MATRIZES POSITIVAS DEFINIDAS
|
|
|
- Branca Flor Maria Fernanda Bento Leveck
- 9 Há anos
- Visualizações:
Transcrição
1 MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011
2 Roteiro 1 2 3
3 Roteiro 1 2 3
4 Por que saber se uma matriz é definida positiva? Importância do sinal dos autovalores. Os autovalores devem ser reais. Problemas de análise estabilidade: e λt A parte real de λ deve ser negativa para que a função decresça. Conceitos que só têm sentido para matrizes simétricas (ou hermitianas). Questão que surge em problemas de otimização. Muito frequente em Engenharia. Teste da segunda derivada.
5 Por que saber se uma matriz é definida positiva? Critério de estabilidade de Lyapunov. Dado um sistema Ẋ = f(x, t) O ponto de equilíbrio O é uniformemente assintoticamente estável se existir uma função potencial V : R n R R com V/ X e V/ t contínuas e V (O, t) = 0 satisfazendo a: 1 α( X ) V (X, t) β( X ) t, com α(.) e β(.) funções não decrescentes. 2 V (X, t) γ( X ) t, com γ(.) função não decrescente. 3 V (X, t) é radialmente ilimitada: V (X, t) X. Num cenário típico : V (X) = X P X com P hermitiana. P (pelo menos) deve ser positiva definida.
6 Roteiro 1 2 3
7 Análise de um caso Considere as funções F (x, y) = 7+2(x+y) 2 y sin y x 3 f(x, y) = 2x 2 +4xy+y 2. Será que elas têm um mínimo em x = y = 0? Os termos de ordem zero F (0, 0) = 7 e f(0, 0) = 0 não ajudam a responder. Eles simplesmente representam um shift nos gráficos de F e f.
8 Análise de um caso Os termos lineares fornecem uma condição necessária: para que se tenha alguma chance de mínimo, as primeiras derivadas devem se anular. F x = 4(x + y) 3x2 F y = 4(x + y) y cos y sin y. f f = 4x + 4y x Isto de fato acontece! y = 4x + 2y. Portanto, (0, 0) é um ponto estacionário de F e de f.
9 Análise de um caso As segundas derivadas em (0, 0) são decisivas 2 F x 2 = 4 6x 2 f x 2 = 4. 2 F x y = 2 F y x = 4 2 f x y = 2 f y x = 4. 2 F y 2 = 4 + y sin y 2 cos y 2 f x 2 = 2.
10 Análise de um caso Calculando em (0, 0) 2 F x 2 = 2 f x 2 = 4. 2 F x y = 2 F y x = 2 f x y = 2 f y x = 4. 2 F y 2 = 2 f x 2 = 2. As duas funções se comportam exatamente da mesma forma quando estão próximas da origem. F possui um mínimo em (0, 0) se e somente se f possuir um mínimo em (0, 0).
11 Análise de um caso Os termos de mais alto grau de F não têm influência sobre (0, 0) ser um mínimo local. Mas podem influenciar no caso de a pergunta ser sobre um mínimo global. Forma Quadrática Toda forma quadrática ax 2 + 2bxy + cy 2 possui um ponto estacionário na origem.
12 Análise de um caso Se o ponto estacionário de uma F (x, y) ocorrer em (α, β) e não na origem, basta efetuar a translação x = x α ȳ = y β e analisar o que ocorre com: f( x, ȳ) = x2 2 2 F x 2 (α, β) + xȳ 2 F ȳ2 (α, β) + x y 2 que representa o comportamento de F (x, y) nas vizinhanças de (α, β). 2 F (α, β) y2
13 Análise de um caso Em princípio, basta analisar o seguinte polinômio ax 2 + 2bxy + cy 2 obtido a partir das segundas derivadas. Queremos investigar se: ax 2 + 2bxy + cy 2 > 0 (x, y) (0, 0) ponto de mínimo ou ax 2 + 2bxy + cy 2 < 0 (x, y) (0, 0) ponto de máximo Pode ser que nenhuma das duas condições anteriores se verifique (ponto de sela). As derivadas superiores podem ser necessárias quando a parte quadrática é singular.
14 Análise de um caso Que condições garantem que ax 2 + 2bxy + cy 2 > 0 (x, y) (0, 0) isto é, que seja definida positiva? 1 Se ax 2 + 2bxy + cy 2 é definida positiva, então a > 0. 2 Se ax 2 + 2bxy + cy 2 é definida positiva, então c > 0. As duas condições anteriores são suficientes para garantir que ax 2 + bxy + cy 2 seja positiva definida? Não (necessariamente)! Tome x 2 10xy + y 2 e aplique em (1, 1): o resultado é 8. Então o sinal do termo misto deve ser positivo? Não (necessariamente)! Tome x xy + y 2 e aplique em ( 1, 1): o resultado é 8.
15 Análise de um caso Que condições garantem que ax 2 + 2bxy + cy 2 > 0 (x, y) (0, 0) isto é, que seja definida positiva? A condição que falta deve envolver a, b e c. Vejamos: ( ax 2 + 2bxy + cy 2 = a x + b ) 2 ( ) a y + c b2 y 2 a Portanto, basta exigir que: a > 0 e ac > b 2 Note que a condição c > 0 é consequência das duas condições anteriores (e pode ser suprimida).
16 Análise de um caso Analogamente, as condições que garantem que ax 2 + 2bxy + cy 2 < 0 (x, y) (0, 0), isto é, que seja definida negativa, são: a < 0 e ac > b 2. Esta verificação fica como exercício. Quando ac < b 2, teremos um ponto de sela. Veja que é este o caso das funções F (x, y) e f(x, y) = 2x 2 + 4xy + y 2.
17 Análise de um caso Matricialmente, teríamos: ax 2 + 2bxy + cy 2 = [ x y ] [ a b b c ] [ x y ] Definindo u = [x y] T e A a matriz 2 2 acima: ax 2 + 2bxy + cy 2 = u T Au. Façamos uma mudança de coordenadas ũ = Mu. Logo: u T Au = ũ T (M T AM)ũ.
18 Análise de um caso Como A é simétrica, podemos tomar M formada pelos seus autovetores ortonormais, de modo que M T AM = D é uma matriz diagonal, digamos diag(λ 1, λ 2 ). Sendo ũ = [ x ỹ] T, temos ax 2 + 2bxy + cy 2 = λ 1 x 2 + λ 2 ỹ 2 As condições que chegamos antes poderiam ser inferidas a partir dos autovalores. Veja que: λ 1 > 0, λ 2 > 0: positiva definida. λ 1 < 0, λ 2 < 0: negativa definida. Sinais contrários: indefinida (caso equivalente ao ponto de sela).
19 Dimensões maiores Já estudamos o caso bidimensional. Vejamos agora o que acontece para dimensões maiores. Se tivermos uma função F : R n R, o seu polinômio de Taylor em torno de O é: F (x) = F (O)+x T F x (O)+1 2 xt Ax+termos de ordem superior OBS.: Notação compacta para o gradiente: F = F x. A matriz A é formada pelas derivadas segundas: a ij = 2 F (O). Esta é uma matriz que é simétrica (a x i x j menos de funções teimosamente mal-comportadas!).
20 Dimensões maiores Suponha que a origem O é um ponto estacionário: F x (O) = O Para saber se é máximo ou mínimo (ou ponto de sela), devemos analisar o sinal de x T Ax, já que F (x) = F (O) xt Ax + termos de ordem superior E se o ponto estacionário não for a origem e sim um ponto α? Neste caso, basta fazer uma tranlação, análoga a que antes fizemos: x = x α.
21 Dimensões maiores Veja que x T Ax = [x 1 x 2... x n ] a 11 a a 1n a 21 a a 2n a n1 a n2... a nn x 1 x 2. x n que resulta na seguinte forma quadrática: x T Ax = n n a ij x i x j i=1 j=1 no nosso caso, é melhor trabalhar com a forma matricial...
22 Dimensões maiores Precisamos responder à pergunta: que matrizes simétricas têm a propriedade x T Ax > 0 x O? Quando uma matriz satifaz a desigualdade anterior ela é dita ser positiva definida. Para um caso mais geral (complexo), precisamos de uma ligeira adaptação: Matriz Positiva Definida Uma matriz A M n (C) hermitiana é positiva definida se x Ax > 0 x O. O caso real é análogo, bastando trocar hermitiana por simétrica e x por x T. Analogamente, podemos definir o conceito de matriz positiva semidefinida, quando x Ax 0 x O
23 Dimensões maiores Analogamente, podemos definir o conceito de matriz negativa definida. Matriz Negativa Definida Uma matriz A M n (C) hermitiana é negativa definida se x Ax < 0 x O. Analogamente, podemos definir o conceito de matriz negativa semidefinida, quando x Ax 0 x O Há algumas matrizes hermitianas que não são nem positivas (semi)definidas, nem negativas (semi)definidas. Este é o caso da matriz diag(1, 1).
24 Dimensões maiores Voltando ao problema, precisamos verificar que matrizes simétricas têm a propriedade x T Ax > 0 x O. Há diversas formas de fazer isto. Veremos a dedução de uma delas. Nesta dedução, a ideia central é fazer uma mudança de base: x = Mx, para alguma matriz M escolhida convenientemente. x T Ax = x T (M T AM) x
25 Dimensões maiores Como A é simétrica (ou então hermitiana), sempre conseguimos encontrar uma base ortonormal de autovetores. Tomando M a matriz formada por estes autovetores, então M T AM será uma matriz diagonal. x T Ax = λ 1 x λ 2 x λ n x 2 n Se todos os autovalores forem positivos, teremos uma matriz positiva definida. Se todos os autovalores forem negativos, teremos uma matriz negativa definida.
26 Teste de positividade O teste dos autovalores não é o único para verificar se uma matriz é positiva definida. Vimos outro teste para o caso bidimensional. Vejamos o resultado geral Teste de positividade Para uma matriz A M n (C) hermitiana as seguintes afirmações são equivalentes x Ax > 0 x O. Todos os autovalores de A são positivos. Os menores principais de A são todos positivos. A = S 2 para alguma matriz hermitiana S não singular. A = T T para alguma matriz T não singular.
27 Teste de positividade OBS.: os menores principais de uma matriz A n n são os determinantes das submatrizes [ ] a a11 a 11 a 12 a 13 [a 11 ], 12, a a 21 a 21 a 22 a 23,..., A 22 a 23 a 32 a 33
28 Produto Interno Uma matriz hermitiana positiva definida induz um produto interno: x y = x Ay De fato: 1 Simetria: x y = y Ax = x y. 2 Linearidade: x y + αz = x A(y + αz) = x y + α x z. 3 Positividade: x x = x Ax > 0, pois A é positiva definida.
29 Comentário Pode existir uma matriz positiva definida não simétrica, ou não hermitiana? Esta questão não tem muito sentido... Uma matriz não simétrica (ou não hermitiana) pode não ser diagonalizável.
30 Comentário Uma questão mais razoável para matrizes não hermitianas A é verificar se sua parte hermitiana é positiva definida. A = 1 2 (A + A ) (A A ) A componente 1 2 (A + A ) da soma acima é conhecida como a parte hermitiana de A. Testar se 1 2 (A + A ) é positiva definida garante que todos os autovalores de A tenham parte real positiva.
31 Roteiro 1 2 3
32 A matriz é positiva definida A = Menores principais de A: 2, 3 e 4.
33 As matrizes A = não são positivas definidas. A tem um menor principal: 0. B não é inversível. B =
34 Há uma solução real para Veja que x 2 5y 2 9z 2 4xy 6xz 8yz = 1? x 2 +5y 2 +9z 2 +4xy+6xz+8yz = [x y z] A matriz acima tem determinante negativo. Ao menos um autovalor é negativo. Existe um certo v tal que Av = αv com α > 0. Assim, tomando u = βv, temos u T Au = αβ 2 v 2 Basta tomar β = 1/( v α) que u T Au = 1. x y z = u T Au
35 A seguinte função é um produto interno no R 2 (x, y) (u, v) = xu + 4yv xv yu? Escrevendo matricialmente [ xu + 4yv xv yu = [x y] ] [ u v A matriz é simétrica e positiva definida (pois tem menores principais: 1 e 3). Logo se trata sim de um produto interno. ]
Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011
APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy
Cálculo Diferencial e Integral 2 Formas Quadráticas
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.
Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que
1 Matrizes Ortogonais
Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos
(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.
Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna
1 Equações Diferenciais Ordinárias: Sistemas de Equações
Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais
Álgebra Linear I - Aula 20
Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a
1 Auto vetores e autovalores
Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo
Matrizes positivas definidas, semidefinidas, etc.
Matrizes positivas definidas, semidefinidas, etc. Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro [email protected] http://www.nacad.ufrj.br/ amit Funções
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.
Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
MAT-27 Lista-09 Outubro/2011
MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a
PROBLEMAS DE ÁLGEBRA LINEAR
PROBLEMAS DE ÁLGEBRA LINEAR P. FREITAS Conteúdo. Números complexos. Sistemas de equações; método de eliminação de Gauss 3. Operações com matrizes 3 4. Inversão de matrizes 4 5. Característica e núcleo
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Álgebra Linear I - Aula 21
Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4
G4 de Álgebra Linear I
G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado
3.3 Retrato de fase de sistemas lineares de 1 a ordem
MAP 2310 - Análise Numérica e Equações Diferenciais I Continuação - 25/05/2006 1 o Semestre de 2006 3.3 Retrato de fase de sistemas lineares de 1 a ordem O espaço de fase de um sistema da forma ẏ = Ay,
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS
O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS Eduardo Corrêa Pedrosa (monitor) Profª. Drª. Ana Maria Luz Fassarella do Amaral (orientadora) GANP001 Motivação Este projeto
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
Marcelo M. Santos DM-IMECC-UNICAMP msantos/
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Verdadeiro ou falso?
Matrizes hermitianas e unitárias
Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro [email protected] http://www.nacad.ufrj.br/ amit Matrizes complexas O produto
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 29 Soluções dos exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A, então
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana
Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
FORMA CANÔNICA DE JORDAN
FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
Cap. 5 Estabilidade de Lyapunov
Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x
1 Álgebra linear matricial
MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
MAE125 Álgebra Linear /1 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas
Álgebra Linear I - Aula 19
Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a
MAE125 Álgebra Linear /2 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as
7 temos que e u =
Capítulo 1 Complementos de Álgebra Linear 11 Introdução Seja A = [a ij ] uma matriz quadrada de ordem n e pensemos na transformação linear R n! R n que a cada cada vector u R n faz corresponder um vector
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto
1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny
1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações
G4 de Álgebra Linear I
G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear
3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =
3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao
Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo
Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ
Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte
Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial
Lista de Exercícios de Cálculo 3 Sexta Semana
Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P
Autovalores e Autovetores
Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução
Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro
Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
folha prática 5 valores próprios e vetores próprios página 1/3
folha prática 5 valores próprios e vetores próprios página 1/ Universidade de Aveiro Departamento de Matemática 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Álgebra linear A Primeira lista de exercícios
Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b
4 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008
4 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 8 Solução de alguns exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A,
UM CURSO DE OTIMIZAÇÃO. Ademir Alves Ribeiro Elizabeth Wegner Karas
UM CURSO DE OTIMIZAÇÃO Ademir Alves Ribeiro Elizabeth Wegner Karas Curitiba 2011 Sumário Prefácio 1 Introdução 2 1 Revisão de Conceitos 4 1.1 Sequências.................................... 4 1.1.1 Definições
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Combinação linear de vetores. 2. Subespaços e geradores. Roteiro 1 Combinação linear de vetores Definição 1 (Combinação linear de vetores). Dada um conjunto de vetores U =
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
Álgebra Linear I - Aula Propriedades dos autovetores e autovalores
Álgebra Linear I - Aula 17 1. Propriedades dos autovetores e autovalores. 2. Matrizes semelhantes. 1 Propriedades dos autovetores e autovalores Propriedade 1: Sejam λ e β autovalores diferentes de T e
Matriz Hessiana e Aplicações
Matriz Hessiana e Aplicações Sadao Massago Dezembro de 200 Sumário Introdução 2 Matriz Jacobiana 3 Matriz hessiana 2 4 Talor de primeira e segunda ordem 2 5 Classicação dos pontos críticos 3 A Procedimeno
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
Álgebra Linear I - Aula 18
Álgebra Linear I - Aula 18 1. Matrizes semelhantes. 2. Matriz de uma transformação linear em uma base. Roteiro 1 Matrizes semelhantes Definição 1 (Matrizes semelhantes). Considere duas matrizes quadradas
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor
Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Exercício 1. Seja A = (a i j ) uma matriz diagonal sobre
CÁLCULO III - MAT Encontre todos os máximos locais, mínimos locais e pontos de sela nas seguintes funções:
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0036 9 a Lista de exercícios
23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário
23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........
Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov
Estabilidade Interna 1. Estabilidade Interna 2. Análise de Estabilidade Segundo Lyapunov 3. Teorema de Lyapunov 4. Teorema de Lyapunov Caso Discreto pag.1 Teoria de Sistemas Lineares Aula 13 Estabilidade
ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R
ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço
Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c
Álgebra Linear I - Lista 0 Transfromações inversas. Matriz inversa Respostas Estude se existe uma matriz A tal que ( ( a b b d A = c d a c para todos os valores de a, b, c e d. Resposta: Seja e dadas B
Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013
OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas
EES-20: Sistemas de Controle II
EES-: Sistemas de Controle II 14 Agosto 17 1 / 49 Recapitulando: Estabilidade interna assintótica Modelo no espaço de estados: Equação de estado: ẋ = Ax + Bu Equação de saída: y = Cx + Du Diz-se que o
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
