Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Tamanho: px
Começar a partir da página:

Download "Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17"

Transcrição

1 Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17

2 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17

3 Definições Seja A = [a kl ] uma matriz quadrada de ordem n Por A kl designamos a matriz quadrada de ordem n 1 que se obtém de A por supressão da linha k e da coluna l ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17

4 Definições Seja A = [a kl ] uma matriz quadrada de ordem n Por A kl designamos a matriz quadrada de ordem n 1 que se obtém de A por supressão da linha k e da coluna l Dado k {1,,n}, o determinante de A é o escalar (1) det(a) = n ( 1) k+l a kl det(a kl ), l=1 com det[a] = a ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17

5 Definições Seja A = [a kl ] uma matriz quadrada de ordem n Por A kl designamos a matriz quadrada de ordem n 1 que se obtém de A por supressão da linha k e da coluna l Dado k {1,,n}, o determinante de A é o escalar (1) det(a) = n ( 1) k+l a kl det(a kl ), l=1 com det[a] = a det(a kl ) diz-se o menor de a kl ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17

6 Definições Seja A = [a kl ] uma matriz quadrada de ordem n Por A kl designamos a matriz quadrada de ordem n 1 que se obtém de A por supressão da linha k e da coluna l Dado k {1,,n}, o determinante de A é o escalar (1) det(a) = n ( 1) k+l a kl det(a kl ), l=1 com det[a] = a det(a kl ) diz-se o menor de a kl ( 1) k+l det(a kl ) diz-se o complemento algébrico de a kl ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17

7 Exemplos n = 2 [ a11 a det 12 a 21 a 22 ] = ( 1) 1+1 a 11 a 22 + ( 1) 1+2 a 12 a 21 = a 11 a 22 a 12 a 21, (k = 1) ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 3 / 17

8 Exemplos n = 2 [ a11 a det 12 a 21 a 22 ] = ( 1) 1+1 a 11 a 22 + ( 1) 1+2 a 12 a 21 = a 11 a 22 a 12 a 21, (k = 1) det [ ] = 2 1 ( 1) 3 = 5 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 3 / 17

9 n = 3 det a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 k = 2 = ( 1) 2+1 a 21 det [ a12 a 13 a 32 a 33 [ + ( 1) 2+2 a11 a a 22 det 13 a 31 a 33 [ + ( 1) 2+3 a11 a a 23 det 12 a 31 a 32 = ] ] ] + + ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 4 / 17

10 Observações ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 5 / 17

11 Observações 1) Também escrevemos A para determinante de A ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 5 / 17

12 Observações 1) Também escrevemos A para determinante de A 2) A expressão (1) é conhecida como expansão de Laplace segundo a linha k, podendo ser igualmente feita segundo uma coluna qualquer ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 5 / 17

13 Observações 1) Também escrevemos A para determinante de A 2) A expressão (1) é conhecida como expansão de Laplace segundo a linha k, podendo ser igualmente feita segundo uma coluna qualquer 3) O determinante não depende da linha (ou da coluna) previamente fixada ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 5 / 17

14 Propriedades do determinante Sejam A = [a kl ] uma matriz real (ou complexa) de ordem n e α,b 1,,b n R (ou C) ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 6 / 17

15 Propriedades do determinante ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 6 / 17 Sejam A = [a kl ] uma matriz real (ou complexa) de ordem n e α,b 1,,b n R (ou C) 1) a 11 a 12 a 1n αa k1 αa k2 αa kn a n1 a n2 a nn = α a 11 a 12 a 1n a k1 a k2 a kn a n1 a n2 a nn

16 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 7 / 17 2) a 11 a 12 a 1n a k1 + b 1 a k2 + b 2 a kn + b n a n1 a n2 a nn = a 11 a 12 a 1n a k1 a k2 a kn a n1 a n2 a nn + + a 11 a 12 a 1n b 1 b 2 b n a n1 a n2 a nn

17 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

18 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha 4) Se B é uma matriz que se obtém de A por troca de duas linhas, então det(b) = det(a) ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

19 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha 4) Se B é uma matriz que se obtém de A por troca de duas linhas, então det(b) = det(a) 5) Se A tem duas linhas iguais, então det(a) = 0 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

20 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha 4) Se B é uma matriz que se obtém de A por troca de duas linhas, então det(b) = det(a) 5) Se A tem duas linhas iguais, então det(a) = 0 Os resultados anteriores são válidos para colunas ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

21 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha 4) Se B é uma matriz que se obtém de A por troca de duas linhas, então det(b) = det(a) 5) Se A tem duas linhas iguais, então det(a) = 0 Os resultados anteriores são válidos para colunas 6) O determinante de uma matriz triangular superior ou inferior é igual ao produto das entradas da diagonal principal ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

22 3) O determinante de A não se altera quando adicionamos a uma linha um múltiplo de outra linha 4) Se B é uma matriz que se obtém de A por troca de duas linhas, então det(b) = det(a) 5) Se A tem duas linhas iguais, então det(a) = 0 Os resultados anteriores são válidos para colunas 6) O determinante de uma matriz triangular superior ou inferior é igual ao produto das entradas da diagonal principal 7) det(i n ) = 1 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 8 / 17

23 Teorema Sejam A, B matrizes de ordem n Então: 1 det(ab) = det(a) det(b) 2 det(a T ) = det(a) 3 Se A é invertível, então det(a 1 ) = 1 det(a) ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 9 / 17

24 Teorema Sejam A, B matrizes de ordem n Então: 1 det(ab) = det(a) det(b) 2 det(a T ) = det(a) 3 Se A é invertível, então det(a 1 ) = 1 det(a) Teorema Seja A uma matriz quadrada Então det(a) = ( 1) l det(u) com l o n o de trocas de linhas efectuadas durante a eliminação de Gauss ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 9 / 17

25 Corolário Uma matriz quadrada A é não singular se e só se det(a) 0 A é invertível se e só se deta 0 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 10 / 17

26 Corolário Uma matriz quadrada A é não singular se e só se det(a) 0 A é invertível se e só se deta 0 Corolário Sendo A uma matriz quadrada, Ax = 0 é determinado se e só se deta 0 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 10 / 17

27 Aplicações do determinante ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 11 / 17

28 Aplicações do determinante Determinação da inversa de uma matriz Seja A uma matriz de ordem n A matriz adjunta de A, adj A, é a matriz de ordem n que se obtém da transposta de A substituindo cada elemento pelo seu complemento algébrico ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 11 / 17

29 Aplicações do determinante Determinação da inversa de uma matriz Seja A uma matriz de ordem n A matriz adjunta de A, adj A, é a matriz de ordem n que se obtém da transposta de A substituindo cada elemento pelo seu complemento algébrico Teorema Se é A é invertível, então A 1 = 1 det(a) adja ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 11 / 17

30 Exemplo A = [ ], ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 12 / 17

31 Exemplo A = [ ], A T = [ ], ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 12 / 17

32 Exemplo A = [ ], A T = [ ], adj A = [ ] ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 12 / 17

33 Exemplo A = [ ], A T = [ ], adj A = [ ] A 1 = [ ] ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 12 / 17

34 Resolução de sistemas possíveis e determinados ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 13 / 17

35 Resolução de sistemas possíveis e determinados Seja A uma matriz invertível de ordem n Considera o sistema Ax = b Então o vector x, em que cada componente x l é igual ao produto do determinante da inversa de A pelo determinante da matriz que se obtém de A substituindo a coluna l pelo vector dos termos independentes b, é solução do sistema ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 13 / 17

36 Resolução de sistemas possíveis e determinados Seja A uma matriz invertível de ordem n Considera o sistema Ax = b Então o vector x, em que cada componente x l é igual ao produto do determinante da inversa de A pelo determinante da matriz que se obtém de A substituindo a coluna l pelo vector dos termos independentes b, é solução do sistema Este método designa-se por regra de Cramer ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 13 / 17

37 Resolução de sistemas possíveis e determinados Seja A uma matriz invertível de ordem n Considera o sistema Ax = b Então o vector x, em que cada componente x l é igual ao produto do determinante da inversa de A pelo determinante da matriz que se obtém de A substituindo a coluna l pelo vector dos termos independentes b, é solução do sistema Este método designa-se por regra de Cramer Exemplo Consideremos o sistema Ax = b onde [ ] 1 2 A =, b = 2 3 [ 0 1 ] ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 13 / 17

38 Atendendo a que det(a) = 1, temos, pela regra de Cramer, x 1 = = 2 e x 2 = = 1 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 14 / 17

39 Exemplo de aplicação à Engenharia Electrotécnica ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 15 / 17

40 ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 16 / 17

41 Exemplo de aplicação à Engenharia Electrotécnica ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 17 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

ALGA - Eng.Civil e Eng. Topográ ca - ISE /

ALGA - Eng.Civil e Eng. Topográ ca - ISE / ALGA - Eng.Civil e Eng. Topográ ca - ISE - 0/0 0. (a) Calcule o sinal das seguintes permutações (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) para calcular, usando a de nição, os

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

ÁLGEBRA LINEAR AULA 4

ÁLGEBRA LINEAR AULA 4 ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ).

n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ). n. 2 MATRIZ INVERSA Modo : utilizando a matriz identidade Seja A uma matriz quadrada de ordem n. Dizemos que A é matriz invertível se existir uma matriz B tal que A. B = B. A = I. (I = matriz unidade ou

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Determinantes. Prof. Márcio Nascimento

Determinantes. Prof. Márcio Nascimento Determinantes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 4 de fevereiro

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Determinantes 1 Permutação e Inversão 2 Determinantes de matriz de

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas

Leia mais

Capítulo 8: Determinantes

Capítulo 8: Determinantes 8 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 8: Determinantes Sumário 1 Propriedades dos Determinantes 211 11 Propriedades Características 211 12 Propriedades

Leia mais

Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa

Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Lições de Matemática Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Versão provisória vp Capítulo Matrizes e Determinantes Versão provisória () Generalidades Definição Dados

Leia mais

n. 4 DETERMINANTES: SARRUS E LAPLACE

n. 4 DETERMINANTES: SARRUS E LAPLACE n. 4 DETERMINANTES: SARRUS E LAPLACE A toda matriz quadrada está associado um número ao qual damos o nome de determinante. Determinante é uma função matricial que associa a cada matriz quadrada um escalar,

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h)

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h) 3.. determinante de uma riz página /5 departamento de emática universidade de aveiro. Determine o número de inversões e classifica qnto à paridade as seguintes permutações de {,, 3, 4, 5}: (3, 4,, 5, )

Leia mais

Álgebra Linear e Geometria Analítica. 6ª aula

Álgebra Linear e Geometria Analítica. 6ª aula Álgebra Linear e Geometria nalítica 6ª aula DETERMINNTES Permutações Uma permutação σ ( p, p, p,, p n ) dos elementos do conjunto {,,,, n} éum arranjo dos n números em alguma ordem sem repetições ou omissões

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 1 3 Departamento de Matemática Álgebra Linear e Geometria Analítica D Primeiro Teste 21 de Novembro de 2009 Nome: Número de caderno: PREENCHA DE FORMA BEM LEGÍVEL Grelha de Respostas A B C D 1 2 3 4 5

Leia mais

1 a Prova de Geometria Analítica e Sistemas Lineares Curso de Ciências Exatas - 14/09/2011 Departamento de Matemática - ICE - UFJF

1 a Prova de Geometria Analítica e Sistemas Lineares Curso de Ciências Exatas - 14/09/2011 Departamento de Matemática - ICE - UFJF 1 a Prova de Geometria Analítica e Sistemas Lineares Curso de Ciências Exatas - 1/09/2011 Departamento de Matemática - ICE - UFJF Quest. 1+2+3 5 6 7 Total Aluno: Matrícula: Turma: Observações: Esta prova

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

Álgebra Linear. gan Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense

Álgebra Linear. gan Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense Álgebra Linear gan 00140 Jones Colombo José Koiller Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense ii Prefácio Eu sempre pensei que ler um livro Não era nenhum

Leia mais

a 21 a 22... a 2n... a n1 a n2... a nn

a 21 a 22... a 2n... a n1 a n2... a nn Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Determinantes. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Determinantes. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Determinantes Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Para uma matriz quadrada A o determinante de A é um número real.

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Matrizes. Curso de linguagem matemática Professor Renato Tião

Matrizes. Curso de linguagem matemática Professor Renato Tião Matrizes Curso de linguagem matemática Professor Renato Tião Uma matriz A m n é uma maneira de apresentar informações numéricas ou algébricas dispostas como numa tabela com m linhas e n colunas cercada

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Regra para calcular o determinante de matrizes quadradas de ordem 2x2:

Regra para calcular o determinante de matrizes quadradas de ordem 2x2: O cálculo do determinante de uma matriz quadrada ou triangular é importante para ajudar a solucionar uma série problemas de álgebra, tais como: Determinar se uma matriz possui inversa (se ela é inversível)

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

Determinantes. Determinante é um número real que se associa a uma matriz quadrada. Determinante de uma Matriz Quadrada de 2ª Ordem

Determinantes. Determinante é um número real que se associa a uma matriz quadrada. Determinante de uma Matriz Quadrada de 2ª Ordem Introdução Determinante é um número real que se associa a uma matriz quadrada Determinante de uma Matriz Quadrada de 2ª Ordem É a diferença entre o produto dos elementos da diagonal principal e da diagonal

Leia mais

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5 Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c

Leia mais

A multiplicação de matrizes não é uma operação

A multiplicação de matrizes não é uma operação A multiplicação de matrizes não é uma operação tão simples como as outras já estudadas até aqui; não basta multiplicar os elementos correspondentes. Vamos introduzi-la por meio da seguinte situação: Durante

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b

Leia mais

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras:

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: SPD Sistema possível determinado: existe apenas um conjunto solução; SPI Sistema possível indeterminado:

Leia mais

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software ª Lista de Exercícios (ALGA) Prof. Helder G. G. de Lima Legenda Cálculos Conceitos Teoria Software Questões. Mostre que as afirmações a seguir não são necessariamente verdadeiras para matrizes quadradas

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pela Universidade Federal do Paraná (UFPR). Graduado em Matemática pela UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 1992.

Leia mais

Introdução à Álgebra Linear - MTM 112 Prof. Fabiana Fernandes

Introdução à Álgebra Linear - MTM 112 Prof. Fabiana Fernandes Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática Introdução à Álgebra Linear - MTM 2 Prof. Fabiana Fernandes Lista 02 Sistemas Lineares. Resolva e

Leia mais

3 Determinantes. 2 Definição Número de trocas de ordem de um termo de uma matriz. 3 Definição Determinante de uma Matriz ( ( ))

3 Determinantes. 2 Definição Número de trocas de ordem de um termo de uma matriz. 3 Definição Determinante de uma Matriz ( ( )) Nova School of Business and Economics Prática Álgebra Linear 1 Definição Termo de uma matriz Produto de elementos de, um e um só por linha e por coluna. Ex.: 2 Definição Número de trocas de ordem de um

Leia mais

Desmistificando o Determinante de uma Matriz

Desmistificando o Determinante de uma Matriz Desmistificando o Determinante de uma Matriz Evandro Monteiro Instituto de Ciências Exatas, Universidade Federal de Alfenas, Campus Alfenas, Rua Gabriel Monteiro da Silva, 700, CEP 37130-000 - Alfenas

Leia mais

Apostila de Matemática 10 Matriz

Apostila de Matemática 10 Matriz Apostila de Matemática 10 Matriz 1.0 Definição m e n são números inteiros maiores que zero. Matriz mxn é uma tabela retangular formada por m.n números reais, dispostos é m linhas e n colunas. A tabela

Leia mais

Solução de Sistemas Lineares: Métodos Exatos

Solução de Sistemas Lineares: Métodos Exatos Capítulo 4 Solução de Sistemas Lineares: Métodos Exatos 4 Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do potencial

Leia mais

Elementos de Matemática Avançada

Elementos de Matemática Avançada Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 lineares Muitos problemas da Física, Matemática, Engenharia, Biologia, economia e outras ciências,

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que:

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: 21002 - Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: Verifique se o ficheiro que recebeu está correcto. O

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Teste 1 de Matemática I - Curso de Arquitectura

Teste 1 de Matemática I - Curso de Arquitectura Teste 1 de Matemática I - Curso de Arquitectura 8 de Outubro de 9 - Teste A 1 Resolva por eliminação de Gauss e descreva geometricamente o conjunto de soluções dossistemasemr : x + y + z = (a) (1 val)

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o Projeto TEIA DO SABER 006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof Dr José Ricardo Zeni Metodologias de Ensino

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

Álgebra Linear - Exercícios (Determinantes)

Álgebra Linear - Exercícios (Determinantes) Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1

Leia mais

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes. Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

, a segunda coluna da matriz A é um múltiplo da primeira coluna.

, a segunda coluna da matriz A é um múltiplo da primeira coluna. Lista de exercícios - 2º ano - Matemática Aluno: Série: Turma: Data: Questão 1 Segundo diversos estudos, a função relaciona o número de dias y necessários para que um corpo, após sua morte, se torne esqueleto,

Leia mais

Aula # 1- Primitivas Imediatas. 3dx = 3x + c Potência de x ax n dx = axn+1 + c Potência de Função f f n dx = f n+1. n+1 6x(3x 2 7) 6 dx = (3x2 7) 7

Aula # 1- Primitivas Imediatas. 3dx = 3x + c Potência de x ax n dx = axn+1 + c Potência de Função f f n dx = f n+1. n+1 6x(3x 2 7) 6 dx = (3x2 7) 7 Regras de Primitivação: Aula # 1- Primitivas Imediatas Função Regra Exemplo Constante kdx = kx + c 3dx = 3x + c Potência de x ax n dx = axn+1 + c n+1 5x 2 dx = 5x3 + c 3 Potência de Função f f n dx = f

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

Sistemas Lineares - Eliminação de Gauss

Sistemas Lineares - Eliminação de Gauss 1-28 Sistemas Lineares - Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-28

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Lucia Catabriga Algoritmos Numéricos II Computação Científica Universidade Federal do Espírito Santo de junho de 24 Resumo Este texto tem por objetivo introduzir os conceitos

Leia mais

Matriz. 1 x+ y+ z 3y z+ 0,3 0,47 0,6 A = 0,47 0,6 x 0,6 x 0,77. Ax+ By = E Cx+ Dy = F. (m ) (m ) g(x) = 10, não têm ponto. a 1 1

Matriz. 1 x+ y+ z 3y z+ 0,3 0,47 0,6 A = 0,47 0,6 x 0,6 x 0,77. Ax+ By = E Cx+ Dy = F. (m ) (m ) g(x) = 10, não têm ponto. a 1 1 Matriz. (Uerj 5) Observe a matriz A, quadrada e de ordem três.,,47,6 A =,47,6 x,6 x,77 Considere que cada elemento a ij dessa matriz é o valor do logaritmo decimal de (i+ j). O valor de x é igual a: a),5

Leia mais

Considerações sobre matrizes no controlo. 1 - Valores Próprios, Vectores Próprios e Equação Característica

Considerações sobre matrizes no controlo. 1 - Valores Próprios, Vectores Próprios e Equação Característica - Valores Próprios, Vectores Próprios e Equação Característica Os valores próprios e vectores próprios duma matriz são valores particulares obtidos da equação onde: λ v A v () A é uma matriz quadrada de

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática Apontamentos das Aulas Teóricas de Álgebra Linear para LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec Nuno Martins Departamento de Matemática Instituto Superior Técnico Fevereiro de 0 Índice Sistemas de

Leia mais

Resolução de algumas questões do Exame Nacional para Ingresso na Pós-Graduação em Computação (PosComp) entre os anos de 2002 e 2013

Resolução de algumas questões do Exame Nacional para Ingresso na Pós-Graduação em Computação (PosComp) entre os anos de 2002 e 2013 Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Eatas e Tecnológicas Resolução de algumas questões do Eame Nacional para Ingresso na Pós-Graduação em Computação PosComp entre os anos

Leia mais

1) (UFV) Seja A uma matriz invertível de ordem 2. Se det (2A) det (A ), então o valor de det A é: a) 2 b) 1 c) 3. e) 4

1) (UFV) Seja A uma matriz invertível de ordem 2. Se det (2A) det (A ), então o valor de det A é: a) 2 b) 1 c) 3. e) 4 ) (UFV) Seja uma matriz invertível de ordem. Se det () det ( ), então o valor de det é: e) 4 ) (UFV) Na matriz quadrada ( a ij ) de ordem, os elementos a, a, a e a, nesta ordem, apresentam a seguinte propriedade:

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais