Teoremas de Otimização com Restrições de Desigualdade

Tamanho: px
Começar a partir da página:

Download "Teoremas de Otimização com Restrições de Desigualdade"

Transcrição

1 Teoremas de Otmzação com Restrções de Desgualdade MAXIMIZAÇÃO COM RESTRIÇÃO DE DESIGUALDADE Consdere o segunte problema (P) de maxmzação condconada: Maxmze Fx onde x x,x,...,x R gx b As condções de Prmera Ordem (ou as condções necessáras) são estabelecdas no teorema a segur. Teorema : Sejam F(x) e g(x) funções contínuas e dferencáves, onde. Suponha que x x, x x x,x,...,x R problema P acma. g x b, então Suponha também que se em g x x, para todo =,,...,. é uma solução do x a restrção é efetva

2 Então para a função lagrange real, tal que, junto com o x x, x L x, F x g x b, exste um número, satsfazem as seguntes condções: (a) (b) (c) (d) L x, x L x, g x b para todo =,,..., L x,. gx b o caso das condções de Segunda Ordem, quando o problema de maxmzação envolve uma restrção de desgualdade, é necessáro consderar o segunte aspecto. Se na solução x a restrção for efetva gx b, então o problema podera ter sdo resolvdo maxmzando-se F(x) sujeto à restrção de gualdade g(x) = b. Portanto, nesse caso vale o Teorema já vsto que especfca as condções de segunda ordem desse tpo de problema. Por outro lado, se na solução x a restrção não for efetva gx b, então o problema podera ter sdo resolvdo maxmzando-se F(x), sem nenhum tpo de restrção sobre os valores das varáves de controle x. Então, as condções de segunda ordem desse caso são exatamente as mesmas do problema de maxmzação não condconada de F(x).

3 Resumndo-se, pode-se estabelecer as seguntes Condções de Segunda Ordem para o problema P acma: Suponha que x x, x e atendem as condções de prmera ordem especfcadas no Teorema acma. Para os mesmos consdere as seguntes duas úncas alternatvas: L x,. A Restrção é Efetva: gx b a Matrz Hessana Orlada calculada no ponto x, segunte forma: H, H3, H4 Máxmo Local Estrto do problema P. ou g x g g x x g L L H x x x x g L L x xx x b. esse Caso, se também, é tal que os seus k-ésmos menores prncpas alternam de valor da, etc, então x x, x é um ponto de. A Restrção não é Efetva: L x, também a Matrz Hessana calculada no ponto x g x b ou g x b. esse caso, se F x F x F x x x x x nx Fx Fx Fx H D F x xx x x nx Fx Fx Fx xx n x x n x n for Defnda egatva, então x x, x problema P. é um ponto de Máxmo Local Estrto do 3

4 Exemplo: Maxmze Fx, y x.y x y Defnndo-se a função Lagrange condções: () () (3) (4) (5) L x, y, x y x L x, y, y x y L x, y, L x, y, x.y x y, temos as seguntes x y L x,. x y Para resolver esse sstema, podemos consderar ncalmente que a solução trval x ; y ; satsfaz essas 5 condções. Suponha agora que y x x y x e y. Então de () e () temos que: ou que y x e que Então de (5) temos que y x ou que x, y e x Mas de (4) temos que é necessáro que. Portanto, necessaramente, ou seja, necessaramente x = y Temos então aos seguntes 3 pontos canddatos a solução do problema: P,, ; P,, ; P3,, ; 4

5 Para avalar as condções de ª ordem, temos as seguntes dervadas: Lxx ; ; Lxy Lyx ; g x Lyy x ; gy y Fxx ; Fyy ; Fxy Fyx Como no ponto P a restrção não é efetva, devemos analsar F H F xx xy F F xy yy ou H,,, que é ndefndo. Como nos demas 4 pontos a restrção é efetva, devemos analsar gx g y x y H gx Lxx Lxy x gy Lxy L yy y E como = e M =, basta apenas examnar o snal de H : H P 8 é defnda negatva H P3 8 é defnda negatva Conclusão: P,, e P3,, são soluções do problema. 5

6 MIIMIZAÇÃO COM RESTRIÇÃO DE DESIGUALDADE Consdere agora o problema de mnmzação condconada: Mnmze Fx onde x x,x,...,x R gx b Com uma smples adaptação desse problema, podemos resolve-lo como um problema de maxmzação condconada: Maxmze G(x) = - Fx onde x x,x,...,x R gx b Portanto, um problema típco de mnmzação com restrção de desgualdade necessta ser formulado como o segunte problema (P): Mnmze Fx onde x x,x,...,x R gx b Defnndo da mesma forma a função Lagrange seguntes condções de ª ordem: (a) (b) (c) (d) L x, x L x, g x b L x, F x g x b, tem-se agora as para todo =,,..., L x,. gx b o caso das condções de ª ordem, para os pontos x onde a restrção não é efetva, necesstamos que a Matrz Hessana da função F(x) seja Defnda Postva. Para os pontos x onde a restrção é efetva, necesstamos que a Matrz Hessana Orlada da função de Lagrange L x, também seja Defnda Postva. 6

7 CASO GERAL DE MAXIMIZAÇÃO COM VÁRIAS EQUAÇÕES DE RESTRIÇÕES DE DESIGUALDADE Consdere o segunte problema (P) de maxmzação condconada: Maxmze Fx onde x x,x,...,x R g x b g x b K g x b K As condções de Prmera Ordem (ou as condções necessáras) para a solução desse problema são estabelecdas no teorema a segur. Teorema : Sejam F(x), g (x), g (x),, g K (x) funções contínuas e dferencáves, onde. Suponha que x x, x x x,x,...,x R acma. Suponha também que no ponto e as demas K K x, restrções não são efetvas j é uma solução do problema P3 K equações de restrções são efetvas g x b j g x b. Para smplfcar a notação, suponha que são as prmeras K equações de restrções que são as efetvas e suponha que em relação a esse sub-conjunto de equações vale a Qualfcação de Restrções ão Degeneradas (QRD), ou seja, a matrz jacobana tem Posto ou Rank gual a K g x g x g x x x x g x g x g x Dg x x x x gk x g K x g K x x x x 7

8 Então, para a função lagrangeana ou L x, F x g x b g x b... K gk x bk L x, F x g x b exstem os multplcadores,,..., K x, x, x,,,..., K valem as seguntes condções: K, tal que para (a) (b) (c) (d) L x, x L x, g x b para todo =,,..., para todo =,,..., K para todo =,,..., K L x,. g x b para todo =,,..., K o caso das condções de Segunda Ordem (as condções sufcentes) para a solução do problema P3 acma, as mesmas são estabelecdas através do teorema a segur.: Teorema 3: Sejam F(x), g (x), g (x),, g K (x) funções contínuas e dferencáves, onde x x,x,...,x R. Consdere em relação a essas funções o problema de otmzação P3 acma especfcado. Defna a função Lagrangeana L x, F x g x b a) Exstem x x, x e,,..., K acma, ou seja, que: (a.) (a.) L x, x L x, K e suponha que: que satsfazem as condções do Teorema g x b para todo =,,..., para todo =,,..., K (a.3) (a.4) para todo =,,..., K L x,. g x b para todo =,,.., K 8

9 b) Que para o mesmo x x, x, K equações de restrções são efetvas (para smplfcar a notação, suponha que estas são exatamente as prmeras K equações) e as demas K K restrções não são efetvas, sendo que a Matrz Hessana Orlada (envolvendo apenas as restrções efetvas) g g x x gk g K x x H g g K L L x x x x x g g K L L x x xx x calculada no ponto x,, é tal que os valores dos seus últmos prncpas alternam em snal, sendo que o snal do últmo K K k-ésmos menores H é gual ao snal de ; Então x x, x é um ponto de Máxmo Local Estrto do problema P3. 9

10 Exemplo: Maxmzar U xx 8x sujeto a xx x e x Condções de ª Ordem da Solução: L x x 8x x x x x 3 L x x ) L x 8 x ) 3 3) 3,, 4) x x 5) x e x 6) x x x e x 7) 3 ª Possbldade: Solução Interna x e x De (7), devemos ter que e. Portanto, de () e (), temos 3 que x e x 8 ou que x 6 x e. Por outro lado, de (6) temos que x x ou x x Mas esses dos resultados mplcam que x 6 x ou que x 5. Mas sso vola a condção (5). ª Possbldade: Solução de Canto: x e x De (7) temos que e de () que x ou que. Isso, junto com () e (3) mplcam que Mas sso vola (5). x 8 ou que 3 x 8.

11 3ª Possbldade: Solução de Canto: x e x De (7) temos que mplca que e de () que 3 8. Isso, junto com (6) x ou x. Fnalmente, de (), tem-se que.8 ou 6. Portanto, a cesta (, ) é canddata a ser a de equlíbro do consumdor. OBS.: essa cesta, a U x P U x 8 8 P TMS x U X Fm

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios)

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios) INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícos) ( Texto revsto para o ano lectvo 2001-2002 ) Antóno Carlos Moras da Slva Professor de I.O. Recomendações 1. Fazer dez exercícos ou o mesmo exercíco

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

João Paulo Cerri. Regulador Robusto Recursivo para Sistemas Lineares de Tempo Discreto no Espaço de Estado

João Paulo Cerri. Regulador Robusto Recursivo para Sistemas Lineares de Tempo Discreto no Espaço de Estado João Paulo Cerr Regulador Robusto Recursvo para Sstemas Lneares de Tempo Dscreto no Espaço de Estado Dssertação apresentada à Escola de Engenhara de São Carlos da Unversdade de São Paulo, como parte dos

Leia mais

aplicação do lagrangeano aumentado em otimização estrutural com restrições dinâmicas

aplicação do lagrangeano aumentado em otimização estrutural com restrições dinâmicas Marcelo Araújo da Slva aplcação do lagrangeano aumentado em otmzação estrutural com restrções dnâmcas Dssertação Apresentada à Escola Poltécnca da Unversdade de São Paulo para a Obtenção do Título de Mestre

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA)

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA) ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA 7 6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA As desvantagens do método BM apresentadas no capítulo 5 sugerem que a alocação dos benefícos seja feta proporconalmente ao prejuízo causado

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

3 O Problema de Fluxo de Potência Ótimo

3 O Problema de Fluxo de Potência Ótimo 3 O Problema de Fluxo de Potênca Ótmo 3.. Introdução Como fo vsto no capítulo anteror, para realzar uma repartção de custos ou benefícos, é necessáro determnar a função de custo do servço que será utlzado

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Adriana da Costa F. Chaves

Adriana da Costa F. Chaves Máquna de Vetor Suporte (SVM) para Regressão Adrana da Costa F. Chaves Conteúdo da apresentação Introdução Regressão Regressão Lnear Regressão não Lnear Conclusão 2 1 Introdução Sejam {(x,y )}, =1,...,,

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

3 Algoritmo das Medidas Corretivas

3 Algoritmo das Medidas Corretivas 3 Algortmo das Meddas Corretvas 3.1 Introdução Conforme apresentado no Capítulo, o algortmo das Meddas Corretvas compõe o conjunto das etapas responsáves pela análse de desempenho do sstema de potênca.

