Matrizes - ALGA /05 1. Matrizes
|
|
|
- Emanuel Penha Cunha
- 8 Há anos
- Visualizações:
Transcrição
1 Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores em R. A matriz A é usualmente representada como um quadro, numa das formas: A = 6 4 a 11 a 1 a 1 a 1n a 1 a a a n a 1 a a a n a m1 a m a m a mn A = [a ij ] i=1;:::;m onde a ij = A (i; j). Os elementos a ij dizem-se as entradas da matriz; o elemento a ij está posicionado na linha i (denominado índice de linha) e na coluna j (denominado índice de coluna) da matriz A: Os elementos com o mesmo índice de linha e coluna, isto é, os elementos a ii ; i f1; ; :::; ng dizem-se entradas principais da matriz; Duas matrizes A e B são iguais se forem do mesmo tipo e as entradas correspondentes forem iguais. Se m = n a matriz diz-se quadrada, dizendo se nesse caso que a matriz é de ordem n. Matrizes particulares Se m = 1 a matriz diz-se uma matriz linha. Se n = 1 a matriz diz-se uma matriz coluna. Se A = [a ij ] i=1;:::;n é uma matriz quadrada, então: a diagonal principal de A é constituída pelas suas entradas principais. a matriz diz-se triangular superior se a ij = 0; sempre que i > j; a matriz diz-se triangular inferior se a ij = 0; sempre que i < j; a matriz diz-se diagonal se é triangular superior e inferior, ou seja se a ij = 0; sempre que i 6= j;
2 Matrizes - ALGA - 004/0 Matriz nula de tipo m n é a matriz O mn = [o ij ] i=1;:::;m ; em que o ij = 0, ou seja, O = ( 1 se i = j Matriz identidade de ordem n é a matriz I n = [a ij ] i=1;:::;n em que a ij = 0 se i 6= j ; ou seja, I n = : A simétrica da matriz A = [a ij ] i=1;:::;m é a matriz A = [b ij ] i=1;:::;m ; onde b ij = a ij. Se é um número real, então a matriz I n diz-se uma matriz escalar. Operações com matrizes Transposição é uma matriz de tipo mn; a sua transposta é a matriz A T = [b ij ] i=1;:::;n j=1;:::;m de tipo n m tal que b ij = a ji : Uma matriz quadrada diz-se simétrica se A T = A. Soma e B = [b ij ] i=1;:::;m A + B = [c ij ] i=1;:::;m são matrizes de tipo m n, de ne-se a matriz: do mesmo tipo, onde c ij = a ij + b ij : Produto escalar é uma matriz de tipo m n e é um número real, de ne-se a matriz: :A = [c ij ] i=1;:::;m do mesmo tipo, onde c ij = a ij :
3 Matrizes - ALGA - 004/0 Produto j=1;:::;q de ne-se a matriz: é uma matriz de tipo m q e B = [b ij ] i=1;:::q é uma matriz de tipo q n, A B = [c ij ] i=1;:::;m de tipo m n, onde c ij = qx a ik b kj : k=1 Sejam Cj B a coluna j da matriz B; L A i a linha i da matriz A, Cj AB a coluna j da matriz AB e L AB i a linha i da matriz AB. Tem-se: (i) AC B j = C AB j (ii) L A i B = L AB i Propriedades Soma e produto escalar Se A; B e C são matrizes de tipo mn, O é a matriz nula do mesmo tipo e ; são números reais, veri cam-se: 1. A + B = B + A (comutatividade). (A + B) + C = A + (B + C) (associatividade). A + O = A (elemento neutro) 4. A + ( A) = O (existência de simétricos). (A + B) = A + B 6. ( + ) A = A + A. (A) = () A 8. 1A = A 9. O = O 10. A T T = A 11. (A + B) T = A T + B T 1. (A) T = A T
4 Matrizes - ALGA - 004/0 4 Produto Se A; B e C são matrizes, O é a matriz nula e é um número real então, sempre que os produtos estejam de nidos veri cam-se: 1. (AB) C = A (BC) :. AO = O:. AI n = A = I n A: 4. (A + B) C = AC + BC e A (B + C) = AB + AC:. (AB) = (A) B = A (B) : 6. (AB) T = B T A T : Nota: O produto de duas matrizes diagonais é uma matriz diagonal e o produto de duas matrizes triangulares superiores (inferiores) é uma matriz triangular superior (inferior) Inversa de uma matriz Seja A uma matriz de ordem n. Se existe uma matriz X tal que AX = XA = I n ; diz-se que a matriz A é invertível; A matriz X diz-se a inversa de A e denota-se X = A 1. Se a matriz A é invertível, a sua inversa é única. Propriedades Se A e B são matrizes invertíveis de ordem n, veri cam-se: (i) A 1 é invertível e (A 1 ) 1 = A. (ii) AB é invertível e (AB) 1 = B 1 A 1. (iii) A T é invertível e A T 1 = (A 1 ) T : (iv) Se A é invertível e 6= 0 é um número real, então A é invertível e (A) 1 = 1 A 1. (v) Se A é diagonal, A 1 é também diagonal. (vi) Se A é triangular, A 1 é também triangular
5 Matrizes - ALGA - 004/0 Matriz em forma de escada Seja A = [a ij ] i=1;:::;m uma matriz real de tipo m n: A matriz A está em forma de escada (ou em escada de linhas) se, para cada linha i f1; ; :::; mg ; se veri ca: Caso 1 A linha i é nula Então, para todo o r > i; a linha r é nula. Caso A linha i não é nula Se a is é o primeiro elemento não nulo da linha i (denominado o pivot); então para todo o l > i e para todo o c s; a lc = 0. A matriz A = [a ij ] i=1;:::;m está na forma condensada (ou em escada de linhas reduzida) se está em forma de escada e, para cada linha i f1; ; :::; mg se veri cam: 1. O pivot é a identidade;. Se a is é o pivot, então para todo o l < i; a ls = 0. Operações elementares sobre as linhas de uma matriz (OP1) Trocar duas linhas; (OP) Multiplicar uma linha por um escalar não nulo; (OP) Somar a uma linha outra multiplicada por um escalar. Nota: Podem-se de nir operações elementares análogas sobre as colunas. Teorema: Toda a matriz pode ser transformada, através de operações elementares, numa matriz em forma de escada. Teorema: Toda a matriz pode ser transformada, através de operações elementares, numa matriz condensada. Característica da matriz A característica de uma matriz A é o número de linhas não nulas de uma qualquer matriz em forma de escada que possa ser obtida de A através de operações elementares.
Matrizes - Matemática II /05 1. Matrizes
Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes
ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
Método de eliminação de Gauss
Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da
Avaliação e programa de Álgebra Linear
Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:
n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.
Métodos Matemáticos II
Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 [email protected] http://www.estv.ipv.pt/paginaspessoais/nbastos.
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - o Semestre de / MEEC EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Método de Eliminação de Gauss Sistemas de equações lineares Uma equação linear nas variáveis (ou incógnitas) x ; ; x n ; é uma equação do
Aulas Teóricas de Álgebra Linear
Aulas Teóricas de Álgebra Linear Instituto Superior Técnico - o Semestre 009/00 MEAmbi - MEBiol Matrizes De nição Uma matriz A, do tipo m n (m por n), é uma tabela de mn números dispostos em m linhas e
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática
Apontamentos das Aulas Teóricas de Álgebra Linear para LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec Nuno Martins Departamento de Matemática Instituto Superior Técnico Fevereiro de 0 Índice Sistemas de
Algumas Aplicações de Álgebra Linear. Análise de Redes (Network) Fluxo de Trânsito. Circuitos Eléctricos. Equilíbrio de Equações Químicas
Algumas Aplicações de Álgebra Linear Análise de Redes (Network) Fluxo de Trânsito Circuitos Eléctricos Equilíbrio de Equações Químicas Interpolação Polinomial Estudo de Modelos Económicos Compressão de
a mnx n = b m
MTRIZES s matrizes são ferramentas básicas da Álgebra Linear, pois além de fornecerem meios para resolução dos sistemas de equações lineares, elas também representarão as transformações lineares entre
é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 1 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 47 Cláudio Fernandes (FCT/UNL) Departamento de Matemática
Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)
Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Representação de um conjunto de Matrizes Operações Produto de Matriz por escalar Transposição de Matrizes Simetrias Exercícios. Matrizes - Parte 1
Matrizes - Parte 1 Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2019.1 11 de julho de
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: sequências e matrizes 05 e 06/06/14 Sequências Def.: chama-se sequência finita ou n-upla toda aplicação f do
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
1, , ,
Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Licenciatura em Informática Fundamentos de Geometria Analítica e Álgebra Linear Profª Sheila R. Oro Este texto
Determinantes - Matemática II / Determinantes
Determinantes - Matemática II - 00/05 19 Permutações Determinantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetições
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Sistemas de equações lineares
ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b
ficha 2 determinantes
Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo
NOTAS DE AULA DE MAT 137 -PRIMEIRA SEMANA Profa. Margareth Turmas 2 e 7. Atleta 1 7, ,4. Atleta Atleta 3 9 7,5 8,5 7,9
NOTAS DE AULA DE MAT 137 -PRIMEIRA SEMANA Profa Margareth Turmas e 7 01 Motivação Num torneio de triatlon as competições: nado, corrida e ciclismo foram pontuadas com pesos x, y e z, respectivamente A
Apostila de Matemática 10 Matriz
Apostila de Matemática 10 Matriz 1.0 Definição m e n são números inteiros maiores que zero. Matriz mxn é uma tabela retangular formada por m.n números reais, dispostos é m linhas e n colunas. A tabela
Sistemas de equações lineares
Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a
Notas de Aula. Gustavo Henrique Silva Sarturi. i Z (1 i m) a j1 a j2
Notas de Aula Gustavo Henrique Silva Sarturi Matemática B - Em Ação [email protected] 1 Matrizes Definição 1.1. Uma matriz A m n é um arranjo retangular de m n números reais (ou complexos) organizados
Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos
Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
Apontamentos de Álgebra Linear
Aontamentos de Álgebra Linear (inclui as alicações não avaliadas) Nuno Martins Deartamento de Matemática Instituto Suerior Técnico Dezembro de 08 Índice Matrizes: oerações e suas roriedades Resolução de
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
Matrizes. Laura Goulart. 29 de Outubro de 2018 UESB. Laura Goulart (UESB) Matrizes 29 de Outubro de / 16
Matrizes Laura Goulart UESB 29 de Outubro de 2018 Laura Goulart (UESB) Matrizes 29 de Outubro de 2018 1 / 16 Motivação Chama-se matriz de ordem m por n uma tabela com m n elementos(em geral, números reais)
Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes
Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,
(Todos os cursos da Alameda) Paulo Pinto
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas
Espaços vectoriais reais
Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o
São tabelas de elementos dispostos ordenadamente em linhas e colunas.
EMENTA (RESUMO) Matrizes Matrizes, determinantes e suas propriedades, Multiplicação de matrizes, Operações com matrizes, Matrizes inversíveis. Sistemas de Equações Lineares Sistemas equações lineares,
= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m
Matrizes e Sistemas de Equações 9 para toda matriz A n X n. Vamos discutir, também, a existência e o cálculo de inversas multiplicativas. A MATRIZ IDENTIDADE Uma matriz muito importante é a matriz / n
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 1-Matrizes Departamento de Matemática FCT/UNL 2016-2017 Departamento de Matemática (FCT/UNL) Álgebra Linear e Geometria Anaĺıtica 1 / 67 Programa 1 Matrizes 2 Sistemas
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn
Matrizes Definição Definição Uma matriz m n é uma tabela de mn números dispostos em m linhas e n colunas a 11 a 1 a 1n a 1 a a n a m1 a m a mn Embora a rigor matrizes possam ter quaisquer tipos de elementos,
MATRIZES. Fundamentos de Matemática- Ciências Contábeis
MATRIZES Fundamentos de Matemática- Ciências Contábeis INTRODUÇÃO Nas próximas aulas veremos os conceitos básicos sobre matrizes. Estes conceitos aparecem naturalmente na resolução de muitos tipos de problemas
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
Laboratório de Simulação Matemática. Parte 6 2
Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago
Renato Martins Assunção
Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear
Determinante de uma matriz quadrada
Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante
MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a
Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa
Lições de Matemática Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Versão provisória vp Capítulo Matrizes e Determinantes Versão provisória () Generalidades Definição Dados
3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz. Definição 1 Sejam m e n dois números naturais.
3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz Definição 1 Sejam m e n dois números naturais. Uma matriz real m n é um conjunto de mn números reais distribuídos por m linhas
Pensamento. "A escada da sabedoria tem os degraus feitos de números." (Blavatsky) Prof. MSc. Herivelto Nunes
Aula Introdutória Álgebra Linear I- Abril 2017 Pensamento "A escada da sabedoria tem os degraus feitos de números." (Blavatsky) Prof. MSc. Herivelto Nunes Unidade Matrizes. Matrizes A matriz foi criada
x 1 + b a 2 a 2 : declive da recta ;
- O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2
RaciocínioLógico TFC -C G U Tele - Transmitido Teoria Mais de 360 aprovados na Receita Federal em 2006 Prof.Milton Ueta Data de impressão: 08/02/2008 67 das 88 vagas no AFRF no PR/SC 150 das 190 vagas
Nota importante: U é a matriz condensada obtida no processo de condensação da matriz
Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz
inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n.
Matrizes noções gerais e notações Definição Designa-se por matriz de números reais a um quadro do tipo a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn onde os elementos a ij (i = 1, 2,...,
Álgebra Linear. André Arbex Hallack
Álgebra Linear André Arbex Hallack 2017 Índice 1 Sistemas Lineares 1 1.1 Corpos............................................. 1 1.2 Sistemas de Equações Lineares............................... 3 1.3 Sistemas
Eduardo. Matemática Matrizes
Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos
Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2
Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos
Testes e Sebentas. Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes)
Testes e Sebentas Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes) Índice: 1. Matrizes 1.1. Igualdade de matrizes 3 1.2. Transposta de uma matriz 3 1.3. Multiplicação por um escalar 3
Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
Departamento de Matemática Escola Superior de Tecnologia Instituto Politécnico de Viseu Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Lurdes Sousa i Índice Prefácio iii I Matrizes e sistemas de equações
Aula 7 - Revisão de Álgebra Matricial
23 de Abril de 2018 // 26 de Abril de 2018 Introdução Objetivo da revisão: revisar a notação matricial, técnicas de álgebra linear e alguns resultados importantes Conteúdos: 1 Vetores e matrizes 2 Operações
Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).
F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.
NOTAS DE AULAS DE ÁLGEBRA LINEAR
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE EDUCAÇÃO E SAÚDE UNIDADE ACADÊMICA DE EDUCAÇÃO PERÍODO 011 TURNO: DATA: PROFESSORA: CÉLIA MARIA RUFINO FRANCO Aluno (a): NOTAS DE AULAS DE ÁLGEBRA LINEAR
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
1 Matrizes e Determinantes
1 Matrizes e Determinantes 11 Introdução Definição (Matriz): Uma matriz A m n é um arranjo retangular de mn elementos distribuídos em m linhas horizontais e n colunas verticais: a 11 a 12 a 1j a 1n a 21
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram
Álgebra Linear Semana 04
Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa
Notas em Álgebra Linear
Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,
Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros.
MATRIZES DEFINIÇÃO Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. M = à M é uma matriz 2 x 3. Cada elemento da matriz
Escalonamento de matrizes
Escalonamento de matrizes Laura Goulart UESB 20 de Outubro de 2016 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de 2016 1 / 20 Operações elementares sobre as linhas Chamamos de operações
