Cálculo Diferencial e Integral 2 Formas Quadráticas
|
|
|
- Tiago das Neves Diegues
- 9 Há anos
- Visualizações:
Transcrição
1 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do segundo grau homogéneo. Por exemplo, q(x, y) = x 2 3xy 2y 2 (1) é uma forma quadrática em R 2 e q(x, y, z) = x 2 3xy + y 2 4xz z 2 (2) é uma forma quadrática em R 3. De certa forma, estas funções são as mais simples a seguir às funções lineares. Em Cálculo, elas aparecem como primeira aproximação 1 a uma função de várias variáveis junto a um ponto em que a derivada se anula 2. A expressão geral de uma forma quadrática em R n é q(x 1, x 2,..., x n ) = a 11 x 2 1 +a 12 x 1 x a 1n x 1 x n + +a 22 x a 2n x 2 x n a nn x 2 n onde a ij são números reais quaisquer. A expressão anterior pode escrever-se matricialmente (identificando como é habitual matrizes 1 1 com escalares) na forma q(x) = x T Ax onde x T - a matriz transposta da matriz coluna x - é a matriz linha correspondente ao vector x = (x 1,..., x n ), e A é a matriz quadrada n n a 11 a a 1n 0 a 22 a 2n A = a nn 1 A seguir à aproximação de ordem zero que é a constante dada pelo valor da função no ponto. 2 Quando a derivada não se anula, a primeira aproximação é a aplicação linear determinada pela derivada. 1
2 Por exemplo, no caso de (1) temos q(x, y) = [ x y ] [ ] [ ] 1 3 x 0 2 y e no caso de (2) temos q(x, y, z) = [ x y z ] x y z Mais geralmente, se A é uma matriz n n qualquer (não necessariamente triangular superior), a expressão q(x) = x T Ax (3) define uma forma quadrática. Por exemplo, [ ] [ ] [ ] 2 3 x x y = 2x 2 + 3xy yx 2y 2 = 2x 2 + 2xy 2y y Como se vê no exemplo anterior, entradas da matriz que sejam simétricas em relação à diagonal principal contribuem com termos semelhantes. Em geral, se A tem entradas (a ij ) com 1 i, j n, o coeficiente de x i x j na expansão de x T Ax será (a ij + a ji ) e portanto se A e B são matrizes tais que a ij + a ji = b ij + b ji temos x T Bx = x T Ax para todo o x. Uma maneira de descrever esta situação é dizer que a forma quadrática determinada por A depende apenas da parte simétrica 3 da matriz A, que é dada por 1 2 (A + AT ) e portanto tem entrada ij igual a a ij+a ji. 2 Assim, considerando apenas matrizes simétricas na expressão (3), temos uma correspondência biunívoca entre matrizes n n simétricas e formas quadráticas em R n dada por A simétrica q(x) = x T Ax. 3 Recorde que qualquer matriz A se pode escrever de forma única como uma soma A = S + T com S simétrica (isto significa que s ij = s ji ) e T anti-simétrica (isto significa que t ij = t ji ). S diz-se a parte simétrica de A e T diz-se a parte anti-simétrica de A. Além disso, é fácil ver que S = 1 2 (A + AT ) e T = 1 2 (A AT ). 2
3 2 Classificação de formas quadráticas No estudo de extremos de funções de várias variáveis é necessário entender se o sinal de uma forma quadrática q(x) = x T Ax é ou não constante para x 0. Como q(0) = 0, estudar o sinal de q corresponde a determinar se 0 é ou não um ponto de extremo de q. Por exemplo, se q(x) 0 para todo o x, a função q tem um máximo (absoluto) em x = 0. Se f : R n R é de classe C 2 e f(a) = 0 então, junto a x = a temos (pela fórmula de Taylor) f(a + h) f(a) + h T Hf(a)h onde Hf(a) é a matriz Hessiana de f em a (cuja entrada ij é 2 f x i x j (a)). É de esperar que o problema de decidir se f tem um máximo 4 (por exemplo) em a esteja relacionado com a existência de um máximo para a sua aproximação h h T Hf(a)h em h = 0, e de facto assim é como vimos na aula. Concentremo-nos agora então na questão se q(x) = x T Ax tem ou não um extremo em x = 0. Precisamos de alguma terminologia. Definição: Uma forma quadrática q(x) diz-se 1. definida positiva se q(x) > 0 para todo o x 0, 2. definida negativa se q(x) < 0 para todo o x 0, 3. semidefinida positiva se q(x) 0 para todo o x, 4. semidefinida negativa se q(x) 0 para todo o x, 5. indefinida caso contrário, isto é se existem x, y R n com q(x) > 0 e q(y) < 0. Note-se que se q(x) é definida positiva então também é semi-definida positiva (como q(0) = 0 é claro que q(x) 0 para todo o x quando q é definida positiva). A interpretação das condições acima em termos de extremos é muito simples: Dizer que q é definida positiva é equivalente a dizer que 0 é um ponto de mínimo absoluto estrito para q, dizer que é semi-definida positiva é equivalente a dizer que 0 é um ponto de mínimo absoluto não estrito 5 para q e dizer que q é indefinida é dizer que 0 não é ponto nem de máximo nem de mínimo para q. 4 Por máximo entendemos máximo local. a diz-se um ponto de máximo local de f se existe um aberto U contendo a tal que x U f(x) f(a). A aproximação dada pela fórmula de Taylor só é boa perto do ponto onde estamos a desenvolver e não nos diz nada sobre o valor de f longe de a. 5 Isto significa que possivelmente há pontos diferentes de 0 onde o valor mínimo q(0) = 0 é atingido. 3
4 Vejamos agora como usar Álgebra Linear para classificar uma forma quadrática dada. Recorde que uma matriz quadrada X se diz ortogonal se as suas colunas formam uma base ortonormal de R n, ou equivalentemente, se X T X = I onde I designa a matriz identidade (note que a entrada ij do produto X T X é o produto interno das colunas i e j da matriz X). É um resultado de Álgebra Linear que as matrizes simétricas são diagonalizáveis por matrizes ortogonais. Isto é, se A é simétrica, existe uma matriz X ortogonal tal que X 1 AX = X T AX = Λ com Λ = diag(λ 1,..., λ n ). Esboço de demonstração: É fácil ver que uma matriz simétrica tem valores próprios reais: Escrevendo, para o produto interno em C n temos, para qualquer matriz n n complexa A, x, Ay = A x, y onde A é a transposta da matriz conjugada de A (isto é, a matriz cuja entrada ij é a ji ). Se A é uma matriz real simétrica, temos A = A. Tomando na fórmula acima y = x e x um vector próprio associado ao valor próprio λ, obtemos x, λx = λx, x λ x 2 = λ x 2 e portanto λ = λ. As colunas da matriz ortogonal X que diagonaliza A constroem-se indutivamente. Para primeira coluna toma-se um vector próprio qualquer x 1 de A, de comprimento 1. Denotando por λ 1 o valor próprio de x 1 e por U o complemento ortogonal da linha gerada por x 1 em R n, temos, para y U, x 1, Ay = A x 1, y = Ax 1, y = λ 1 x 1, y = λ 1 x 1, y = 0 Isto diz-nos que a transformação linear T (x) = Ax leva U em U e portanto, numa base para R n formada por x 1 e uma base {v 2,..., v n } de U, T é representada por uma matriz diagonal por blocos [ ] λ1 0 0 B onde B é uma matrix (n 1) (n 1) que representa a restrição de T a U na base {v 2,..., v n }. É fácil verificar que, desde que {v 2,..., v n } seja ortonormal, B é uma matriz simétrica e portanto, por hipótese de indução pode ser diagonalizada através de uma matriz (n 1) (n 1) ortogonal. 4
5 Note que as entradas ao longo da diagonal da matriz Λ são os valores próprios da matriz A. O resultado anterior tem a seguinte consequência para uma forma quadrática q(x) = x T Ax com A simétrica: Fazendo a mudança de variável x = Xy (onde X é uma matriz ortogonal com X T AX = Λ diagonal) temos x T Ax = (Xy) T A(Xy) = y T X T AXy = y T Λy = λ 1 y λ n y 2 n. Imagine-se que queremos ver se q(x) é definida positiva. Ora q(x) > 0 para todo o x 0 é equivalente a dizer que λ 1 y λ n y 2 n > 0 para todo o y 0 (como X é invertível, x 0 Xy 0 y 0), e é claro que isto é equivalente a λ i > 0 para i = 1,... n. Os casos restantes são inteiramente análogos e portanto podemos concluir o seguinte. Proposição: Seja q(x) = x T Ax a forma quadrática correspondente à matriz simétrica A. (i) q é definida positiva sse todos os valores próprios de A são > 0. (ii) q é definida negativa sse todos os valores próprios de A são < 0. (iii) q é semidefinida positiva sse todos os valores próprios de A são 0. (iv) q é semidefinida positiva sse todos os valores próprios de A são 0. (v) q é indefinida sse A tem pelo menos um valor próprio positivo e outro negativo. 5
Capítulo 4 - Valores e Vectores Próprios
Capítulo 4 - Valores e Vectores Próprios Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17
7 temos que e u =
Capítulo 1 Complementos de Álgebra Linear 11 Introdução Seja A = [a ij ] uma matriz quadrada de ordem n e pensemos na transformação linear R n! R n que a cada cada vector u R n faz corresponder um vector
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
Marcelo M. Santos DM-IMECC-UNICAMP msantos/
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas
ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes
Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia
Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
MAT-27 Lista-09 Outubro/2011
MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante
TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial
TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial Nome: Número: O que vai fazer? Só T1+T2 Só T3 T1+T2 e T3 Problema a b c d lalala Problema a b c
Matrizes hermitianas e unitárias
Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro [email protected] http://www.nacad.ufrj.br/ amit Matrizes complexas O produto
1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny
1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações
Revisão de Álgebra Linear
Introdução: Revisão de Álgebra Linear Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2121 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) Revisão de
Matrizes e Linearidade
Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função
MATRIZES POSITIVAS DEFINIDAS
MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro
= f(0) D2 f 0 (x, x) + o( x 2 )
6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos
1 Auto vetores e autovalores
Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo
7 Formas Quadráticas
Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
1 Álgebra linear matricial
MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32
ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços
7 Formas Quadráticas
Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Métodos Matemáticos II
Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 [email protected] http://www.estv.ipv.pt/paginaspessoais/nbastos.
Valores e vectores próprios
Valores e vectores próprios Álgebra Linear C (Engenharia Biológica) 0 de Dezembro de 006 Conteúdo Motivação e definições Propriedades 4 3 Matrizes diagonalizáveis 5 Motivação e definições Considere a matriz
Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos
Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.
Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas
FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS
FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
Dou Mó Valor aos Autovalores
1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,
(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos
Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores
Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 8 Formas Bilineares Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 8: Formas Bilineares Meta
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral
Módulo 9 ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Contents 9.1 Operadores auto-adjuntos (simétricos e hermitianos) 136 9. Teorema espectral para operadores auto-adjuntos...........
Ficha de Exercícios nº 3
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de
Espaços vectoriais reais
Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
Nota importante: U é a matriz condensada obtida no processo de condensação da matriz
Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método
Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos
Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa
5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor
Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R).
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 3 a Lista de
Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17
Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica
10 a Lista de Exercícios
Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.
1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016
1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
TERCEIRO TESTE DE ÁLGEBRA LINEAR Teste de Dezembro de 2013 Instituto Superior Técnico - LEE, LEGI, LEIC-TP, LETI
TERCEIRO TESTE DE ÁLGEBRA LINEAR Teste 3.3 21 de Dezembro de 2013 Instituto Superior Técnico - LEE, LEGI, LEIC-TP, LETI Nome: Número: Curso: Problema a b c d e lalala Classificação 1 2 3 4 5 9 10 11 12
Matrizes - Matemática II /05 1. Matrizes
Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores
MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios
MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação
23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário
23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO
AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO Patrícia Eduarda de Lima 1, Luciane de Fátima Rodrigues de Souza 2* 1 Departamento de Exatas, Faculdades Integradas Regionais
ficha 6 espaços lineares com produto interno
Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
O TEOREMA ESPECTRAL PARA OPERADORES SIMÉTRICOS. Marco Antonio Travassos 1, Fernando Pereira Sousa 2
31 O TEOREMA ESPECTRAL PARA OPERADORES SIMÉTRICOS Marco Antonio Travassos 1, Fernando Pereira Sousa 2 1 Aluno do Curso de Matemática CPTL/UFMS, bolsista do Grupo PET Matemática/CPTL/UFMS; 2 Professor do
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
PROBLEMAS DE ÁLGEBRA LINEAR
PROBLEMAS DE ÁLGEBRA LINEAR P. FREITAS Conteúdo. Números complexos. Sistemas de equações; método de eliminação de Gauss 3. Operações com matrizes 3 4. Inversão de matrizes 4 5. Característica e núcleo
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
A forma canônica de Jordan
A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz
Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).
F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.
3 a Avaliação Parcial - Álgebra Linear
3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.
Seja f um endomorfismo de um espaço vectorial E de dimensão finita.
6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio
ficha 4 valores próprios e vectores próprios
Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1
Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)
Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão