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

Programação Não Linear. Programação Não-Linear 1

Programação Não Linear. Programação Não-Linear 1 Proramação Não Lnear Proramação Não-Lnear Os modelos empreados em Proramação Lnear são, como o própro nome dz, lneares (tanto a unção-obetvo quanto as restrções). Este ato é, sem dúvda, a maor das restrções

Leia mais

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar )

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar ) Análse de altas balanceadas e não-balanceadas utlzando. Análse de alta balanceada usando a matrz de mpedânca de ra ( ) Aqu será eta uma análse de cálculo de curto-crcuto trásco (alta balanceada), utlzando

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRGS Insttuto de Matemátca

Leia mais

4.1 Modelagem dos Resultados Considerando Sazonalização

4.1 Modelagem dos Resultados Considerando Sazonalização 30 4 METODOLOGIA 4.1 Modelagem dos Resultados Consderando Sazonalzação A sazonalzação da quantdade de energa assegurada versus a quantdade contratada unforme, em contratos de fornecmento de energa elétrca,

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

Implementação Bayesiana

Implementação Bayesiana Implementação Bayesana Defnção 1 O perfl de estratégas s.) = s 1.),..., s I.)) é um equlíbro Nash-Bayesano do mecansmo Γ = S 1,..., S I, g.)) se, para todo e todo θ Θ, u gs θ ), s θ )), θ ) θ Eθ u gŝ,

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares Crstna Caldera 97 (c) T {(x, y) R : y a x } (a R + ) e ρ(x, y) é a dstânca de (x, y) ao ponto (, ); (d) T [, 3] [, ] e ρ(x, y) xy..4 Integral trplo.4.1 efnção e propredades Seja Q um paralelpípedo rectangular

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérco SME0300 ICMC-USP Lsta 2: Sstemas Lneares Métodos Dretos Professora: Cyntha de O. Lage Ferrera Parte 1: Exercícos Teórcos 1. Consdere o sstema Ax = b, onde 1 α 3 α 1 4 ; x = 5 2 1 Para que

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

c) No modelo EBM de Budyko (1969)*, aproxima-se Ro por:

c) No modelo EBM de Budyko (1969)*, aproxima-se Ro por: Clma 007/008 - Sére (dsponível em http://.gdl.ul.pt/pres.htm ) Consdere o EBM-0dm: dt S c = ( α T ) T = R Ro = f S T dt ( ) σε (, ) Onde S é a constante solar tomada como parâmetro e o feedback albedotemperatura

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Eletrotécnica AULA Nº 1 Introdução

Eletrotécnica AULA Nº 1 Introdução Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

3 Elementos de modelagem para o problema de controle de potência

3 Elementos de modelagem para o problema de controle de potência 3 Elementos de modelagem para o problema de controle de potênca Neste trabalho assume-se que a rede de comuncações é composta por uma coleção de enlaces consttuídos por um par de undades-rádo ndvdualmente

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendzagem de Máquna Alessandro L. Koerch Programa de Pós-Graduação em Informátca Pontfíca Unversdade Católca do Paraná (PUCPR) Máqunas de Vetor de Suporte Introdução Support Vector Machnes SVM Método

Leia mais

3 Definição automática de carregamento ótimo

3 Definição automática de carregamento ótimo 3 Defnção automátca de carregamento ótmo A formulação ncal mostrada neste capítulo fo feta por Sérgo Álvares Maffra[11] e parte da mplementação fo feta por Anderson Perera, tendo sofrdo algumas modfcações

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e)

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e) Resolução da Frequênca de Mecânca Clássca I/Mecânca Clássca 2003/2004 I Consdere um sstema de N partículas de massas m, =,..., N. a Demonstre que, se a força nterna exercda sobre a partícula pela partícula

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

Optimização com variáveis discretas

Optimização com variáveis discretas Engenhara de Processos e Sstemas Optmzação com varáves dscretas Fernando Bernardo Fev 2013 mn f ( x,, θ ) x, s. t. h( x,, θ ) = 0 g( x,, θ ) 0 x x x L U x real, {0,1} Por que necesstamos de varáves dscretas?

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Redes de Petri. Definições:

Redes de Petri. Definições: Redes de Petr Defnções: Uma Rede de Petr (PN) é m grafo dreto bpartdo o qal tem dos tpos de nós denomnados lgares (qe representam estados) e transções (qe representam eventos). O estado é alterado pelo

Leia mais

u t = ν A primeira coisa que você deve perceber é que essa equação apresenta um derivada de 2 ordem. Vamos aprender a lidar com isso.

u t = ν A primeira coisa que você deve perceber é que essa equação apresenta um derivada de 2 ordem. Vamos aprender a lidar com isso. Dfusão 1-D Nas últmas aulas estudamos a solução numérca e analítca (Método das Característcas) das equações de advecção lnear e não lnear usando o método das dferenças fntas e aprendemos sobre a condção

Leia mais

Teoria Macroeconômica II - Semestre II de 2016 Lista de exercćios 03 - Indução Retroativa II

Teoria Macroeconômica II - Semestre II de 2016 Lista de exercćios 03 - Indução Retroativa II Teora Macroeconômca II - Semestre II de 206 Lsta de exercćos 03 - Indução Retroatva II Professores: Jefferson Bertola and Fábo Gomes Exercíco (A Campng Trp Economy). Consdere um grupo de N pessoas em sua

Leia mais

Métodos Probabilísticos e Algébricos em Combinatória

Métodos Probabilísticos e Algébricos em Combinatória Métodos Probablístcos e Algébrcos em Combnatóra Domngos Dellamonca Jr. Orentador: Yoshharu Kohayakawa 1 de junho de 2004 Resumo Este é um projeto de ncação centífca cuja fnaldade é estudar métodos probablístcos

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

MAP Cálculo Numérico e Aplicações

MAP Cálculo Numérico e Aplicações MAP0151 - Cálculo Numérco e Aplcações Lsta 5 (Correção Neste ponto, todos já sabemos que todas as questões têm o mesmo valor, totalzando 10.0 pontos. (Questão 1 Fque com vontade de fazer mas do que fo

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

Lista 7.4 Optimização com Restrições de Desigualdade

Lista 7.4 Optimização com Restrições de Desigualdade Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II Lista 7.4 Optimização com Restrições de Desigualdade 1. Problema de optimização de uma função escalar f, de n variáveis reais,

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

Compacidade em espaços métricos

Compacidade em espaços métricos Comacdade em esaços métrcos Gselle Moraes Resende Perera, Lucana Yoshe Tsuchya e Geraldo Márco de Azevedo Botelho 3 de abrl de 2009 1 Introdução Comacdade é um dos concetos centras da toologa Na reta,

Leia mais

Covariância na Propagação de Erros

Covariância na Propagação de Erros Técncas Laboratoras de Físca Lc. Físca e Eng. omédca 007/08 Capítulo VII Covarânca e Correlação Covarânca na propagação de erros Coefcente de Correlação Lnear 35 Covarânca na Propagação de Erros Suponhamos

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

ANÁLISE DINÂMICA DE SISTEMAS CONTÍNUOS

ANÁLISE DINÂMICA DE SISTEMAS CONTÍNUOS ANÁISE DINÂMICA DE SISTEMAS CONTÍNUOS INTRODUÇÃO Sstemas dscretos e sstemas contínuos representam modelos matemátcos dstntos de sstemas fsícos semelhantes, com característcas dnâmcas semelhantes Os sstemas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

V SMAT Simpósio de Matemática Presidente Prudente - SP 10 a 13 de agosto de Minicurso Introdução a Problemas de Corte de Estoque

V SMAT Simpósio de Matemática Presidente Prudente - SP 10 a 13 de agosto de Minicurso Introdução a Problemas de Corte de Estoque V SMAT Smpóso de Matemátca Presdente Prudente - SP 10 a 13 de agosto de 2010 Mncurso Introdução a Problemas de Corte de Estoque Adrana Crstna Cherr Departamento de Matemátca - Faculdade de Cêncas Unversdade

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

S f S k = S ( U k, V 0, ) N 0 + S. onde U k e U k

S f S k = S ( U k, V 0, ) N 0 + S. onde U k e U k que o sstema atnge, como resultado da lberação de um do seus vínculo, será um estado onde o sstema terá N 1 vínculos e além dsso aquele será o estado com maor entropa, de todos os possíves (veja a rgura

Leia mais

Introdução a Processos Estocásticos:Exercícios

Introdução a Processos Estocásticos:Exercícios lvroexerccos 2017/3/19 11:24 page #1 Introdução a Processos Estocástcos:Exercícos Luz Antono Baccalá Escola Poltécnca da USP Departamento de Engenhara de Telecomuncações e Controle 2016 lvroexerccos 2017/3/19

Leia mais

Modelação com Variáveis Discretas

Modelação com Variáveis Discretas Engenhara de Processos e Sstemas Modelação com Varáves Dscretas Fernando Bernardo Fev 2011 mn f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L x real y {0,1}) U Leque de aplcações. Tpos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

Máquinas de Vetores de Suporte Supprot Vector Machine. Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática

Máquinas de Vetores de Suporte Supprot Vector Machine. Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática Máqunas de Vetores de Suporte Supprot Vector Machne Aluzo Fausto Rbero Araújo Unversdade Federal de Pernambuco Centro de Informátca Conteúdo. Introdução 2. Classfcadores Bnáros 3. Aprendzagem Estatístca

Leia mais

1 Transições de fase e sistemas abertos

1 Transições de fase e sistemas abertos Transções de fase e sstemas abertos Imagne um sstema solado K num estado M. Podemos dvdr este sstema em dos outros subsstemas K a e K b. Esta dvsão sgn ca o estabelecmento de algum vínculo nas varáves

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

O MMD se baseia no sistema no sistema linearizado das equações de fluxo de potência, ou seja: Δ (4.1)

O MMD se baseia no sistema no sistema linearizado das equações de fluxo de potência, ou seja: Δ (4.1) 4 Método da Matrz D Neste capítulo será apresentada uma descrção do MMD [Prada, 99], [Prada, ]. Este método será usado para dentfcar casos de nstabldade de tensão causados pela perda de controlabldade.

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

2 Aproximação por curvas impĺıcitas e partição da unidade

2 Aproximação por curvas impĺıcitas e partição da unidade Aproxmação por curvas mpĺıctas e partção da undade Este capítulo expõe alguns concetos báscos necessáros para o entendmento deste trabalho 1 Curvas Algébrcas Um subconjunto O R é chamado de uma curva mplícta

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Problemas de engenharia

Problemas de engenharia Análse de Sstemas de otênca Análse de Sstemas de otênca ( AS ) Aula 3 Operação Econômca de Sstemas de otênca 03//008 roblemas de engenhara Análse de Sstemas de otênca ( AS ) ANÁLISE Defndo o sstema, determnar

Leia mais

O Teorema de Perron-Frobenius e a Ausência de Transição de Fase em Modelos Unidimensionais da Mecânica Estatística

O Teorema de Perron-Frobenius e a Ausência de Transição de Fase em Modelos Unidimensionais da Mecânica Estatística O Teorema de Perron-Frobenus e a Ausênca de Transção de Fase em Modelos Undmensonas da Mecânca Estatístca Marcelo Rchard Hláro Aluno do Curso de Graduação em Físca - UFMG, mhlaro@gold.com.br Gastão Braga

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ ADREAN DE OLIVEIRA CEBOLA RESOLUÇÃO DE PROGRAMAS LINEARES COM MÉTODO DE PONTOS INTERIORES

UNIVERSIDADE FEDERAL DO PARANÁ ADREAN DE OLIVEIRA CEBOLA RESOLUÇÃO DE PROGRAMAS LINEARES COM MÉTODO DE PONTOS INTERIORES UNIVERSIDADE FEDERAL DO PARANÁ ADREAN DE OLIVEIRA CEBOLA RESOLUÇÃO DE PROGRAMAS LINEARES COM MÉTODO DE PONTOS INTERIORES CURITIBA 2017 ADREAN DE OLIVEIRA CEBOLA RESOLUÇÃO DE PROGRAMAS LINEARES COM MÉTODO

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais