Sistemas de equações lineares
|
|
|
- Ana Carolina Fraga de Paiva
- 9 Há anos
- Visualizações:
Transcrição
1 Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes reas Uma solução de uma equação lnear a x + a x + ::: + a n x n (s ; s ; :::; s n ) de números reas tal que a s + a s + ::: + a n s n = b = b é uma sequênca Um sstema de equações lneares nas ncógntas x ; x ; :::; x n é um conjunto nto de equações lneares nas ncógntas x ; x ; :::; x n Uma solução de um sstema de equações lneares a x + a x + ::: + a n x n = b a x + a x + ::: + a n x n = b a m x + a m x + ::: + a mn x n = b m é uma sequênca (s ; s ; :::; s n ) de números reas que é solução de cada uma das equações lneares, ou seja tal que a s + a s + ::: + a n s n = b a s + a s + ::: + a n s n = b a m s + a m s + ::: + a mn s n = b m Dos sstemas de equações lneares são equvalentes se têm o mesmo conjunto de soluções Um sstema de equações lneares pode-se class car em: - sstema mpossível - não tem qualquer solução - sstema possível e determnado - tem uma únca solução - sstema possível e ndetermnado - tem mas do que uma solução Cama-se solução geral ou conjunto solução de um sstema de equações lneares ao conjunto de todas as suas soluções e tem-se, para um sstema de equações em R: - Se o sstema é mpossível - o conjunto solução é vazo - Se o sstema é possível e determnado - o conjunto solução tem um elemento - Se o sstema é possível e ndetermnado - o conjunto solução é n nto
2 Sstemas - ALGA - / Forma matrcal de um sstema de equações lneares Um sstema de equações lneares a x + a x + ::: + a n x n = b a x + a x + ::: + a n x n = b a m x + a m x + ::: + a mn x n = b m pode ser representado na forma a a a n a a a n x x = b b a m a m {z a mn } A x n {z } X b m {z } B A matrz A denomna-se a matrz dos coe centes ou matrz smples, a matrz X denomna-se matrz das ncógntas e a matrz B denomna-se matrz do termos ndependentes a a a n a A matrz a a n a m a m a mn abreva por [AjB] : b b b m denomna-se matrz amplada do sstema, que se Se (s ; : : : ; s n ) é solução de um sstema com a forma matrcal AX = B, então S = [s ; : : : ; s n ] > satsfaz AS = B: As seguntes operações, quando efectuadas sobre um sstema de equações lneares, transformam-no num sstema equvalente, ou seja, não alteram o seu conjunto solução: (Op) Trocar a ordem de duas equações; (Op) Multplcar ambos os lados da equação por uma constante não nula; (Op) Adconar a uma equação, outra multplcada por uma constante Importante: Efectuar cada uma destas operações sobre um sstema de equações lneares é equvalente a efectuar a correspondente operação elementar sobre as lnas da matrz amplada do sstema
3 Sstemas - ALGA - / Resolução de um sstema Método de elmnação de Gauss-Jordan: Utlzando o método de elmnação de Gauss descrto para matrzes cega-se, a partr da matrz amplada do sstema, a uma matrz em forma condensada A solução geral do sstema obtem-se medatamente, como se pode ver de seguda: Seja AX = B um sstema (possível) de m equações lneares a n ncógntas Suponamos que a segunte matrz condensada c c c n c c n c n fo obtda, através de operações elementares, da matrz amplada [AjB] Então o sstema AX = B é equvalente ao sstema: x + c x + x + c x + x + + c n x n = d ou seja é equvalente ao sstema: d d d x + c x + x + + c n x n = d x + + c n x n = d x + x + x + x + x + + x n = x + x + x + x + x + + x n = x = c x c x c n x n + d x = c x c n x n + d x = c n x n + d Este últmo sstema fornece a solução geral do sstema ncal Observe-se que no prmero membro das equações guram as varáves dependentes, que correspondem aos pvots na matrz condensada e no segundo membro as varáves lvres ou ndependentes Método de elmnação de Gauss: Utlzando também o método de elmnação de Gauss cega se, a partr da matrz amplada do sstema, a uma matrz em forma de escada O sstema correspondente a essa matrz resolve-se então por substtução, até obter a solução geral
4 Sstemas - ALGA - / Grau de ndetermnação de um sstema Consdere-se um sstema AX = B; com A do tpo m n (m equações e n ncógntas) O número de varáves lvres na solução geral do sstema cama-se grau de ndetermnação do sstema Um sstema possível e determnado tem grau de ndetermnação Como o número de varáves lvres é gual ao número de ncógntas menos o número de pvots da matrz em forma de escada obtda a partr da matrz amplada do sstema e o número de pvots é exactamente a característca da matrz, podemos conclur que o grau de ndetermnação é n car [AjB] : Pode-se conclur anda que um sstema possível é determnado se car [AjB] = n: Solução geral de um sstema ndetermnado Seja AX = B (A mn ) um sstema possível e ndetermnado, tal que car [AjB] = r A solução geral do sstema pode-se apresentar na forma matrcal S = S +x C +x C +: : :+x n r C n r ; em que S ; C ; : : : C; n r são matrzes coluna de tpo n e x ; x ; x n r correspondem às varáves lvres da solução Fazendo todas as possíves concretzações para as varáves x ; x ; x n r obtêm-se todas as possíves soluções do sstema Em partcular S é solução (basta fazer x = x = x n r = ): Sstemas omogéneos Um sstema de equações lneares AX = B dz-se omogéneo se B = : Qualquer sstema de equações omogéneo é possível dado admtr sempre a solução nula, que se cama solução trval Caso o sstema seja ndetermnado as outras soluções dzem-se não trvas A qualquer sstema de equações AX = B corresponde um sstema omogéneo, o sstema AX = ; que se cama sstema omogéneo assocado ao sstema AX = B Se S = S + x C + x C + : : : + x n r C n r é a solução geral do sstema AX = B então S = x C + x C + : : : + x n r C n r é a solução geral do sstema omogéneo assocado Dscussão e class cação de um sstema Consdere-se o sstema AX = B de m equações a n ncógntas Utlzando o método de elmnação de Gauss-Jordan, através da análse da matrz condensada obtda a partr da matrz amplada [AjB] pode-se conclur que: mpossível se e só se cara = car [AjB] possível e determnado se e só se cara = car [AjB] e cara = n O sstema é: possível e ndetermnado se e só se cara = car [AjB] e cara < n (o grau de ndetermnação é n cara) Nota: Para class car um sstema basta, portanto, determnar a característca de [AjB] ; para o que não é necessáro condensar a matrz, sendo su cente obter uma forma de escada da matrz ncal
5 Sstemas - ALGA - / Cálculo da nversa de uma matrz pelo método de Gauss-Jordan Seja A uma matrz nvertível Pretende-se encontrar uma matrz de ordem n tal que AB = I n : Seja B = B B B B n uma matrz com colunas B ; B ; B ; ; B n Tem-se: AB = I n, A B B B B n = I n,, AB AB AB AB n = In,, AB = ; AB = ; AB = ; ; AB n = A determnação da nversa da matrz A pode então fazer-se pela resolução de n sstemas de equações lneares, todos com a mesma matrz smples Como a nversa de uma matrz é únca, cada um dos sstemas anterores é possível e determnado, pelo que car (A) = n e a forma condensada da matrz A é In: Usando o método de Gauss-Jordan é possível resolver os n sstemas em smultâneo, condensando a matrz aumentada: A Quando se cega, no lado esquerdo à forma condensada de A, que é I n, do lado dreto temos em cada coluna a solução do sstema correspondente, ou seja, temos a matrz A : Resumndo: Para calcular a nversa de uma matrz A : [AjI n ]! {z!!} In ja Método de elmnação de Gauss-Jordan Pode-se anda conclur o segunte resultado que fornece um modo de determnar quas são as matrzes nvertíves: Teorema Uma matrz quadrada A; de ordem n; é nvertível se e só se cara = n:
Sistemas de equações lineares
ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b
Sistemas de equações lineares
Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a
Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15
Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões
Parte 1: Exercícios Teóricos
Cálculo Numérco SME0300 ICMC-USP Lsta 2: Sstemas Lneares Métodos Dretos Professora: Cyntha de O. Lage Ferrera Parte 1: Exercícos Teórcos 1. Consdere o sstema Ax = b, onde 1 α 3 α 1 4 ; x = 5 2 1 Para que
Eletrotécnica AULA Nº 1 Introdução
Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca
(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,
Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)
ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes
ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:
Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012
Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto
O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.
Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,
Matrizes - ALGA /05 1. Matrizes
Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores
PRESSUPOSTOS DO MODELO DE REGRESSÃO
PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras
ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS
DECvl ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO ÉTODO DE CROSS Orlando J. B. A. Perera 20 de ao de 206 2 . Introdução O método teratvo ntroduzdo por Hardy Cross (Analyss of Contnuous Frames by Dstrbutng Fxed-End
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
Covariância na Propagação de Erros
Técncas Laboratoras de Físca Lc. Físca e Eng. omédca 007/08 Capítulo VII Covarânca e Correlação Covarânca na propagação de erros Coefcente de Correlação Lnear 35 Covarânca na Propagação de Erros Suponhamos
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR
Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma
ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ
ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco
Método de eliminação de Gauss
Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da
7. Resolução Numérica de Equações Diferenciais Ordinárias
7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem
AULA Espaços Vectoriais Estruturas Algébricas.
Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia
CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram
Avaliação e programa de Álgebra Linear
Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos
Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected].
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e
MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL
CIRCUITOS ELÉTRICOS Método de Análse: Análse Nodal Dscplna: CIRCUITOS ELÉTRICOS Professor: Dr Marcos Antôno de Sousa Tópco MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL Referênca bbloráfca básca:
Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES
Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas
XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase
Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.
ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos
2 - Análise de circuitos em corrente contínua
- Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;
EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios
CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues
CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas
Análise de Regressão Linear Múltipla VII
Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto
Capítulo 1. Exercício 5. Capítulo 2 Exercício
UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.
ESCOL DE PLICÇÃO DR. LFREDO JOSÉ LI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m n é qualquer conunto de m. n elementos dspostos
Análise Exploratória de Dados
Análse Exploratóra de Dados Objetvos Análse de duas varáves quanttatvas: traçar dagramas de dspersão, para avalar possíves relações entre as duas varáves; calcular o coefcente de correlação entre as duas
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
Testes não-paramétricos
Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ [email protected] Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,
IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO
IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;
Nota importante: U é a matriz condensada obtida no processo de condensação da matriz
Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz
Lista 1: sistemas de equações lineares; matrizes.
Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas
CIRCUITOS RESISTIVOS
Temátca Crctos Eléctrcos Capítlo nálse de Crctos Lneares CICITOS ESISTIVOS INTODÇÃO Nesta secção apresentamse dversas metodologas para resolção de crctos lneares tas como o método geral, a smplfcação do
O íon lantanídeo no acoplamento Russell-Saunders e a classificação de seus estados segundo os subgrupos do grupo GL(4
O íon lantanídeo no acoplamento Russell-aunders e a classfcação de seus estados segundo os subgrupos do grupo G(4 ) O hamltonano, H, dos íons lantanídeos contém uma parte que corresponde ao campo central,
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
Análise Complexa Resolução de alguns exercícios do capítulo 1
Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +
CEL033 Circuitos Lineares I
// CEL Crcutos Lneares I NR- Prof.: Io Chaes da Sla Junor [email protected] Métodos de Análses de Crcutos Análse Nodal Le de Krchhoff das Correntes Método de análse de crcutos elétrcos no qual se escolhe
Teoremas de Otimização com Restrições de Desigualdade
Teoremas de Otmzação com Restrções de Desgualdade MAXIMIZAÇÃO COM RESTRIÇÃO DE DESIGUALDADE Consdere o segunte problema (P) de maxmzação condconada: Maxmze Fx onde x x,x,...,x R gx b As condções de Prmera
Algumas Aplicações de Álgebra Linear. Análise de Redes (Network) Fluxo de Trânsito. Circuitos Eléctricos. Equilíbrio de Equações Químicas
Algumas Aplicações de Álgebra Linear Análise de Redes (Network) Fluxo de Trânsito Circuitos Eléctricos Equilíbrio de Equações Químicas Interpolação Polinomial Estudo de Modelos Económicos Compressão de
valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.
Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam
2.7. Problema de Herinelto Casimiro: criterio de verifica^iio do produto da multiplica^so de duas matrizes quadradas nao usando a matriz inversa
2.7. Problema de Hernelto Casmro: crtero de verfca^o do produto da multplca^so de duas matrzes quadradas nao usando a matrz nversa Um dos teoremas da artnretca relaconada com a multplcagso de dos numeros
é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES
GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu.
GABARITO ERP9 Questão mpedânca total em pu. mpedânca lnha em pu; mpedânca carga em pu; tensão no gerador em pu. Assm, tem-se que: ( ). Mas, ou seja: : ( ).. Logo: pu. () A mpedânca da carga em pu,, tem
Probabilidade: Diagramas de Árvore
Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal
Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou
Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois
Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos
Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,
Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson
Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens
Exercícios de CPM e PERT Enunciados
Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a
X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)
Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado
EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5
Esta aula: Teorema de Thévenn, Teorema de Norton. Suponha que desejamos determnar a tensão (ou a corrente) em um únco bpolo de um crcuto, consttuído por qualquer número de fontes e de outros resstores.
Introdução a Combinatória- Aplicações, parte II
Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o
Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.
Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só
2ª PARTE Estudo do choque elástico e inelástico.
2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos
Departamento de Matemática
Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F
Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas
Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo
