Modelos de Equações simultâneas
|
|
|
- Rebeca de Almada Mendes
- 10 Há anos
- Visualizações:
Transcrição
1 Modelos de Equações simultâneas y 1 = α 1 y 2 + β 1 z 1 + u 1 y 2 = α 2 y 1 + β 2 z 2 + u 2 Capítulo 16 1
2 Modelo de equações simultâneas Exemplo de determinação de horas e salário. 2
3 Modelo de equações simultâneas Tanto h quanto w são endógenas pois ambas são determinadas pelo equilíbrio entre a oferta e a demanda. z 1 z 2 são exógenas: permitirá identificar a equação de demanda e de oferta. Sem uma variável equivalente na curva de demanda, a oferta não pode ser identificada e não pode ser estimada consistentemente. E vice-versa. 3
4 Modelo de equações simultâneas α 1 e α 2 são diferentes: as inclinações das funções de oferta e demanda diferem. Dados z 1, u 1,, z 2, u 2 determinamos h e w. As variáveis z não são correlacionadas com os termos de erro u. u 1 e u 2 são chamados de erros estruturais. z 1 e,, z 2 devem ser variáveis diferentes, uma afetando oferta e outra afetando demanda. 4
5 Modelo de Equação simultânea Viés de simultaneidade y 1 = α 1 y 2 + β 1 z 1 + u 1 y 2 = α 2 y 1 + β 2 z 2 + u 2 Uma variável explicativa que é determinada simultaneamente com a variável dependente geralmente é correlacionada com o termo de erro, gerando um viés e inconsistência do estimador MQO. 5
6 Modelo de Equação simultânea Viés de simultaneidade Para solucionar para y 2 : 6
7 Modelo de Equação simultânea Equação na forma reduzida Parâmetros na forma reduzida (funções não lineares dos parâmetros estruturais): Erro na forma reduzida: 7
8 Modelo de Equação simultânea Equação na forma reduzida Os parâmetros na forma reduzida podem ser estimados pelo MQO, pois o erro na forma reduzida não é correlacionado com os z s. Também há a forma reduzida de y1. Somente sob determinadas condições podemos achar os estimadores dos parâmetros da equação estrutural por MQO. 8
9 O MES geral (cont.) Podemos ver que, uma vez que v2 é uma função linear de u1, y2 é correlacionado como o erro e α1 é viesado a isso se chama viés de simultaneidade. O sinal do viés é complicado, mas podemos usar a regra de bolso da regressão simples: O viés tem o mesmo sinal de α 2/(1 α2α 1). 9
10 Identificação e estimação de uma equação estrutural - Sistema de duas equações Condição crucial para identificação: cada variável explicativa seja não correlacionada com o termo de erro. Esta condição não se mantém no MES. 10
11 Identificação e estimação de uma equação estrutural - Sistema de duas equações Exemplo: Onde q é o consumo per capita de leite em nível municipal, p é o preço médio por galão de leite do município, z1 é o preço da alimentação do gado (exógeno nas equações). oferta demanda 11
12 Identificação e estimação de uma equação estrutural - Sistema de duas equações Qual das duas equações pode ser identificada? A equação de demanda é identificada: a variável z1 será variável instrumental do preço na equação de demanda. A equação de oferta não será identificada. 12
13 Identificação da equação de demanda w D S (z=z1) S (z=z2) A variável z1 desloca a equação de oferta sem afetar a equação de demanda S (z=z3) h 13
14 Identificação no MES geral y1 = a1y2 + b1z1 + u1 y2 = a2y1 + b2z2 + u2 Represente por z 1 todas as exógenas da primeira equação, e por z 2 todas as exógenas da segunda. Não há problema se houver alguma sobreposição de algumas variáveis de z 1 e z 2. Para identificar a equação 1, devem existir algumas variáveis em z 2 que não estão em z 1. Para identificar a equação 2, deve, existir algumas variáveis em z 1 que não estão em z 2. 14
15 Identificação no MES geral z1 e z2 contém variáveis exógenas diferentes ou seja, há restrições de exclusão no modelo (variáveis que existem numa equação e não existem em outra equação). 15
16 Identificação no MES geral Condição de ordem (necessária para a condição de classificação): Condição de ordem para identificação da primeira equação estabelece que pelo menos uma variável exógena seja excluída dessa equação. 16
17 Identificação no MES geral Condição de classificação para a identificação: A primeira equação em um modelo de equações simultâneas com duas equações será identificada se e somente se, a segunda equação contiver ao menos uma variável exógena (com um coeficiente diferente de zero) que seja excluída da primeira equação. 17
18 Exemplo:Inflação e abertura da Economia A primeira equação será identificada, se o coeficiente de log(land) for diferente de zero. A segunda equação não é identificada. 18
19 Sistemas com mais de duas equações O estudo da identificação geral em modelos de equações simultâneas com mais de duas equações requere o uso de álgebra matricial. 19
20 Sistemas com mais de duas equações Os y g são as variáveis endógenas. Os z j são variáveis exógenas. O primeiro subscrito nos parâmetros indica o número da equação. O segundo subscrito indica a variável. 20
21 Sistemas com mais de duas equações Não conseguimos mostrar que uma equação em um MES é identificada, contudo, verificamos quando certas equações não são identificadas. MQO não será consistente 21
22 Sistemas com mais de duas equações Condição de ordem para identificação: uma equação em qualquer MES satisfaz a condição de ordem para a identificação se o número de variáveis exógenas excluídas da equação for pelo menos tão grande quanto o número de variáveis endógenas existentes no lado direito da equação. 22
23 Sistemas com mais de duas equações 16.28: passa na condição de ordem : não passa na condição de ordem : passa na condição de ordem. 23
24 Sistemas com mais de duas equações Em termos de condição de ordem: Uma equação é sobreidentificada: 16.27, há mais variáveis instrumentais disponíveis do que variáveis endógenas. Uma equação é exatamente identificada: 16.28, variável endógena igual ao número de variável exógena. Uma equação não é identificada: 16.29, número de variável endógena é maior que o número de variável exógena. 24
Contabilometria. Aula 11 Regressão Linear Múltipla e Variáveis Dummy
Contailometria Aula Regressão Linear Múltipla e Variáveis Dummy O Modelo de Regressão Múltipla Ideia: Examinar a relação linear entre variável dependente (Y) & ou mais variáveis independentes (X i ). Modelo
AULAS 02 E 03 Modelo de Regressão Simples
1 AULAS 02 E 03 Modelo de Regressão Simples Ernesto F. L. Amaral 04 e 09 de março de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à
AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais
1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:
Discussão de Sistemas Teorema de Rouché Capelli
Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema
Faculdade Sagrada Família
AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:
Uma e.d.o. de segunda ordem é da forma
Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear
CURSO de CIÊNCIAS ECONÔMICAS - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2006 e 1 o semestre letivo de 2007 CURSO de CIÊNCIAS ECONÔMICAS - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:
Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008
Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado
Capítulo 3 - Sistemas de Equações Lineares
Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/
Análise de Regressão Linear Simples e Múltipla
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla
Contabilometria. Aula 10 Grau de Ajustamento e Verificação das Premissas MQO
Contabilometria Aula 10 Grau de Ajustamento e Verificação das Premissas MQO Ferramentas -------- Análise de Dados -------- Regressão Regressão Linear - Exemplo Usando o Excel Regressão Linear Output do
Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
Capítulo 3 - Sistemas de Equações Lineares
Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/
Capítulo II. Faltas entre fases e entre espiras Por Geraldo Rocha e Paulo Lima* Proteção de geradores
22 Capítulo II Faltas entre fases e entre espiras Por Geraldo Rocha e Paulo Lima* A proteção do gerador deve ser analisada cuidadosamente, não apenas para faltas, mas também para as diversas condições
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
função de produção côncava. 1 É importante lembrar que este resultado é condicional ao fato das empresas apresentarem uma
90 6. CONCLUSÃO Segundo a teoria microecônomica tradicional, se as pequenas empresas brasileiras são tomadores de preços, atuam nos mesmos mercados e possuem a mesma função de produção, elas deveriam obter
RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.
RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é
o conjunto das coberturas de dominós de uma superfície quadriculada S. Um caminho v 0 v 1...v n
efinições Preliminares Na introdução foi apresentado o conceito de superfície quadriculada bicolorida e balanceada. Os discos com buracos estão mergulhados em R, mas não necessariamente estão no plano
Ajuste de Curvas. Ajuste de Curvas
Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente
Programação Linear. SOLVER EXCEL Prof. José Luiz. Solução via Excel
Programação Linear SOLVER EXCEL Prof. José Luiz Solução via Excel 1. Organizar os dados na planilha 1. Reservar células na planilha para representar o coeficiente de cada variável de decisão no modelo
5 SIMULACAO, EXPERIMENTOS E CALIBRAÇÃO DO ATUADOR
5 SIMULACAO, EXPERIMENTOS E CALIBRAÇÃO DO ATUADOR 5.1. Simulação do Atuador O software MATLAB foi usado para a simulação do sistema. As rotinas programadas, com 120 funções e cerca de 4000 linhas de código,
a 1 x 1 +... + a n x n = b,
Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição
Lista de Exercícios nº 1 - Parte I e II
DISCIPLINA: MACROECONOMIA 24/03/2015 Prof. João Basilio Pereima Neto E-mail: [email protected] Lista de Exercícios nº 1 - Parte I e II 1. Modelo OA - Mercado de Trabalho com flexibilidade de Preços
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos
Pindyck & Rubinfeld, Capítulo 2, Oferta e Demanda :: REVISÃO
Pindyck & Rubinfeld, Capítulo 2, Oferta e Demanda :: REVIÃO 1. uponha que um clima excepcionalmente quente ocasione um deslocamento para a direita da curva de demanda de sorvete. Por que o preço de equilíbrio
RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática Equações Diferenciais RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM HOMOGÊNEAS, COM COEFICIENTES CONSTANTES FORMA
Problemas de Valor Inicial para Equações Diferenciais Ordinárias
Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados
1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão.
1. Difusão Com frequência, materiais de todos os tipos são tratados termicamente para melhorar as suas propriedades. Os fenômenos que ocorrem durante um tratamento térmico envolvem quase sempre difusão
FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.
FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau
Microeconomia I. Bibliografia. Elasticidade. Arilton Teixeira [email protected] 2012. Mankiw, cap. 5. Pindyck and Rubenfeld, caps. 2 e 4.
Microeconomia I Arilton Teixeira [email protected] 2012 1 Mankiw, cap. 5. Bibliografia Pindyck and Rubenfeld, caps. 2 e 4. 2 Elasticidade Será que as empresas conhecem as funções demanda por seus produtos?
PP 301 Engenharia de Reservatórios I 11/05/2011
PP 301 Engenharia de Reservatórios I 11/05/2011 As informações abaixo têm como objetivo auxiliar o aluno quanto à organização dos tópicos principais abordados em sala e não excluem a necessidade de estudo
E, finalmente, não foram feitos testes com restrições de acoplamento e produtos indivisíveis, uma vez que não foram elaborados métodos eficientes
6 Escalabilidade Na introdução desta dissertação, entre os objetivos citados, foi falado de flexibilidade e escalabilidade. Este modelo é fundamentalmente linear 1 e relativamente simples. Estas características
Quadro 1: Classificação do fluxo aéreo segundo o atraso médio das aeronaves
5 O Desempenho Atual O nível de serviço de um aeroporto está diretamente ligado aos índices de atrasos nos seus voos, e, para analisar o nível de serviço do Aeroporto Internacional do Rio de Janeiro, tomou-se
A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada.
Aplicações da lei de Gauss A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. De maneira genérica, a lei de Gauss diz que: Fluxo elétrico sobre
Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado
Parte X Testedegeradoresde números aleatórios Os usuários de uma simulação devem se certificar de que os números fornecidos pelo gerador de números aleatórios são suficientemente aleatórios. O primeiro
Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática
Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses
CPV 82% de aprovação dos nossos alunos na ESPM
CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1
Análise de Arredondamento em Ponto Flutuante
Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto
Prova Escrita de Economia A
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Economia A.º Ano de Escolaridade Decreto-Lei n.º 9/202, de 5 de julho Prova 72/2.ª Fase Braille Critérios de Classificação 2 Páginas 205 Prova
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
Curso: Sistemas de Informação 13/04/2006 Economia e Gestão Financeira 1º Avaliação Prof. Ivaldir Vaz
1 1. O problema fundamental com o qual a Economia se preocupa é: a) A pobreza. b) O controle dos bens produzidos. c) A escassez. d) A taxação daqueles que recebem toda e qualquer espécie de renda. e) A
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:26. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade udwig Maximilian de Munique, Alemanha Universidade Federal da
Gabarito da Prova de Oficinas dos Velhos Ano 2008
Gabarito da Prova de Oficinas dos Velhos Ano 2008 12 de maio de 2008 1 (a) O objetivo principal da oficina de espectroscopia é que os aprendizes aprendessem, rápido, a interpretar espectros e linhas espectrais,
f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana
Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por
Laços Fortes e Fracos
Laços Fortes e Fracos Redes Sociais e Econômicas Prof. André Vignatti A Força de Laços em Redes de Larga Escala Para estudar laços fracos e fortes, foi feita uma pesquisa usando dados reais de uma companhia
Aula 9 Plano tangente, diferencial e gradiente
MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para
5 A Metodologia de Estudo de Eventos
57 5 A Metodologia de Estudo de Eventos 5.1. Principais Conceitos Introduzido em 1969 pelo estudo de Fama, Fisher, Jensen e Roll, o estudo de evento consiste na análise quanto à existência ou não de uma
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
3 Previsão da demanda
42 3 Previsão da demanda Este capítulo estuda o processo de previsão da demanda através de métodos quantitativos, assim como estuda algumas medidas de erro de previsão. Num processo de previsão de demanda,
Os Segredos da Produtividade. por Pedro Conceição
Os Segredos da Produtividade por Pedro Conceição Em 1950, cada português produzia durante uma hora de trabalho um quinto do que um trabalhador norte-americano conseguia na mesma hora. Em 1999 esta diferença
Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007
Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está
7 Considerações finais
243 7 Considerações finais A utilização de outros tipos de materiais, como o aço inoxidável, na construção civil vem despertando interesse devido aos benefícios desse aço, e a tendência decrescente de
Exercícios 1. Determinar x de modo que a matriz
setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n
x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior).
2 Lentes Metálicas Este capítulo destina-se a apresentar os princípios básicos de funcionamento e dimensionamento de lentes metálicas. Apresenta, ainda, comparações com as lentes dielétricas, cujas técnicas
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados
CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com.
CONCURSO PETROBRAS ENGENHEIRO(A) DE PRODUÇÃO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PRODUÇÃO Pesquisa Operacional, TI, Probabilidade e Estatística Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA
DESENHO TÉCNICO. Aula 06. Cotagem em Desenho Técnico
FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA - SP DESENHO TÉCNICO Aula 06 Cotagem em Desenho Técnico Prof. Me. Dario de Almeida Jané COTAGEM EM DESENHO TÉCNICO Cotas são elementos de Desenho Técnico
EXCEL NA ANÁLISE DE REGRESSÃO
EXCEL NA ANÁLISE DE REGRESSÃO _2010_03_Exercicio _Regressão_exemplo O gerente de uma loja de artigos escolares, cada semana, deve decidir quanto gastar com propaganda e que atrativo (por exemplo preços
Prof. Daniela Barreiro Claro
Prof. Daniela Barreiro Claro SQL, SQL3 e OQL são linguagens declarativas O SGBD deve processar e otimizar estas consultas antes delas serem efetivamente executadas Uma consulta possui muitas estratégias
A metodologia ARIMA (Auto-regressivo-Integrado-Média-Móvel),
nfelizmente, o uso de ferramentas tornais de previsão é muito pouco adotado por empresas no Brasil. A opinião geral é que no Brasil é impossível fazer previsão. O ambiente econômico é muito instável, a
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
6 Efeito do Tratamento Térmico nas Propriedades Supercondutoras e Microestruturas de Multicamadas Nb/Co
6 Efeito do Tratamento Térmico nas Propriedades Supercondutoras e Microestruturas de Multicamadas Nb/Co Com objetivo de observar a possibilidade da formação de nanopartículas de Co por tratamento térmico,
Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:
1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia
Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas
Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =
Resolução de sistemas lineares
Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)
Universidade de São Paulo. Escola Politécnica
Universidade de São Paulo Escola Politécnica Engenharia Química Vitor Gazzaneo Modelagem do Equilíbrio Líquido-Líquido para o sistema Água- Ácido Acético-Acetato de Butila Prof. Orientador José Luis Pires
4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares
38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo
André Silva Franco ASF EOQ Escola Olímpica de Química Julho de 2011
André Silva Franco ASF EOQ Escola Olímpica de Química Julho de O que é Cinética Química? Ramo da físico-química que estuda a velocidade das reações; Velocidade na química: variação de uma grandeza no x
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada OFERTA DE MERCADO
CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada OFERTA DE MERCADO A oferta de uma mercadoria, a um dado preço, é a quantidade que os vendedores estão dispostos a oferecer
Circuitos de 2 ª ordem: RLC. Parte 1
Circuitos de 2 ª ordem: RLC Parte 1 Resposta natural de um circuito RLC paralelo Veja circuito RLC paralelo abaixo: A tensão é a mesma e aplicando a soma de correntes que saem do nó superior temos: v R
Respostas da terceira lista de exercícios de química. Prof a. Marcia M. Meier
Respostas da terceira lista de exercícios de química Prof a. Marcia M. Meier 1) O íon brometo não aceita mais de um elétron, pois este segundo elétron ocupará numeros quânticos maiores quando comparado
1 Introdução. futuras, que são as relevantes para descontar os fluxos de caixa.
1 Introdução A grande maioria dos bancos centrais tem como principal ferramenta de política monetária a determinação da taxa básica de juros. Essa taxa serve como balizamento para o custo de financiamento
CAP4: Controle Estatístico do Processo (CEP)
CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que
Álgebra. SeM MiSTéRio
Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem
www.estrategiaconcursos.com.br Página 1 de 8
Comentários Macroeconomia (Área 3) Olá Pessoal. O que acharam da prova do BACEN? E especificamente em relação à macro (área 3)? A prova foi complexa? Sim! A complexidade foi acima do esperado? Não! Particularmente,
Equações Diferenciais Ordinárias
Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento
Válvulas controladoras de vazão
Generalidades Válvula controladora de vazão variável Válvula de controle de vazão variável com retenção integrada Métodos de controle de vazão Válvula de controle de vazão com pressão compensada temperatura
A versão 9.1 oferece agora uma forma de replicar rapidamente ajustes de preço da UM em vários itens de várias listas de preços.
A versão 9.1 oferece agora uma forma de replicar rapidamente ajustes de preço da UM em vários itens de várias listas de preços. 1 Depois de concluir este tópico, você estará apto a: Descrever a necessidade
Singularidades de Funções de Variáveis Complexas
Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir
2. São grupos, respectivamente, de crédito na Conta 1 (PIB) e débito na Conta 2 (RNDB) das Contas Nacionais:
UNIVERSIDADE FEDERAL DE SERGIPE Pró-Reitoria de Pós-Graduação e Pesquisa Núcleo de Pós-Graduação e Pesquisa em Economia Mestrado Profissional em Desenvolvimento Regional e Gestão de Empreendimentos Locais
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como conseqüência a variação da outra. Exemplo 1: Tio
Capítulo. 4-1 Equações lineares simultâneas 4-2 Equações de elevado grau 4-3 Cálculos de resoluções 4-4 O que fazer quando surje um erro
Capítulo 4 Cálculos de equações A sua calculadora gráfica pode realizar os três seguintes tipos de cálculos: Equações lineares simultâneas Equações de grau elevado Cálculos de resoluções A partir do menu
MÉTODO GRÁFICO MAXIMIZAÇÃO DO LUCRO
TÓPICO 2 MÉTODO GRÁFICO MAXIMIZAÇÃO DO LUCRO 1- Pesquisa Operacional a)a origem da Pesquisa Operacional 2 a Guerra Mundial; Serviço militar do Reino Unido e EUA recrutaram diversos cientistas p/ realizar
4 Estudo de caso: Problema de seqüenciamento de carros
4 Estudo de caso: Problema de seqüenciamento de carros O problema de seqüenciamento de carros em linhas de produção das indústrias automobilísticas é um tipo particular de problema de escalonamento que
Inteligência Artificial. Metodologias de Busca
Inteligência Artificial Metodologias de Busca 1 Solução de problemas como Busca Um problema pode ser considerado como um objetivo Um conjunto de ações podem ser praticadas para alcançar esse objetivo Ao
O empregado doméstico deverá apresentar, por ocasião da sua admissão, os seguintes documentos:
Empregado Doméstico- Aspectos Gerais 1. Introdução A Lei nº 5.859/72, no seu art. 1o, define empregado doméstico como aquele que presta serviços de natureza contínua e de finalidade não lucrativa à pessoa
