Capítulo 3 - Sistemas de Equações Lineares

Tamanho: px
Começar a partir da página:

Download "Capítulo 3 - Sistemas de Equações Lineares"

Transcrição

1 Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 46 DeMat-ESTiG

2 Sumário Método da Matriz Inversa Representação Matricial de um Sistema Cálculo da Matriz Inversa Método de Cramer Método de Eliminação de Gauss Classificação dos sistemas Classificação Matemática I 2/ 46 DeMat-ESTiG

3 Motivação Exemplo 1: aplicação de sistemas de equações lineares Uma empresa de transportes marítimos transporta as suas mercadorias em caixas de 3 tipos, designados por A, B e C, dispondo igualmente de 3 tipos de contentores, designados por I, II e III, que podem transportar as seguintes quantidades de caixas: A B C I II III Quantas caixas de cada tipo (x 1, x 2 e x 3 ) deve a empresa preparar para o caso de ter ao seu dispor 42 contentores do tipo I, 27 do tipo II ou 33 do tipo III? Matemática I 3/ 46 DeMat-ESTiG

4 Motivação, continuação Exemplo 1: solução é obtida resolvendo o seguinte sistemas 4x 1 + 5x 2 + 2x 3 = 42 3x 1 + 2x 2 + 2x 3 = 27 2x 1 + 3x 2 + 3x 3 = 33 Este sistema pode representar-se na forma matricial: 4x 1 + 5x 2 + 2x 3 3x 1 + 2x 2 + 2x 3 2x 1 + 3x 2 + 3x 3 = x 1 x 2 x 3 = Como resolver este sistema? Matemática I 4/ 46 DeMat-ESTiG

5 Representação Matricial de um Sistema O sistema com m equações e n incógnitas pode ser representado por a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a m1 x 1 + a m2 x a mn x n = b m a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n. = b 2. a m1 x 1 + a m2 x a mn x n b m a 11 a a 1n x 1 b 1 a 21 a a 2n x 2 b =... a m1 } a m2... {{ a mn } x n } {{ } b m } {{ } A x b Ax = b Matemática I 5/ 46 DeMat-ESTiG

6 Representação Matricial de um Sistema Equação Matricial Sistema pode ser representado pela equação matricial Ax = b A é a matriz dos coeficientes x é vector da incógnitas (solução so sistema) b é vector dos termos independentes do sistema Resolver o sistema consiste em resolver a equação matricial Ax = b em ordem ao vector x Vamos resolver apenas sistemas em que o número de equações é igual ao número de incógnitas (m = n), nesse caso a matriz A é quadrada Matemática I 6/ 46 DeMat-ESTiG

7 Representação Matricial de um Sistema Resolução da Equação Matricial Se A for quadrada e não-singular, existe uma matriz, representada por A 1, que é inversa de A tal que Resolver AA 1 = A 1 A = I Ax = b A 1 Ax = A 1 b I n x = A 1 b x = A 1 b A solução do sistema é igual à multiplicação da matriz inversa, A 1, pelo vector dos termos independentes, b Resolução do sistema passa por calcular A 1 Matemática I 7/ 46 DeMat-ESTiG

8 Cálculo da Matriz Inversa Matriz Adjunta Definição de Matriz Adjunta: Considerando A uma matriz de ordem n, chama-se matriz adjunta de A, e designa-se por adj(a), à matriz de ordem n cujo (j, i)-ésimo elemento é o cofactor (ou complemento algébrico) A ij de a ij : adj (A) = A 11 A 12 A 1n A 21 A 22 A 2n... A n1 A n2 A nn T = A 11 A 21 A n1 A 12 A 22 A n2... A 1n A 2n A nn Matemática I 8/ 46 DeMat-ESTiG

9 Cálculo da Matriz Inversa Exemplo 2: Matriz Adjunta Calcular a matriz adjunta de A, do Exemplo 1, A = Começamos por calcular os cofactores A 11 = ( 1) = 0; A 12 = ( 1) = 5 A 13 = ( 1) = 5; A 21 = ( 1) = 9 A 22 = ( 1) = 8; A 23 = ( 1) = 2 A 31 = ( 1) = 6; A 32 = ( 1) = 2 A 33 = ( 1) = 7 Matemática I 9/ 46 DeMat-ESTiG

10 Cálculo da Matriz Inversa Exemplo 2, continuação adj(a) = T = Matemática I 10/ 46 DeMat-ESTiG

11 Cálculo da Matriz Inversa Desenvolvimento de Laplace Se A for quadrada e de ordem n verifica-se que { A se i = k, a i1 A k1 + a i2 A k a in A kn = 0 se i k. Se i = k corresponde ao determinante de A obtido através do desenvolvimento de Laplace segundo a i-ésima linha Caso i k corresponde ao determinante de uma matriz B cuja linha k é substituída pela linha i, que pelas propriedades dos determinantes é nulo Este resultado pode extender-se ao desenvolvimento de Laplace por coluna { A se j = k, a 1j A 1k + a 2j A 2k a nj A nk = 0 se j k. Matemática I 11/ 46 DeMat-ESTiG

12 Cálculo da Matriz Inversa Exemplo 3: Desenvolvimento de Laplace Considerando a matriz A, do Exemplo 1, vamos calcular 1. Desenvolvimento da linha 2 2. Desenvolvimento da linha 2 com os cofactores da 3 a linha 3. Desenvolvimento da coluna 3 com os cofactores da 1 a coluna Respostas: 1. a 21 A 21 +a 22 A 22 +a 23 A 23 = (3)( 9)+(2)(8)+(2)( 2) = 15 = A 2. a 21 A 31 + a 22 A 32 + a 23 A 33 = (3)(6) + (2)( 2) + (2)( 7) = 0 3. a 13 A 11 + a 23 A 21 + a 33 A 31 = (2)(0) + (2)( 9) + (3)(6) = 0 Matemática I 12/ 46 DeMat-ESTiG

13 Cálculo da Matriz Inversa Matriz Inversa A adj(a) = a 11 a 12 a 1n a 21 a 22 a 2n a i1 a i2 a in... a n1 a n2 a nn A 11 A 21 A j1 A n1 A 12 A 22 A j2 A n2.... A 1n A 2n A jn A nn Como o (i, j)-ésimo elemento da matriz produto A adj(a) é { A se i = j, a i1 A j1 + a i2 A j a in A jn = 0 se i j Matemática I 13/ 46 DeMat-ESTiG

14 Cálculo da Matriz Inversa Matriz Inversa, continuação A A 0 A adj(a) = = A 0 0 A = A I n Da mesma forma adj(a) A = A I n adj(a) A = A I n 1 A adj(a) A = I n A 1 A = I n Matemática I 14/ 46 DeMat-ESTiG

15 Cálculo da Matriz Inversa Matriz Inversa, continuação Se A for uma matriz quadrada de ordem n a sua inversa é A 1 = 1 A adj(a) A admite inversa se e só se A 0 Matemática I 15/ 46 DeMat-ESTiG

16 Cálculo da Matriz Inversa Exemplo 4: Resolução pelo Método da Matriz Inversa Considerando a matriz A, do Exemplo 1, vamos calcular 1. A 1, a matriz inversa de A 2. Resolver o sistema Ax = b, enunciado no Exemplo 1 Respostas: A 1 = 1 A adj(a) = 1 15 x = A 1 b = = = Matemática I 16/ 46 DeMat-ESTiG

17 Componentes do Vector Solução Como vimos anteriormente, a solução dum sistema Ax = b, com n equações e n incógnitas, existe e é única se A 0 e é dada por x = x 1 x 2. x n = A 1 b = A 11 A. A 1i A. A 1n A Da igualdade anterior verificamos que A 21 A A 2i A A 2n A A n1 A A ni A A nn A b 1 b 2. b n x i = A 1i A b 1 + A 2i A b A ni A b n para (1 i n). Matemática I 17/ 46 DeMat-ESTiG

18 Método de Cramer Seja A i uma matriz obtida de A, substituindo a coluna i por b a 11 a 12 a 1i 1 b 1 a 1i+1 a 1n a 21 a 22 a 2i 1 b 2 a 2i+1 a 2n A i = a n1 a n2 a ni 1 b n a ni+1 a nn Calculando A i pelo desenvolvimento de Laplace da i-ésima coluna: A i = b 1 A 1i + b 2 A 2i + + b n A ni = x i A Assim concluímos que x i = A i, para i = 1, 2,..., n A Matemática I 18/ 46 DeMat-ESTiG

19 Exemplo 5: Método de Cramer Resolver sistema Ax = b, do Exemplo 1, pelo método de Cramer x 1 = A 1 A x 2 = A 2 A x 3 = A 3 A = = = = = 3 = = 4 = = 5 Matemática I 19/ 46 DeMat-ESTiG

20 Sistemas Equivalentes Dois sistemas dizem-se equivalentes se todas as soluções de um deles (e só essas) forem também soluções do outro. 1. Dois sistemas são equivalentes se um for obtido do outro por alteração da ordem de duas das suas equações: E i E j 2. Dois sistemas são equivalentes se um for obtido do outro por multiplicação de uma das suas equações por um escalar não nulo: E i αe i, com α 0 3. Dois sistemas são equivalentes se a uma das suas equações for adicionado (ou subtraído) um múltiplo de outra equação: E i E i + αe j. Matemática I 20/ 46 DeMat-ESTiG

21 Exemplo 1: Sistemas Equivalentes Os seguintes sistemas são equivalentes E 1 2E 1 2x 3y + z = 4 x + y z = 1 3x z = 1 x y + z = 1 2x + 2y 2z = 2 2x 3y + z = 4 3x z = 1 x y + z = 1 E 1 E 2 E 3 E 3 E 1 x + y z = 1 2x 3y + z = 4 3x z = 1 x y + z = 1 2x + 2y 2z = 2 2x 3y + z = 4 x 2y + z = 3 x y + z = 1 Matemática I 21/ 46 DeMat-ESTiG

22 Exemplo 1, continuação Operações sobre equações apenas afecta linhas das matrizes A e b, sistema Ax = b é representado, para efeitos de resolução, pela matriz aumentada [A b] L 1 2L L 1 L L 3 L 3 L Estas operações são designadas por operações elementares por linhas Matemática I 22/ 46 DeMat-ESTiG

23 Sistemas Triangulares Os sistemas triangulares são facilmente resolvidos por substituição Se A é triangular superior os elementos abaixo da diagonal principal são nulos: a ij = 0 para i > j e o sistema Ax = b é resolvido por substituição regressiva n x n = b n /a nn, x i = b i a ij x j /a ii, i = n 1,..., 1 j=i+1 Se A é triangular inferior os elementos acima da diagonal principal são todos nulos: a ij = 0 para i < j e o sistema Ax = b é resolvido por substituição progressiva i 1 x 1 = b 1 /a 11, x i = b i a ij x j /a ii, i = 2,..., n j=1 Matemática I 23/ 46 DeMat-ESTiG

24 Exemplo 2: Sistemas Triangulares Sistema triangular inferior y 1 = 3 2y Ay = b 1 + y 2 = 7 4y 1 + 3y 2 + y 3 = 17 3y 1 + 4y 2 + y 3 + y 4 = 15 Resolvendo por substiutição progressiva obtemos y = [ ] T Sistema triangular superior 2x 1 + x 2 + x 3 = 3 x Ax = b 2 + x 3 + x 4 = 1 2x 3 + 2x 4 = 2 2x 4 = 0 Resolvendo por substituição progressiva obtemos x = [ ] T Matemática I 24/ 46 DeMat-ESTiG

25 Método de Gauss 1. Reduzir o sistema à forma triangular através de operações elementares por linhas 2. Resolver o sistema triangular por substituição Este método é por vezes designado por método de eliminação de Gauss, pois consiste em eliminar as incógnitas das equações até se poder resolver o sistema por substituição Matemática I 25/ 46 DeMat-ESTiG

26 Exemplo 3: Método de Eliminação de Gauss 2x 3y + z = 4 x + y z = 1 3x z = 1 x y + z = 1 A matriz aumentada é igual a x y = 1 1 z L 1 L Matemática I 26/ 46 DeMat-ESTiG

27 Exemplo 3, continuação L 2 L 2 2L1 L 3 L 3 3L1 L 4 L 4 + L L 3 L 3 (3/5)L /5 2/ Terminada a primeira faze vamos proceder à substituição regressiva x + y z = 1 5y + 3z = 6 1/5z = 2/5 0 = 0 x + y z = 1 5y + 3(2) = 6 z = 2 Matemática I 27/ 46 DeMat-ESTiG

28 Exemplo 3, continuação x + y z = 1 y = 0 z = 2 x = 1 y = 0 z = 2 x = 1 y = 0 z = 2 Matemática I 28/ 46 DeMat-ESTiG

29 Método de Gauss-Jordan 1. Anular todos os coeficientes situados fora da diagonal principal 2. Assegurar que todos os coeficientes da diagonal principal são unitários. Este método consiste em manter apenas uma incógnita por equação, eliminado as restantes, de maneira a obter directamente a solução do sistema Matemática I 29/ 46 DeMat-ESTiG

30 Exemplo 4: Método de Gauss-Jordan Sistema do exemplo 4 2x 3y + z = 4 x + y z = 1 3x z = 1 x y + z = 1 é equivalente a outro que pode ser representado pela matriz aumentada L 1 L 1 + L L 2 L 2 3L Matemática I 30/ 46 DeMat-ESTiG

31 Exemplo 4, continuação L 2 ( 1/5)L que corresponde ao sistema L 1 L 1 L 2 x = 1 y = 0 z = Matemática I 31/ 46 DeMat-ESTiG

32 Cálculo da Inversa pelo Método de Gauss-Jordan Se A uma matriz n n, procuramos uma matriz B tal que AB = BA = I n Colunas de B denotadas por x j, isto é B = [x 1 x 2... x n], com b 1j b 2j x j = (1 j n). b nj Denotamos colunas de I n por e j, tal que I n = [e 1 e 2... e n], com e 1 =., e 2 =.,, en = Matemática I 32/ 46 DeMat-ESTiG

33 Cálculo da Inversa pelo Método de Gauss-Jordan, continuação Temos que AB = A [x 1 x 2... x n ] = [Ax 1 Ax 2... Ax n ] Por outro lado queremos determinar B tal que AB = I n, isto é [Ax 1 Ax 2... Ax n ] = [e 1 e 2... e n ] Que corresponde a resolver n sistemas lineares da forma Ax j = e j, (1 j n) Como a matriz dos coeficientes A é a mesma, podem ser resolvidos em simultâneo pelo método de Gauss-Jordan aplicado à matriz aumentada [A e 1 e 2... e n ] = [A I n ] Matemática I 33/ 46 DeMat-ESTiG

34 Método para Cálculo da Inversa Dada uma matriz A de dimensões n n: 1. Formar a matriz aumentada [A I n ], juntado a identidade I n a A 2. Reduzir através de operações elementares por linhas a matriz A à matriz identidade; se nesta faze aparecer uma linha só com elementos nulos paramos pois significa que A não admite inversa 3. Concluída a fase anterior obtemos [C D] 3.1 Se C = I n, então D = A Se C I n, então C tem uma linha nula. Neste caso A não admite inversa, é singular Matemática I 34/ 46 DeMat-ESTiG

35 Exemplo 5: Inversa pelo Método de Gauss-Jordan Calcular a inversa de A = Começamos por construir a matriz aumentada [A I] L 3 L 3 L Matemática I 35/ 46 DeMat-ESTiG

36 Exemplo 5: Inversa pelo Método de Gauss-Jordan L 1 L 1 2L 2 L 3 (1/2)L L 1 L 1 L A 1 = /2 0 1/2 1/2 2 1/ /2 0 1/2 1/2 2 1/ /2 0 1/2 = [ I A 1] Matemática I 36/ 46 DeMat-ESTiG

37 Classificação dos Sistemas Quanto à Solução Sistema linear pode ter Solução única Solução múltipla Não ter solução Exemplo: seja o sistema x + 3z = 2 2x + 3y 2z = 1 3y + 4z = 3 Verifique que os vectores [ 2 1 0] T e [7 3 3] T são ambos solução deste sistema Como determinar o tipo de solução sem resolver? Matemática I 37/ 46 DeMat-ESTiG

38 Sistemas de Equações Lineares Ax = b a 11 a a 1n x 1 b 1 a 21 a a 2n x 2 b = 2. a m1 a m2... a mn x n b m a 11 x 1 + a 12 x a 1n x n a 21 x 1 + a 22 x a 2n x n. a m1 x 1 + a m2 x a mnx n b 1 b = 2. b m a 11 a 12 a 1n b 1 a 21 a x 1. + x 22 a n b xn. = 2. x 1a i1 + x 2 a i x na in = b a m1 a m2 a mn b m Vector b é gerado pela combinação linear dos vectores coluna de A Vector x contêm os coeficientes da combinação linear Matemática I 38/ 46 DeMat-ESTiG

39 Sistemas com 2 equações 2 incógnitas Ax = b [ ] [ ] a11 a 12 x1 = a 21 a 22 x 2 [ b1 b 2 ] [ ] [ ] a11 a12 x 1 + x a 2 = 21 a 22 [ b1 b 2 ] Vectores a i1 e a i2 IR 2 geram qualquer vector b IR 2 se forem não colineares: A 0 solução única Se a i1 e a i2 forem colineares ( A = 0) só geram b se este for também colinear A j = 0 (para j = 1 ou 2) solução múltipla Matemática I 39/ 46 DeMat-ESTiG

40 Interpretação Geométrica de um Sistemas 2 2 b ai1 x1ai1 b ai1 ai2 x2ai2 ai1 e ai2 não colineares: solução única ai2 ai1, ai2 e b colineares: solução múltipla ai1 b ai2 ai1 e ai2 colineares e b não colinear: não existe solução Matemática I 40/ 46 DeMat-ESTiG

41 Sistemas com 3 equações 3 incógnitas Ax = b a 11 a 12 a 13 x 1 b 1 a 11 a 12 a 13 b 1 a 21 a 22 a 23 x 2 = b 2 x 1 a 21 +x 2 a 22 +x 3 a 23 = b 2 a 31 a 32 a 33 x 3 b 3 a 31 a 32 a 33 b 3 Vectores a i1, a i2 e a i3 IR 3 geram qualquer vector b IR 3 se forem não coplanares: A 0 solução única Se a i1, a i2 e a i3 forem coplanares ( A = 0) só geram b se este for também coplanar A j = 0 (para j = 1 e 2) solução múltipla Matemática I 41/ 46 DeMat-ESTiG

42 Classificação Sistemas com n equações n incógnitas Sistema Ax = b com A de ordem n n 1. Sistema consistente (sistema com solução) 1.1 Solução única A Solução múltipla A = 0 e A j = 0, para j = 1, 2,..., n 1 2. Sistema inconsistente A = 0 e existir um A j tal que A j 0, j = 1, 2,..., n 1 (sistema sem solução) Matemática I 42/ 46 DeMat-ESTiG

43 Classificação Exemplo 6: classificação de sistemas lineares x 2 Ax = b y = z 3 1. Indique que tipo de solução (sem a calcular) admite este sistema 2. Calcule a solução do sistema A = = 0 solução múltipla ou sem solução A 1 = = 0 e A = = 0 solução múltipla Matemática I 43/ 46 DeMat-ESTiG

44 Classificação Exemplo 7, continuação Aplicando o método de eliminação de Gauss [A b] L 2 L 2 +2L x + 3z = 2 x = 2 + 3z L 3 L 3 L y + 4z = 3 y = 3 4z = 0 z IR 2 + 3α Solução geral é 3 4α com α IR 3 α Podemos obter soluções particulares atribuindo valores a α Matemática I 44/ 46 DeMat-ESTiG

45 Classificação Sistemas homogéneos Sistemas em que o vector dos termos independentes é o vector nulo Ax = 0 Têm sempre pelo menos uma solução: Se A 0, x = A 1 0 = 0 (solução trivial x = 0 é única) se A = 0 então como a coluna j de A j é nula temos A j = 0 (solução múltipla) x + 3z = 0 Exemplo: Ax = 0 2x + 3y 2z = 0, como A = 0, verifique 3y + 4z = 0 que admite outras soluções para além da trivial, [0 0 0] T, como por exemplo [9 4 3] T Matemática I 45/ 46 DeMat-ESTiG

46 Classificação Bibliografia Bernard Kolman, "Introdução à Álgebra Linear com Aplicações", Prentice-Hall do Brasil, 1998 Ia. S. Bugrov e S. M. Nikolski, "Matemática para Engenharia, Vol. 1 - Elementos de Álgebra Linear e de Geometria Analítica", Editora Mir Moscovo, 1986 Matemática I 46/ 46 DeMat-ESTiG

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 22

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \.

[ \ x Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV1 &DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV Å 1Ro}HV *HUDLV Recordemos o caso mais simples de um VLVWHPD de duas HTXDo}HVOLQHDUHV nas duas LQFyJQLWDV [ e \. [\ [\ É fácil verificar

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Departamento de Matemática para a Ciência e Tecnologia Universidade do Minho 2005/2006 Engenharia e Gestão Industrial Engenharia Electrónica Industrial e de Computadores

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011

Álgebra Linear Resumo das aulas teóricas e práticas Paulo R. Pinto http://www.math.ist.utl.pt/ ppinto/ Lisboa, Novembro de 2011 Álgebra Linear Resumo das aulas teóricas e práticas Paulo R Pinto http://wwwmathistutlpt/ ppinto/ Lisboa, Novembro de 2011 Conteúdo 1 Matrizes e sistemas lineares 1 11 Álgebra das Matrizes 1 12 Operações

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Valores e Vectores Próprios Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Ano Lectivo 24/25 Conteúdo Definição de Valor e Vector Próprios 2 2 Um Eemplo de Aplicação 8 3

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j Cap. 2.- Matrizes e Sistemas Lineares 2.. Definição Matriz é um conjunto organizado de números dispostos em linhas e colunas. Representações Matriz retangular A, m x n (eme por ene) a 2 a n A=[a a 2 a

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

Unidade II - Sistemas de Equações Lineares

Unidade II - Sistemas de Equações Lineares Unidade II - Sistemas de Equações Lineares 1- Situando a Temática Discutiremos agora um dos mais importantes temas da matemática: Sistemas de Equações Lineares Trata-se de um tema que tem aplicações dentro

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma:

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: Sistemas Lineares Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: s: 2 3 6 a) 5 2 3 7 b) 9 2 3 Resolução de sistemas lineares Metodo da adição 4 100

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( )

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( ) Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Matriz ( ) Conjunto de elementos dispostos em linhas e colunas. Ex.: 0 1 é uma matriz com 2 linhas e 3 colunas. 2 Definição

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Carga horária: 60 horas Créditos: 04. Matrizes, Determinantes, Sistemas de Equações Lineares e Geometria Analítica.

Carga horária: 60 horas Créditos: 04. Matrizes, Determinantes, Sistemas de Equações Lineares e Geometria Analítica. Disciplina: Matemática para o Ensino Básico IV Prof Ms José Elias Dos Santos Filho Curso de Licenciatura em Matemática UFPBVIRTUAL elias@ccaeufpbbr Ambiente Virtual de Aprendizagem: Moodle wwweadufpbbr

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Capítulo 5 - Funções Reais de Variável Real

Capítulo 5 - Funções Reais de Variável Real Capítulo 5 - Funções Reais de Variável Real Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Códigos Reed-Solomon CAPÍTULO 9

Códigos Reed-Solomon CAPÍTULO 9 CAPÍTULO 9 Códigos Reed-Solomon Um dos problemas na Teoria de Códigos é determinar a distância mínima de um dado código. Tratando-se de códigos cíclicos, por vezes conseguimos controlar a distância mínima

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

Sistemas Lineares e Escalonamento

Sistemas Lineares e Escalonamento Capítulo 1 Sistemas Lineares e Escalonamento Antes de iniciarmos nos assuntos geométricos da Geometria Analítica, vamos recordar algumas técnicas sobre escalonamento de matrizes com aplicações na solução

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto \por N(f) ou Ker (f).

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 15

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Capítulo 1: Sistemas Lineares e Matrizes

Capítulo 1: Sistemas Lineares e Matrizes 1 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 1: Sistemas Lineares e Matrizes Sumário 1 O que é Álgebra Linear?............... 2 1.1 Corpos.........................

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Sumário - Introdução

Sumário - Introdução Introdução - O planeamento económico é um tipo de política estrutural Segundo Amaral é uma forma intervencionista de realizar política económica estrutural e baseia-se na preparação e execução de planos,

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Gobooks.com.br. PucQuePariu.com.br

Gobooks.com.br. PucQuePariu.com.br ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre

Leia mais

Caderno de Exercícios

Caderno de Exercícios Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto Departamento de Engenharia Electrotécnica Curso de Engenharia Electrotécnica Electrónica e Computadores Disciplina de FEELE Caderno

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica

Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica Na disciplina de Eletricidade constatou-se que a análise no tempo de um circuito com condensadores

Leia mais

Modelos de Equações simultâneas

Modelos de Equações simultâneas Modelos de Equações simultâneas y 1 = α 1 y 2 + β 1 z 1 + u 1 y 2 = α 2 y 1 + β 2 z 2 + u 2 Capítulo 16 1 Modelo de equações simultâneas Exemplo de determinação de horas e salário. 2 Modelo de equações

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL Cálculo Álgebra Linear Programação Computacional Metodologia Científica Realização: Fortaleza, Fevereiro/2012 UNIVERSIDADE

Leia mais

Manual do Gestor da Informação do Sistema

Manual do Gestor da Informação do Sistema Faculdade de Engenharia da Universidade do Porto Licenciatura Informática e Computação Laboratório de Informática Avançada Automatização de Horários Manual do Gestor da Informação do Sistema João Braga

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN MÉTODOS DESCRITIVOS Há determinados problemas em Geometria Descritiva

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais