restrção correspondente é: g( x) U (1 y) g( x) L (1 y) g g Caso 4: g( x) 0 y= 1 Análogo ao caso 2: g( x) 0 y= 1 E a restrção correspondente é: g( x) + ε U y g( x) U y ε g g 26

27 Caso 5: y= 1 h( x) = 0 h( x) = 0 h( x) 0 h( x) 0 Logo: h( x) U (1 y ) h( x) L (1 y ) h 1 h 2 27

28 Exemplo Se reactor 1 escolhdo, então pressão entre 5 e 10 bar Se reactor 2 escolhdo, então pressão entre 20 e 30 bar Escolha exclusva de um dos dos reactores y + y = Caso 1: y = 1 f ( x) 0 f ( x) U (1 y) f y = 1 P 10 P P 10 U (1 y ) P + 5 U (1 y ) 1 P1 1 1 P1 1 y = 1 P 10 P P 30 U (1 y ) P + 20 U (1 y ) 2 P2 2 2 P2 2 De forma mas smples: 5y P 10y y P 30y Mas aqu P = 0 se y=0, o que pode ser uma lmtação 28

29 Problema 12 de Wllams Uma empresa compra 5 óleos (VEG1, VEG2, OIL1, OIL2 e OIL3), refna-os e vende msturas deles. Custo actual dos óleos: 110, 120, 130, 110, 115 (EUR/ton) Preço de venda da mstura: 150 EUR/ton Lmtes na refnação: 200 ton/mês (VEG) e 250 ton/mês (OIL) Dureza fnal da mstura entre 3 e 6; durezas ndvduas: 8.8; 6.1; 2.0; 4.2; 5.0 Parte 1. Qual a polítca de compras e produção para maxmzar o lucro? Custo dos óleos no momento presente, mês de Jan. LP, um só período (stuação actual de custos) Varante semelhante a 1, mas face a dferentes cenáros de custo no futuro (de Fev a Jun). Em cada mês, dstngue-se qtd comprada, armazenada e processada LP, mult-período 29

30 Problema 12 de Wllams Uma empresa compra 5 óleos (VEG1, VEG2, OIL1, OIL2 e OIL3), refna-os e vende msturas deles. Custo actual dos óleos: 110, 120, 130, 110, 115 (EUR/ton) Preço de venda da mstura: 150 EUR/ton Lmtes na refnação: 200 ton/mês (VEG) e 250 ton/mês (OIL) Dureza fnal da mstura entre 3 e 6; durezas ndvduas: 8.8; 6.1; 2.0; 4.2; 5.0 LP, um só perído: max Lucro= 150 z (110 x + 120x + 130x + 110x x ) x, z s. t. z=x + x + x + x + x x1+ x2 200 x3+ x4+ x (8.8x x x x x5 ) 6 z 3z 8.8x x x x x5 8.8x x x x x5 6z 30

31 Parte 2. Adconar restrções (1) a mstura não pode conter mas do que três óleos (2) Se um óleo é usado, a quantdade mínma é de 20 ton (3) Se VEG1 ou VEG2 são usados então OIL3 tem também de ser usado VEG1, VEG2, OIL1, OIL2 e OIL3 y1, y2, y3, y4, y5 (1) (2) (3) y1 + y2+ y3+ y4+ y5 3 x 20y ( Y1 Y 2) Y5 ~ ( Y1 Y 2) Y5 (~ Y1 ~ Y 2) Y5 (~ Y1 Y5) (~ Y 2 Y5) 1 y + y 1 1 y + y

32 Conclusões A modelação e optmzação com nteros tem um vasto leque de aplcações, onde quer que estejam envolvdos cenáros alternatvos, varáves dscretas e/ou mposção de condções lógcas Uma das aplcações relevantes é ao problema de síntese de processos químcos, defnndo-se uma super-estrutura que codfca múltplas alternatvas processuas É possível modelar pratcamente qualquer condção lógca, podendo assm ncorporar-se na formulação do problema todo o tpo de nteracções e cenáros ou mesmo regras heurístcas 32

Modelação com variáveis discretas

Modelação com variáveis discretas Engenhara de Processos e Sstemas Modelação com varáves dscretas Fernando Bernardo Fev 2012 mn f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L x real y {0,1}) U Aplcações váras de optmzação

Leia mais

Modelação com variáveis discretas

Modelação com variáveis discretas Engenhara de Processos e Sstemas Modelação com varáves dscretas Fernando Bernardo Fev 2014 P1 P2 ~ P1 P2 Alguns casos partculares: mplcação lógca de lgação entre varáves dscretas e varáves contínuas; escolha

Leia mais

Optimização com variáveis discretas

Optimização com variáveis discretas Engenhara de Processos e Sstemas Optmzação com varáves dscretas Fernando Bernardo Fev 2013 mn f ( x,, θ ) x, s. t. h( x,, θ ) = 0 g( x,, θ ) 0 x x x L U x real, {0,1} Por que necesstamos de varáves dscretas?

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot) Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 2.1 Olgopólo em Quantdades (Cournot) Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO II 1 2.1 Olgopólo em Quantdades

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

5 Implementação Procedimento de segmentação

5 Implementação Procedimento de segmentação 5 Implementação O capítulo segunte apresenta uma batera de expermentos prátcos realzados com o objetvo de valdar o método proposto neste trabalho. O método envolve, contudo, alguns passos que podem ser

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

2ª Atividade Formativa UC ECS

2ª Atividade Formativa UC ECS I. Explque quando é que a méda conduz a melhores resultados que a medana. Dê um exemplo para a melhor utlzação de cada uma das meddas de localzação (Exame 01/09/2009). II. Suponha que um professor fez

Leia mais

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes Capítulo Estatístca Descrtva Contnuação Prof. Fabríco Macel Gomes Problema Uma peça após fundda sob pressão a alta temperatura recebe um furo com dâmetro especfcado em 1,00 mm e tolerânca de 0,5 mm: (11,75

Leia mais

Eduardo Miqueles Graduando do Curso de Matemática Industrial - UFPR. Cristina Falk Graduanda do Curso de Matemática Industrial - UFPR

Eduardo Miqueles Graduando do Curso de Matemática Industrial - UFPR. Cristina Falk Graduanda do Curso de Matemática Industrial - UFPR II Encontro aconal de Engenhara de Produção Curtba PR, 23 a 25 de outubro de 2002 MODELO MAEMÁICO PARA RECOMPOSIÇÃO DE UMA REDE ELÉRICA USADO MARIES DE ADJACÊCIA Eduardo Mqueles raduando do Curso de Matemátca

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

Problemas de engenharia

Problemas de engenharia Análse de Sstemas de otênca Análse de Sstemas de otênca ( AS ) Aula 3 Operação Econômca de Sstemas de otênca 03//008 roblemas de engenhara Análse de Sstemas de otênca ( AS ) ANÁLISE Defndo o sstema, determnar

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

3 Elementos de modelagem para o problema de controle de potência

3 Elementos de modelagem para o problema de controle de potência 3 Elementos de modelagem para o problema de controle de potênca Neste trabalho assume-se que a rede de comuncações é composta por uma coleção de enlaces consttuídos por um par de undades-rádo ndvdualmente

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Avaliação de Económica de Projectos e Cálculo de Tarifas

Avaliação de Económica de Projectos e Cálculo de Tarifas Gestão Avançada ada de Sstemas de Abastecmento de Água Avalação de Económca de Projectos e Cálculo de Tarfas Antóno Jorge Montero 26 de Mao de 2008 Aula 5-1 COCEITO DE PROJECTO Processo específco utlzado

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

Ajuste de um modelo linear aos dados:

Ajuste de um modelo linear aos dados: Propagação de erros Suponhamos que se pretende determnar uma quantdade Z, a partr da medda drecta das grandezas A, B, C,, com as quas se relacona através de Z = f(a,b,c, ). Se os erros assocados a A, B,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Desenho de uma rede Logística

Desenho de uma rede Logística Desenho de uma rede Logístca Desenho da rede Logístca ( Logístca empresaral) Desenho do sstema através do qual exste um fluxo de produtos entre os fornecedores e os clentes. Desenho da rede Logístca (

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Um Modelo De Programação Linear Inteira Mista Para A Localização De Armazéns E A Distribuição De Produtos Siderúrgicos

Um Modelo De Programação Linear Inteira Mista Para A Localização De Armazéns E A Distribuição De Produtos Siderúrgicos A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN Um Modelo De Programação Lnear Intera Msta Para A Localzação De Armazéns E A Dstrbução De Produtos Sderúrgcos Carlos Roberto

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou Dscplna - MR070 INTRODUÇÃO À MODELAGEM DE SISTEMAS LINEARES POR EQUAÇÕES DIFERENCIAIS Os modelos de um determnado sstema podem ser físcos ou matemátcos. Neste curso focaremos a modelagem pela dentfcação

Leia mais

CAPÍTULO IV TEORIA DE JOGOS

CAPÍTULO IV TEORIA DE JOGOS CAPÍTULO IV TEORIA DE JOGOS 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada

Leia mais

Modelos para Localização de Instalações

Modelos para Localização de Instalações Modelos para Localzação de Instalações Prof. Dr. Ncolau D. Fares Gualda Escola Poltécnca da Unversdade de São Paulo Departamento de Engenhara de Transportes CLASSIFICAÇÃO DE WEBER (WEBER, Alfred. Uber

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

4.1 Modelagem dos Resultados Considerando Sazonalização

4.1 Modelagem dos Resultados Considerando Sazonalização 30 4 METODOLOGIA 4.1 Modelagem dos Resultados Consderando Sazonalzação A sazonalzação da quantdade de energa assegurada versus a quantdade contratada unforme, em contratos de fornecmento de energa elétrca,

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto Processamento de Imagem Prof. MSc. André Yoshm Kusumoto andrekusumoto.unp@gmal.com Prof. André Y. Kusumoto andrekusumoto.unp@gmal.com Operações pontuas globas em magens Uma operação pontual global em uma

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

1 a chamada Duração: 2 horas e 30 minutos Com Consulta

1 a chamada Duração: 2 horas e 30 minutos Com Consulta Lcencatura em Engenhara Electrotécnca e de Computadores Investgação Operaconal 1 a chamada 2002.01.08 Duração: 2 horas e 30 mnutos Com Consulta Responda a cada questão numa folha separada 1. Quem pensou

Leia mais

Cap. IV Análise estatística de incertezas aleatórias

Cap. IV Análise estatística de incertezas aleatórias TLF 010/11 Cap. IV Análse estatístca de ncertezas aleatóras Capítulo IV Análse estatístca de ncertezas aleatóras 4.1. Méda 43 4.. Desvo padrão 44 4.3. Sgnfcado do desvo padrão 46 4.4. Desvo padrão da méda

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS 177 DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS Antôno Carlos da Slva Flho Un-FACEF Introdução Trend Strps (TS) são uma nova técnca de análse da dnâmca de um sstema,

Leia mais

Resolução de Conflitos

Resolução de Conflitos Mestrado em Engenhara Informátca Tecnologas do Conhecmento e Decsão Sstemas Baseados em Agentes Resolução de Confltos Abrl de 2008 Realzado por: 1020541 Ivo Perera Índce Índce... 1 1. Introdução... 2 2.

Leia mais

DETERMINAÇÃO DE VALORES LIMITE DE EMISSÃO PARA SUBSTÂNCIAS PERIGOSAS DA LISTA II DA DIRECTIVA 76/464/CEE

DETERMINAÇÃO DE VALORES LIMITE DE EMISSÃO PARA SUBSTÂNCIAS PERIGOSAS DA LISTA II DA DIRECTIVA 76/464/CEE DETERMINAÇÃO DE VALORES LIMITE DE EMISSÃO PARA SUBSTÂNCIAS PERIGOSAS DA LISTA II DA DIRECTIVA 76/464/CEE Anabela R. S. REBELO Lc. Químca Industral, CCDR Algarve, Rua Dr. José de Matos n.º 13, 800-503 Faro,

Leia mais

Modelação, Identificação e Controlo Digital

Modelação, Identificação e Controlo Digital Modelação, Identfcação e Controlo Dgtal 1-Aspectos Geras 1 Modelação, Identfcação e Controlo Dgtal Elaborado por J. Mranda Lemos Professor Catedrátco do IST, 2002 Revsto por A. Bernardno Professor Auxlar

Leia mais

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação Jogos Óptmo alvo nvestgação O seu estado é fácl de representar; As acções são bem defndas e o seu número lmtado; A presença de oponentes ntroduz ncerteza tornando o problema de decsão mas complcado. Estamos

Leia mais

PROBLEMA DE DIMENSIONAMENTO DE LOTES E SEQÜENCIAMENTO DA PRODUÇÃO: UM ESTUDO DE CASO EM UMA INDÚSTRIA DE BEBIDAS

PROBLEMA DE DIMENSIONAMENTO DE LOTES E SEQÜENCIAMENTO DA PRODUÇÃO: UM ESTUDO DE CASO EM UMA INDÚSTRIA DE BEBIDAS ! "#$ " %'&)(*&)+,.- /10.2*&4365879&4/1:.+58;.2*=?5.@A2*3B;.- C)D 5.,.5FE)5.G.+ &4- (IHJ&?,.+ /?=)5.KA:.+5MLN&OHJ5F&4E)2*EOHJ&)(IHJ/)G.- D - ;./);.& PROBLEMA DE DIMENSIONAMENTO DE LOTES E SEQÜENCIAMENTO

Leia mais

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão.

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão. Departamento de Produção e Sstemas Complementos de Investgação Operaconal Exame Época Normal, 1ª Chamada 11 de Janero de 2006 Responda às questões utlzando técncas adequadas à solução de problemas de grande

Leia mais

UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS

UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS Rodolfo Hoffmann * Vctor Hugo da Fonseca Porto ** SINOPSE Neste trabalho deduz-se qual é o

Leia mais

Regressão Linear Simples by Estevam Martins

Regressão Linear Simples by Estevam Martins Regressão Lnear Smples by Estevam Martns stvm@uol.com.br "O únco lugar onde o sucesso vem antes do trabalho, é no dconáro" Albert Ensten Introdução Mutos estudos estatístcos têm como objetvo estabelecer

Leia mais

Teoremas de Otimização com Restrições de Desigualdade

Teoremas de Otimização com Restrições de Desigualdade Teoremas de Otmzação com Restrções de Desgualdade MAXIMIZAÇÃO COM RESTRIÇÃO DE DESIGUALDADE Consdere o segunte problema (P) de maxmzação condconada: Maxmze Fx onde x x,x,...,x R gx b As condções de Prmera

Leia mais

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES 1 O nosso objetvo é estudar a relação entre duas varáves quanttatvas. Eemplos:. Idade e altura das cranças.. v. Tempo de prátca de esportes e rtmo cardíaco

Leia mais

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro UNIVERIDADE DE ÃO PAULO FACULDADE DE ECONOMIA, ADMINITRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINITRAÇÃO RAD1507 Estatístca Aplcada à Admnstração I Prof. Dr. Evandro Marcos adel Rbero

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Ajuste de Curvas Regressão. Computação 2º Semestre 2016/2017

Ajuste de Curvas Regressão. Computação 2º Semestre 2016/2017 Ajuste de Curvas Regressão Computação 2º Semestre 2016/2017 Ajuste de Curvas Quando apenas sabemos alguns valores de uma função contínua e queremos estmar outros valores ntermédos Quando queremos obter

Leia mais

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro.

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro. Aplcação Por exemplo, se prepararmos uma área expermental com todo cudado possível e fzermos, manualmente, o planto de 100 sementes seleconadas de um mlho híbrdo, cudando para que as sementes fquem na

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

8 Regime de transição

8 Regime de transição 8 Regme de transção Por delberação do Senado Unverstáro em reunão de 2 de Março de 2006 (Cf. Pág. 2 da Mnuta nº 10) consdera-se que, «a partr do ano lectvo de 2006/07, todos os cursos da Unversdade do

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ val@mat.ufrgs.br Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

3.2 Modulações não-binárias (MPSK)

3.2 Modulações não-binárias (MPSK) odulações dgtas 3 odulações dgtas lneares com detecção coerente 3. odulações não-bnáras (SK) QSK: formas de onda e componentes em fase e em quadratura E π s() t = cos π fct ( ) T 4 t T =,,3, 4 f c = nc,

Leia mais

3 Algoritmo das Medidas Corretivas

3 Algoritmo das Medidas Corretivas 3 Algortmo das Meddas Corretvas 3.1 Introdução Conforme apresentado no Capítulo, o algortmo das Meddas Corretvas compõe o conjunto das etapas responsáves pela análse de desempenho do sstema de potênca.

Leia mais

Modelo de Programação Estocástica

Modelo de Programação Estocástica Modelo de Programação Estocástca 23 2 Modelo de Programação Estocástca 2.. Concetos báscos A programação estocástca (PE) é defnda como um modelo de otmzação que apresenta um ou mas parâmetros estocástcos

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios)

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios) INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícos) ( Texto revsto para o ano lectvo 2001-2002 ) Antóno Carlos Moras da Slva Professor de I.O. Recomendações 1. Fazer dez exercícos ou o mesmo exercíco

Leia mais

Índice. Exemplo de minimização de estados mais complexo. estados

Índice. Exemplo de minimização de estados mais complexo. estados Sumáro Método da tabela de mplcações para mnmzar estados. Atrbução de códgos aos estados: métodos baseados em heurístcas. Índce Exemplo de mnmzação de estados mas complexo Método da tabela de mplcações

Leia mais

U N I V E R S I D A D E D O S A Ç O R E S D E P A R T A M E N T O D E M A T E M Á T I C A ARMANDO B MENDES ÁUREA SOUSA HELENA MELO SOUSA

U N I V E R S I D A D E D O S A Ç O R E S D E P A R T A M E N T O D E M A T E M Á T I C A ARMANDO B MENDES ÁUREA SOUSA HELENA MELO SOUSA U N I V E R S I D A D E D O S A Ç O R E S D E P A R T A M E N T O D E M A T E M Á T I C A CLASSIFICAÇÃO DE MONOGRAFIAS UMA PROPOSTA PARA MAIOR OBJECTIVIDADE ARMANDO B MENDES ÁUREA SOUSA HELENA MELO SOUSA

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérco SME0300 ICMC-USP Lsta 2: Sstemas Lneares Métodos Dretos Professora: Cyntha de O. Lage Ferrera Parte 1: Exercícos Teórcos 1. Consdere o sstema Ax = b, onde 1 α 3 α 1 4 ; x = 5 2 1 Para que

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

5 Formulação para Problemas de Potencial

5 Formulação para Problemas de Potencial 48 Formulação para Problemas de Potencal O prncpal objetvo do presente capítulo é valdar a função de tensão do tpo Westergaard obtda para uma trnca com abertura polnomal (como mostrado na Fgura 9a) quando

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

Remuneração de Índole Marginal no Uso das Redes

Remuneração de Índole Marginal no Uso das Redes Remuneração de Índole Margnal no Uso das Redes Introdução Métodos smples de remuneração: Injustos Podem gerar nefcêncas Podem gerar concorrênca desleal Tarfas de uso das redes baseadas em concetos de índole

Leia mais

Sistemas de Tempo-Real

Sistemas de Tempo-Real Aula 7 Acesso exclusvo a rescursos partlhados O acesso exclusvo a recursos partlhados A nversão de prordades como consequênca do bloqueo Técncas báscas para acesso exclusvo a recursos partlhados Herança

Leia mais

MODELO PARA ALOCAÇÃO DE BANCOS DE CAPACITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HAFFNER

MODELO PARA ALOCAÇÃO DE BANCOS DE CAPACITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HAFFNER MODELO PARA ALOAÇÃO DE BANOS DE APAITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HANER Departamento de Engenhara Elétrca, UDES-T ampus Unverstáro Prof. Avelno Marcante s/n Barro Bom tro

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais