Matriz, Sistema Linear e Determinante
|
|
|
- Raphaella Carla Natal Bernardes
- 9 Há anos
- Visualizações:
Transcrição
1 Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x a n x n = b, onde a 1, a 2,..., a n são constantes não todas nulas e b mais uma constante. Se b = 0, a equação é denominada equação linear homogênea. Uma coleção finita de equações lineares é denominada um sistema de equações lineares, ou sistema linear. Suas variáveis são chamadas de incógnitas. Solução de um sistema linear nas incógnitas x 1, x 2,..., x n é uma sequência de n números s 1, s 2,..., s n, tais que, se substituídas nos lugares das incógnitas, respectivamente, tornam verdadeira cada equação do sistema. O conjunto de soluções de um sistema linear é denominado conjunto-solução. Um sistema linear é consistente se houver pelo menos 1 solução e inconsistente se não existir solução. Teorema 1: Cada sistema de equações lineares tem nenhuma, uma ou uma infinidade de soluções, não havendo outras possibilidades. Operações elementares sobre as linhas: Multiplicar toda uma linha por uma constante não-nula. Trocar 2 linhas de posição. Somar um múltiplo de uma linha a outra linha.
2 2.0 Resolução de Sistemas Lineares usando Redução por Linhas Forma escalonada reduzida entre linhas (FERL): Se a linha não é totalmente constituída de zeros, então o primeiro número não-nulo na linha é 1, que denominamos de pivô. Se existem linhas totalmente constituídas por zeros, então elas estão agrupadas na base da matriz. Em 2 linhas quaisquer que não são totalmente agrupadas por zeros, o pivô da linha inferior ocorre mais a direita do que o pivô da linha superior. Se R é a FERL de uma matriz A de tamanho nxn, então R tem uma linha de zeros ou R é a matriz identidade In. Eliminação de Gauss-Jordan: Etapa para frente: introduzem-se os zeros abaixo dos pivôs. Etapa para trás: introduzem-se os zeros acima dos pivôs. Se somente usarmos a primeira etapa, o procedimento é chamado eliminação gaussiniana / de Gauss. Pivotamento parcial: Nas eliminações de Gauss-Jordan e de Gauss é procedimento padrão efetuar uma troca de linhas a cada passo para colocar a entrada de maior valor absoluto na posição de pivô antes de introduzir o pivô. Retrossubstituição: Cada equação correspondente à forma escalonada por linhas é, sistematicamente, substituída na equação acima dela, começando da base e avançando para cima. Solução trivial: Um sistema homogêneo é um conjunto de equações homogêneas em que se observa que x 1 = x 2 =... = x n = 0, sendo esta uma solução trivial. Qualquer outra solução é denominada solução não-trivial.
3 Teorema 2: Um sistema linear homogêneo possui somente a solução trivial ou tem uma infinidade de soluções, não havendo outras possibilidades. Teorema 3: Um sistema linear homogêneo com mais incógnitas do que equações possui uma infinidade de soluções. 3.0 Operações com Matrizes Duas matrizes são definidas como iguais se têm o mesmo tamanho e suas entradas são correspondentes. Se A é uma matriz quadrada e se existe uma matriz B de mesmo tamanho que A tal que AB = BA = I, dizemos que A é invertível / não-singular e que B é uma inversa. A e B são inversas uma da outra, pois AB = BA. Teorema 4: Se A é uma matriz invertível e B e C são ambas inversas de A então B = C, ou seja, uma matriz invertível tem uma única inversa. Teorema 5: Se A é invertível e n é um número inteiro não-negativo, então:
4 Matrizes elementares: Uma matriz que resulta de uma única operação elementar sobre linhas de uma matriz identidade. São sempre quadradas. Teorema 6: Uma matriz elementar é invertível e a inversa também é uma matriz elementar. Teorema 7: Se A é uma matriz nxn, então as seguintes afirmações são equivalentes: A FERL de A é I n. A pode ser expresso como um produto de matrizes elementares. A é invertível. Algoritmo de Inversão: Para encontrar a inversa de uma matriz invertível A, encontre a sequência de operações elementares que reduz A a I e então efetue a mesma sequência de operações em I para obter A -1. Maneira de Executar as tarefas simultaneamente: Se I não aparecer, A não é invertível. Se obtivermos uma linha de zeros do lado esquerdo, A não é invertível. Teorema 8: Se Ax = B é um sistema linear de n equações a n incógnitas e se a matriz de coeficientes A é invertível, então o sistema tem uma única solução, a saber, x = A -1 B.
5 4.0 Determinantes Produto elementar de uma matriz A de tamanho mxn é o produto de n entradas de A tais que não há 2 delas da mesma linha ou da mesma coluna. Assim, se A = [a ij ], então cada produto elementar pode ser expresso na forma a 1 j 1 a 2 j 2...a n j n onde os índices de coluna constituem uma permutação {j 1, j 2,..., j n } dos inteiros 1 à n, e os índices de linha estão ordenados naturalmente. A permutação é par ou ímpar se o número mínimo de trocas que são necessárias para colocar a permutação em ordem natural é par ou ímpar. Se a permutação for par, o sinal dela é positivo, se ímpar, negativo. O determinante de uma matriz quadrada A é denotado por det(a) e definido como a soma de todos os produtos elementares com sinal de A: O número de produtos elementares com sinal num determinante nxn é n!. Teorema 9: Se A é uma matriz quadrada com linha ou coluna de zeros, então det(a) = 0. Teorema 10: Se A é uma matriz triangular então det(a) é o produto das entradas na diagonal principal. Se A é uma matriz quadrada, então o menor da entrada a ij é denotado por M ij e definido como o determinante da submatriz que sobra quando suprimimos de A a i-ésima linha e j-ésima coluna. O número C ij = (-1) i+j M ij é denominado cofator da entrada a ij.
6 Teorema 11: O determinante de uma matriz A de tamanho nxn pode ser calculado multiplicando as entradas de uma linha (ou coluna) qualquer pelos seus cofatores e somando os produtos assim obtidos, ou seja, para cada 1 i n e 1 j n temos 5.0 Propriedades dos Determinantes Se A é uma matriz nxn: det(a) = det(at) Se B é uma matriz que resulta quando uma única linha ou coluna de A é multiplicada por K, então det(b) = Kdet(A). Se B é uma matriz que resulta quando 2 linhas ou colunas de A são trocadas, então det(b) = det(a). Se A tem 2 linhas / colunas iguais, det(a) = 0. Se A tem 2 linhas / colunas proporcionais, det(a) = 0. Se A e B são matriz quadradas do mesmo tamanho, então det (AB) = det(a).det(b). det(a n ) = [det(a)] n. Se A é invertível, então det(a -1 ) = 1/det(A). 5.1 Regra de Cramer Teorema 12: Se as entradas de qualquer linha (ou coluna) de uma matriz quadrada são multiplicadas pelos co-fatores das entradas correspondentes de uma linha / coluna diferente, então a soma dos produtos é zero. Se A é uma matriz nxn e C ij é o cofator de a ij, então a matriz
7 é denominada matriz de cofatores de A. Sua transposta chama-se adjunta da matriz A, denominada por adj(a). Teorema 13: Se A é invertível, então Teorema 14 Regra de Cramer: Se Ax = b é um sistema linear de n equações a n incógnitas, então o sistema tem uma solução única se, e somente se, det(a) 0, caso que a solução é: onde A j é a matriz que resulta quando a j-ésima coluna de A é substituída por b. 6.0 Provas PROVA 1 SE DET(A) 0, ENTÃO A É INVERTÍVEL. Prove que se ad bc 0 então a FERL de L 1 (ad-bc)l 1 bl 2 L 2 L 2 L 1 L 1 L 2 al 2 cl 1 L 1 L 1 /a(ad-bc) L 2 L 2 /(ad-bc)
8 PROVA 2 PROVAR TEOREMA 4. Prove que se B = A -1 e C = A -1, então B = C. BA = I (BA)C = IC Como IC = C, temos: (BA)C = C Lei da associedade da multiplicação: B(AC) = C Como AC = I, temos: BI = C Como BI = B, temos: B = C PROVA 3 A É UMA MATRIZ QUADRADA INVERTÍVEL SE, E SOMENTE SE, DET(A) 0. Primeiro vamos verificar que det(a) e det(r) são ambos nulos ou não-nulos, sendo R a matriz na FERL de A. Veremos os efeitos das operações elementares sobre o determinante: Se multiplicarmos toda uma linha por uma constante não-nula K, o determinante dessa nova matriz será K.det(A). Se trocarmos 2 linhas de posição, o determinante dessa nova matriz será det(a). Se somarmos um múltiplo de uma linha a outra linha o determinante dessa nova matriz elementar não se altera. Nos 3 casos, os determinantes antes e depois das aplicações das operações elementares são ambas nulas ou não-nulas. Como R é feito por uma série de operações elementares em A, temos que se det(a) 0, det(r) 0 ou se det(a) = 0, det(r) = 0. Se R é a FERL da matriz A nxn, então R tem uma linha de zeros (det(r) = 0) ou R é uma matriz identidade In (det(r) = 1 0). Para que A seja invertível, R = I. Se det (A) 0, det(r) 0; isso implica que R = I, portanto A é invertível. Se det(a) = 0, então det(r) = 0; isso implica que R I, portanto A não é invertível.
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE
DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos
MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de
Determinante de uma matriz quadrada
Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante
1 Determinante. det(a) = ρ. ( 1) J a 1j1 a 2j2... a njn. Exemplo 1.6. Determinante de 3a. ordem: a 11 a 12 a 13. a 21 a 22 a 23.
1 Determinante Determinante é uma função que associa a cada matriz quadradada A n n um número real Mais especificamente, é um número que obtemos através de produtos e somas dos elementos da matriz obedecendo
Sistema de Equaçõs Lineares
Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou
Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril
Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
Determinantes e Matrizes Inversas
Determinante e Matrizes Inversas FFCLRP - USP Departamento de Computação e Matemática 10 de março de 2019 e Matrizes Inversas 1 Propriedades dos determinantes Propriedades dos determinantes Propriedades
Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Sistemas Lineares Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)
Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em
Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em tantos detalhes para os concursos desejados. Assim,
Testes e Sebentas. Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes)
Testes e Sebentas Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes) Índice: 1. Matrizes 1.1. Igualdade de matrizes 3 1.2. Transposta de uma matriz 3 1.3. Multiplicação por um escalar 3
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
Análise multivariada
UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
ficha 2 determinantes
Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo
ÁLGEBRA LINEAR - MAT0024
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 10 a Lista de exercícios
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos
Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Matrizes - Parte II Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2
Matrizes e Sistemas Lineares
MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
1 Matrizes e Determinantes
1 Matrizes e Determinantes 11 Introdução Definição (Matriz): Uma matriz A m n é um arranjo retangular de mn elementos distribuídos em m linhas horizontais e n colunas verticais: a 11 a 12 a 1j a 1n a 21
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)
Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 206 Sumário DETERMINANTE... Exemplo... Exemplo 2... EXERCÍCIOS FUNDAMENTAIS... Exemplo 3... EXERCÍCIOS FUNDAMENTAIS...
determinantes rita simões departamento de matemática - ua
determinantes rita simões ([email protected]) departamento de matemática - ua 204-205 determinante de uma matriz sejam l,..., l n as linhas de uma matriz do tipo n n; para cada n N, existe uma única função
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes
UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz
Álgebra Linear. Professor Fabrício Oliveira. 25 de agosto de Universidade Federal Rural do Semiárido
Álgebra Linear Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 25 de agosto de 2010 Determinantes De maneira não formal Não daremos aqui a definição matematicamente correta. Determinantes
Produto Misto, Determinante e Volume
15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................
Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =
Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como
é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES
Notas em Álgebra Linear
Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 23
Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013
MA33 - Introdução à Álgebra Linear Unidade 4 - Matrizes elementares, resolução de sistemas A Hefez e C S Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade, veremos
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
GAN Introdução à Álgebra Linear Aula 5. Turma A1 Profa. Ana Maria Luz Fassarella do Amaral
GAN 00007 Introdução à Álgebra Linear Aula 5 Turma A1 Profa. Ana Maria Luz Fassarella do Amaral Codificação por multiplicação matricial Exemplo retirado de W. K. Nicholson, Álgebra Linear. Um avião espião
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
3. Calcule o determinante das matrizes abaixo.
Gabarito - Lista de Exercícios # Professor Pedro Hemsley Calcule o determinante das matrizes x abaixo deta = det = ( ) = detb = det = = 9 detc = det = 9 8 ( ) = 8 detd = det = = 0 0 dete = det = 0 ( 9)
Trabalhos e Exercícios 1 de Álgebra Linear
Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,
Métodos Matemáticos II
Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 [email protected] http://www.estv.ipv.pt/paginaspessoais/nbastos.
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um
Álgebra Linear. Aula 02
Álgebra Linear Aula Determinante Para aproveitar 1% dessa aula vocês precisam saber: ü Matrizes ü Equação do 1º grau ü Equação do º grau Como representamos o determinante de uma matriz? Colocando os elementos
Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn
Guia-1 Revisão de Matrizes, Determinantes, Vetores e Sistemas Lineares SMA00 - Complementos de Geometria e Vetores Estagiária PAE: Ingrid Sofia Meza Sarmiento 1 Introdução Este texto cobre o material sobre
GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.
GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma
Renato Martins Assunção
Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear
Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2
Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos
Pré-requisitos Algebra Linear. Lorí Viali. Afiliação
Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF
Laboratório de Simulação Matemática. Parte 6 2
Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
Matrizes - ALGA /05 1. Matrizes
Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:
n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m
Matrizes e Sistemas de Equações 9 para toda matriz A n X n. Vamos discutir, também, a existência e o cálculo de inversas multiplicativas. A MATRIZ IDENTIDADE Uma matriz muito importante é a matriz / n
Sistemas Lineares e Matrizes
Sistemas Lineares e Matrizes Lino Marcos da Silva linosilva@univasfedubr Obs Este texto ainda está em fase de redação Por isso, peço a gentileza de avisar-me sobre a ocorrência de erros conceituais, gráficos
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Fração, Potenciação, Radiciação, Matrizes e Sistemas Lineares - Ozias Jr.
Conjuntos Números naturais, N: {0,1,2,3,..} Números inteiros, Z: {...,-3,-2,-1,0,1,2,3,...} Números racionais, Q: {..., -3,565656..., -2, 0, 1,888..., 3,...} Números irracionais: I: {, 3, 5, π, e 1, }
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares
INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a
Determinantes 1 Introdução Até agora nós estudamos vários tipos de matrizes e suas mais diversas ordens Em especial, vimos a matriz quadrada, que tinha o mesmo número de linhas e colunas Toda matriz quadrada
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice 1 1 Matrizes,
1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos
FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21
SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais
SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa
Lições de Matemática Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Versão provisória vp Capítulo Matrizes e Determinantes Versão provisória () Generalidades Definição Dados
Algoritmos Numéricos 2 a edição
Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram
Matrizes material teórico
M A T R I Z E S A Matemática é a mais simples, a mais perfeita e a mais antiga de todas as ciências. (Jacques Hadarmard) "Aqueles que estudam seriamente a matemática acabam tomados de uma espécie de paixão
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)
