Testes e Sebentas. Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes)
|
|
|
- Kátia Gorjão Marreiro
- 8 Há anos
- Visualizações:
Transcrição
1 Testes e Sebentas Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes)
2 Índice: 1. Matrizes 1.1. Igualdade de matrizes Transposta de uma matriz Multiplicação por um escalar Produto entre matrizes Propriedades do produto entre matrizes Matrizes invertíveis Operações elementares sobre uma matriz Forma escalonada de uma matriz Algoritmo para a inversão de matrizes 8 2. Determinantes 2.1. Cálculo de determinates Propriedades dos determinantes Resolução de sistemas Sistemas de Cramer Sistemas Homogéneos Característica da matriz Discussão de sistemas
3 1. Matrizes 1.1. Igualdade de matrizes: Para que valores de e de as matrizes A e B são iguais? A = B = A = B = 1.2. Transposta de uma matriz: Considere as matrizes A, B e C. Calcule se possível: 1. A T + B 2. ( C A T ) T A = B = C = 1. A T + B Não é possível porque as matrizes têm ordens diferentes. Ordem: A T (3 2) B (3 2) 2. ( C A T ) T = C T A = = 1.3. Multiplicação por um escalar: Considere as matrizes A e C. Calcule: 3A ½ C T A = B = 3A ½ C T = = 3
4 1.4. Produto entre matrizes: 1. Considere as matrizes A e B. Calcule o produto: a. AB b. BA A = B = T a. AB = [ ( 2) 4] = [ 3] b. BA = = 2. Calcule todos os produtos possíveis (com 2 factores) com as seguintes matrizes: A = B = C = 3 D = E = I = CD = = IB = = CA = = = BC = = = DE = = 4
5 EA = = = BI = = = 1.5. Propriedades do produto entre matrizes: 1. Simplifique: A(BC 2CB) + A(2C B)C + (BA AB)C A(BC 2CB) + A(2C B)C + (BA AB)C = ABC 2ACB + (2AC AB)C + BAC ABC = ABC 2ACB + 2ACC ABC + BAC ABC = 2ACB + 2ACC ABC + BAC 2. Sendo A = e AB =, determine a 1ª e 2ª colunas de B = 3. Considere A = e B = ; resolva a seguinte equação matricial: BA + 5X = A BA + 5X = A 5X = A BA X = 1/5(A BA) 5
6 BA = = A BA = = X = 1/5(A BA) = 1/5 4. Dizemos que uma matriz M é simétrica se M = M. Supondo que A e B são matrizes simétricas tais que AB = BA, prove que AB também é simétrica. Hipótese: A é simétrica: A T = A B é simétrica B T = B AB = BA Tese: AB é simétrica: (AB) T = AB (AB) T = B T A T = BA = AB AB é simétrica, c.q.d Matrizes Invertíveis 1. Simplifique C T B(AB) 1 (C A T ) T Resolução : C T B(AB) 1 (C A T ) T = C T BB 1 A 1 (A T ) T (C 1 ) T = C T IA 1 A(C 1 ) T = C T II(C 1 ) T = C T (C 1 ) T = C T (C T ) 1 = I 2. Sejam A e B matrizes invertíveis; resolva as seguintes equações matriciais: a. AX + A 2 = B b. B 1 X 1 = AB 2 6
7 a. AX + A 2 = B A 1 AX = A 1 (B+A 2 ) X = A 1 B A 1 AA X = A 1 B A b. B 1 X 1 = AB 2 BB 1 X 1 = BAB 2 (X 1 ) 1 = (BAB 2 ) 1 X = (B 2 ) 1 A 1 X = B 2 A 1 B 1 3. Determine X tal que: (X 1 3I) T = 2 (X 1 3I) T = 2 [(X 1 3I) T ] T = T X 1 3I = X 1 = + 3 X 1 = + (X 1 ) 1 = 1 X = Operações elementares sobre uma matriz : Efectue operações elementares sobre a matriz A = de modo a obter uma matriz do tipo triangular superior. 7
8 1.8. Forma escalonada de uma matriz: Calcule a forma escalonada da seguinte matriz: A = A = forma escalonada reduzida de A forma escalonada de A 1.9. Algoritmo para a inversão de matrizes: Calcule a inversa da matriz A = e da matriz B = [ A I ] = = [ I A 1 ] A 1 = [ B I ] = 8
9 = [ I B 1 ] B 1 = 1/2 2. Determinantes 2.1. Cálculo de determinantes: 1. Calcule os seguintes determinantes: a) A = b) B = c) C = a. = 3 ( 2) 4 1 = 6 4 = 10 b. Pela Regra de Sarrus: = ( 1) ( 1) = 104 c. det B = 0 C C C C41 = M21 = 9
10 = = ( 1 C C C31) = = C11 C31 = M11 M31 = = = (0 24) (3 9) = = Propriedades dos determinantes: Sejam A, B M3 3 (R) tais que det A = 2 e det B = ¼ Calcule: 1. det (2A) 2. det (A 4 B T ) 3. det ( B) 4. det (5A T B) 5. det (AB 1 A T ) 6. det (B 1 A 2 B) 7. det [1/2 (B 1 ) T ] 1. det (2A) = 23 det A = 8 det A = 8 ( 2) = det (A 4 B T ) = det (A 4 ) det (B T ) = det(a 4 ) det B = = det A det A det A det A det B = (det A) 4 det B = ( 2) 4 1/4 = = 4 3. det ( B) = 1 3 det B = det B = 1/4 4. det (5A T B) = 5 3 det (A T B) = 5 3 det(a T ) det B = = 5 3 det A det B = 125 ( 2) (1/4) = 125/2 5. det (AB 1 A T ) = det A det (B 1 ) det (A T ) = det A (1/det B) det A = = 2 4 ( 2) = det (B 1 A 2 B) = det (B 1 ) det (A 2 ) det (B) = = (1/det B) (det A) 2 det B = ( 2) 2 = 4 7. det [1/2 (B 1 ) T ] = (1/2) 3 det[(b 1 ) T ] = (1/8) det (B 1 ) = = (1/8) (1/det B) = ½ 2.3. Resolução de sistemas : Resolve os seguintes sistemas:
11 C.S. = 2. SIST. IMP. C.S. =
12 C.S. = 2.4. Sistemas de Cramer: Verifique se os seguintes sistemas são de Cramer: A = det A = 2 ( 2) 3 1 = 4 3 = 7 0 É sistema de Cramer. 2. A = det A = 1 C11 = M11 = = 2 2 = 0 Não é sistema de Cramer Sistemas homogéneos: Considere o sistema 1. Mostre que (-2, 1, 0) é a solução do sistema dado. 2. Determine o conjunto solução desse sistema. 12
13 1. AX = B onde A =, X = e B = X1 = AX1 = B AX1 = = = = B 2. Pela alínea anterior, X1 = Sistema homogéneo associado: AX = 0 SIST. POSS. E INDET. (grau de ind. = 1) C.S.M = C.S. = = 2.6. Característica da matriz: Diga qual a característica das seguintes matrizes: A = B = C = SIST. IMP. SIST. POSS. E IND. SIST. POSS. E DET. A) car A = 2 Car (A B) = 3 B) car A = 2 car (A B)=2 n.º inc. = 3 C) car A = 3 car(a B) = 3 n.º inc. =
14 2.7. Discussão de Sistemas: Discute os sistemas em função dos parâmetros: Caso 1: se (3 5k)/2 = 0 k = 3/5 car A = 2 car(a A) = 2 n.º inc. = 3 Se k = 3/5 então SIST. POSS. E IND. (grau de ind. = 3 2 = 1) Caso 2: se (3 5k)/2 0 k 3/5 car A = 3 car (A B) = 3 n.º inc. = 3 Se k R\ então SIST. POSS. E DET. 2. = 14
15 Caso 1: se a 1 = 0 a = 1 então = car A = 1 car(a B) = 1 n.º inc. = 3 Se a = 1 então SIST. POSS. E IND. (grau de ind. = 3 1 = 2) Caso 2: se a 1 0 a 1 então Caso 2.1: se 2 a = 0 a = 1 a = 2 = car A = 2 car(a B) = 3 Se a = 2 (a 1) então SIST. IMP. Caso 2.2: se 2 a 0 a 1 a 2 car A = 3 car(a B) = 3 n.º inc. = 3 Se a 1 e a 2 então SIST. POSS. E DET. 3. = Caso 1: se c = 0 então: = Caso 1.1: se 1 + (d/2) = 0 d = 2 então car A = 2 car(a B) = 2 n.º inc. = 3 Se c = 0 e d = 2 então SIST. POSS. E IND. (grau de ind. = 3 2 = 1) 15
Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química
Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz
Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).
F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.
Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes
Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
Sistemas lineares e matrizes, C = e C =
1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira
Universidade Federal de Ouro Preto Departamento de Matemática MTM2 - Introdução à Álgebra Linear - Turmas 8, 82 e 84 Lista - Tiago de Oliveira Reveja a teoria e os exercícios feitos em sala. 2 3 2 0. Sejam
Lista de Exercícios 05 Álgebra Matricial
Lista de Exercícios 05 Álgebra Matricial - 016.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis
Sistemas de Equações Lineares e Matrizes
Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Lista de Exercícios 3 (Matrizes e Sistemas Lineares) b) B 4 2, tal que b ij =
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Departamento Acadêmico de Matemática - DAMAT Geometria Analítica e Álgebra Linear (MA71B) Profa. Dra. Nara Bobko Lista de Exercícios 3 (Matrizes e Sistemas Lineares)
Álgebra matricial exercícios 1-13; sebenta, páginas π
Matemática II 017/18 - Gestão - ESTG/IPBragança Constrói o teu próprio caderno de apontamentos. Resolve todos os exercícios. Cria a tua folha de soluções. Dene os conceitos indicados na última página desta
Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho
Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.
GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais
Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)
Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição
determinantes rita simões departamento de matemática - ua
determinantes rita simões ([email protected]) departamento de matemática - ua 204-205 determinante de uma matriz sejam l,..., l n as linhas de uma matriz do tipo n n; para cada n N, existe uma única função
Métodos Matemáticos II
Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 [email protected] http://www.estv.ipv.pt/paginaspessoais/nbastos.
Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos
Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Avaliação e programa de Álgebra Linear
Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (
MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas
b) 4x 1 6x 2 = 1 Questão 2: Considere as seguintes matrizes: 3y 6 y z condições, calcule x, y e z.
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas
Departamento de Matemática
Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F
Sistemas de Equações lineares
LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a
Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril
Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
ÁLGEBRA LINEAR - MAT0024
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 10 a Lista de exercícios
Trabalhos e Exercícios 1 de Álgebra Linear
Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:
Renato Martins Assunção
Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear
Produto Misto, Determinante e Volume
15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................
2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h)
3.. determinante de uma riz página /5 departamento de emática universidade de aveiro. Determine o número de inversões e classifica qnto à paridade as seguintes permutações de {,, 3, 4, 5}: (3, 4,, 5, )
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de
Aula 7 - Revisão de Álgebra Matricial
23 de Abril de 2018 // 26 de Abril de 2018 Introdução Objetivo da revisão: revisar a notação matricial, técnicas de álgebra linear e alguns resultados importantes Conteúdos: 1 Vetores e matrizes 2 Operações
Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)
Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão
LISTA DE EXERCÍCIOS MATRIZES, SISTEMAS LINEARES E DETERMINANTES
LISTA DE EXERCÍCIOS MATRIZES, SISTEMAS LINEARES E DETERMINANTES. Determine x, y, z e w de modo que: x 3y x + y 3 4 3 y + 4 x + y 5 3 x y 5 w 5 4 d) y + 4 9 x + 4 9 53 x 0 y x w 4 w 3 y 0 x 4x. Sejam as
GAN Introdução à Álgebra Linear Aula 5. Turma A1 Profa. Ana Maria Luz Fassarella do Amaral
GAN 00007 Introdução à Álgebra Linear Aula 5 Turma A1 Profa. Ana Maria Luz Fassarella do Amaral Codificação por multiplicação matricial Exemplo retirado de W. K. Nicholson, Álgebra Linear. Um avião espião
Matrizes - Matemática II /05 1. Matrizes
Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. Exercícios sobre Sistemas de Equações Lineares.
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ANÁLISE NUMÉRICA Exercícios sobre Sistemas de Equações Lineares Considere as seguintes matrizes: [ 0 3 4 Calcule
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Análise multivariada
UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - o Semestre de / MEEC EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Método de Eliminação de Gauss Sistemas de equações lineares Uma equação linear nas variáveis (ou incógnitas) x ; ; x n ; é uma equação do
Lista 1: sistemas de equações lineares; matrizes.
Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
Lista de Álgebra Linear Aplicada
Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2
Álgebra Linear. Aula 02
Álgebra Linear Aula Determinante Para aproveitar 1% dessa aula vocês precisam saber: ü Matrizes ü Equação do 1º grau ü Equação do º grau Como representamos o determinante de uma matriz? Colocando os elementos
ficha 2 determinantes
Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 07
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES
SME0812 Modelos Lineares. Álgebra Matricial. 17 de março de / 1
SME0812 Modelos Lineares Álgebra Matricial 17 de março de 2015 1 / 1 Notação Escreveremos A = A n m para denotar uma matriz de dimensão n m, ou seja, uma matriz com n linhas e m colunas: a 11 a 12 : :
Matemática I. Licenciatura em Economia. 1 Álgebra Linear. 1 o semestre 2012/13. Vectores e Matrizes Sejam 3 A = Determinar as matrizes:
Matemática I 1 o semestre 1/1 Licenciatura em Economia Exercícios com soluções 1 Álgebra Linear Vectores e Matrizes 1.1. Sejam 1 A = 5, B = 1 1 1 Determinar as matrizes: 1 4 5, C = a) A + B; b) A B; c)
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de y + az = a (a 2)x + y + 3z = 0 (a 1)y = 1 a
MAT457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de 018 Questão 1. Se a R, é correto afirmar que o sistema linear y + az = a (a x + y + 3z = 0 (a 1y = 1 a é: (a possível e indeterminado
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho
Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
São tabelas de elementos dispostos ordenadamente em linhas e colunas.
EMENTA (RESUMO) Matrizes Matrizes, determinantes e suas propriedades, Multiplicação de matrizes, Operações com matrizes, Matrizes inversíveis. Sistemas de Equações Lineares Sistemas equações lineares,
Introdução à Álgebra Linear - MTM 112 Prof. Fabiana Fernandes
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática Introdução à Álgebra Linear - MTM 2 Prof. Fabiana Fernandes Lista 02 Sistemas Lineares. Resolva e
Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c
Álgebra Linear I - Lista 0 Transfromações inversas. Matriz inversa Respostas Estude se existe uma matriz A tal que ( ( a b b d A = c d a c para todos os valores de a, b, c e d. Resposta: Seja e dadas B
Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa
Lições de Matemática Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Versão provisória vp Capítulo Matrizes e Determinantes Versão provisória () Generalidades Definição Dados
Algumas Aplicações de Álgebra Linear. Análise de Redes (Network) Fluxo de Trânsito. Circuitos Eléctricos. Equilíbrio de Equações Químicas
Algumas Aplicações de Álgebra Linear Análise de Redes (Network) Fluxo de Trânsito Circuitos Eléctricos Equilíbrio de Equações Químicas Interpolação Polinomial Estudo de Modelos Económicos Compressão de
Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares
Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares 1 Introdução Neste capitulo, estaremos interessados em estudar os sistemas de equações
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre /2018 Engenharia Aeroespacial
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre - 217/218 Engenharia Aeroespacial Problema 1 Calcule A 2 2B + I, ( ( 2 1 onde A =, B =, e I é a matriz identidade
Matrizes - ALGA /05 1. Matrizes
Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores
Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Matrizes - Parte II Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =
= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m
Matrizes e Sistemas de Equações 9 para toda matriz A n X n. Vamos discutir, também, a existência e o cálculo de inversas multiplicativas. A MATRIZ IDENTIDADE Uma matriz muito importante é a matriz / n
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz
Universidade Federal de Goiás Regional Catalão - IMTec
Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação
2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas
UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE
DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Eduardo. Matemática Matrizes
Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos
Álgebra Linear Semana 04
Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa
