MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco
|
|
|
- Dalila César Pacheco
- 8 Há anos
- Visualizações:
Transcrição
1
2 MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES
3 INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em tantos detalhes para os concursos desejados. Assim, apresentaremos o cálculo de determinantes de matrizes de ordem 1, 2 e 3 e em seguida utilizaremos o Teorema de Laplace para estender os determinantes para matrizes de ordem superior!
4 1. Determinantes de 1º ordem Seja A a uma matriz 1x1 então deta a a Determinante de 2º ordem a a a a Seja A então deta a a a a a a a a Ex.: 1 2 ( 1).3 ( 2)
5 3. Determinante de 3º ordem Regra de Sarrus a a a a a a a a a a a a a a a a a a a a a a a a a a a A Regra de Sarrus é um dispositivo mnemônico para calcular o determinante de 3º ordem. termos positivos diagonal principal e diagonais paralelas à ela termos negativos diagonal secundária e diagonais paralelas à ela
6 EXEMPLO: ( 2)( 3) ( 2) 15 ( 3)
7 4. Teorema de Laplace Este nos dá uma maneira geral de calcular o determinante, recursivamente, de qualquer matriz quadrada. Vejamos alguns conceitos preliminares Menor complementar Seja uma matriz quadrada de ordem n 2 e a ij um elemento qualquer de A. O menor complementar M ij do elemento a ij é o determinante da matriz de ordem (n 1), obtida a partir de A eliminando-se a linha i e a coluna j. Vamos aplicar essa definição a uma matriz quadrada de ordem 3 e obter a expressão do menor complementar de alguns elementos.
8 Considere a matriz a a a A a a a a a M a a a a a a a a a a a M a a a a a a a a M a a a a a a a a M a a a a a a
9 4.2. Cofator Seja uma matriz quadrada de ordem n 2 e a ij um elemento qualquer de A. O cofator do elemento a ij é o número definido por, A ij = ( 1) i+j M ij onde M ij é o menor complementar de a ij. Calculando os cofatores a partir dos menores obtidos no exemplo anterior: A ( 1) M M A ( 1) M M A ( 1) M M A ( 1) M M
10 4.3. Teorema de Laplace Seja A uma matriz quadrada de ordem n 2, o determinante de A é a soma dos produtos dos elementos de uma fila (linha ou coluna) qualquer pelos respectivos cofatores. Usando o teorema de Laplace na 3ª linha para o cálculo do determinante abaixo: n det A a A a A pj pj iq iq j1 i1 n A 3 A 3 ( 1) ( 1) = (4) = 48
11 5. Propriedades dos determinantes Usando o teorema de Laplace para o cálculo do determinante conseguimos provar várias propriedades importantes que nos permitem calcular alguns determinantes específicos de uma maneira muita mais rápida e elegante. Vamos a elas: Propriedade 1: O determinante da matriz identidade vale 1; Propriedade 2: Para toda matriz quadrada A temos que det(a) = det(a T ); Propriedade 3: Seja B a matriz obtida a partir da matriz A pela troca de duas filas (linhas ou colunas) paralelas. Desta forma, temos det(b) = det(a);
12 Propriedade 4: Toda matriz que possui duas filas paralelas iguais ou proporcionais tem determinante nulo; Propriedade 5: Toda matriz que possui uma fila com todos os seus elementos nulos tem determinante nulo; Propriedade 6: Seja B uma matriz obtida a partir de uma matriz A de modo que a i-ésima fila de B é igual a i-ésima fila de A multiplicada por uma constante k, então temos det(b) = k.det(a); Propriedade 7: Seja A uma matriz de ordem n e k um número real, então det(k.a) = k n. det(a);
13 Propriedade 8: a (b c ) a 11 1j 1j 1n a b a 11 1j 1n a c a 11 1j 1n a (b c ) a 21 2j 2j 2n a b a 21 2 j 2n a c a 21 2 j 2n a (b c ) a n1 nj nj nn a b a n1 nj nn a c a n1 nj nn
14 Propriedade 9: (Teorema de Jacobi) Adicionando-se a uma fila uma combinação linear de outras filas paralelas, o determinante não se altera; Propriedade 10: Para toda matriz triangular (superior ou inferior) tem determinante igual ao produto dos elementos da diagonal.
15 6. Regra de Chió Este algoritmo serve, assim como o teorema de Laplace, para baixar a ordem do determinante. Importante saber é que só podemos aplicar a regra de Chió se existir algum elemento igual a 1. Algoritmo: 1) Seja um determinante de ordem n onde a ij = 1, suprimem-se a i-ésima linha e a j-ésima coluna; 2) De cada elemento restante a pq do determinante subtraímos a pj. a iq ; 3) O novo determinante tem ordem n-1 e quando multiplicado por ( 1) i+j torna-se igual ao determinante original.
16 Exemplo:
17 7. Matriz de Vandermonde Chamamos de matriz de Vandermonde a uma matriz da forma, V a a a a n n a a a a. n1 n1 n1 n n a a a a O determinante de matrizes de Vandermonde é dado pelo produto de todas as possíveis diferenças a i a j onde i > j.
18 8.Teorema de Binet Sejam A e B matrizes quadradas de mesma ordem, então vale a igualdade det(ab) = det(a).det(b).
19 9. Matriz Inversa Dizemos que uma matriz A quadrada de ordem n é inversível se existe uma matriz B também de ordem n tal que AB = BA = I. Neste caso, dizemos que B é a matriz inversa de A e denotamos B = A 1. PROPRIEDADES: Todas as matrizes aqui citadas serão quadradas de ordem n e inversíveis. i. Se AB = I, necessariamente B = A 1 e então podemos garantir que BA = I. ii. (A 1 ) 1 = A iii. (At) 1 = (A 1 ) t iv. (A 1 A 2...A k ) 1 = (A k ) 1...(A 2 ) 1 (A 1 ) 1
20 v. (A k ) 1 = (A 1 ) k vi. det A 1 1 deta e assim A é inversível se, e somente se, seu determinante é não nulo.
21 10. Cálculo da matriz inversa Veremos agora o método do cálculo da matriz inversa através da matriz chamada adjunta. No próximo módulo, de sistemas lineares, veremos como calcular a matriz inversa resolvendo sistemas lineares. Dada uma matriz quadrada A, definimos a matriz adjunta de A como Adj(A) = (cofa) t, ou seja, a matriz adjunta é a transposta da matriz dos cofatores. Assim, temos o seguinte resultado: A 1 1 deta adj A Este método é útil quando queremos encontrar um elemento específico da matriz inversa ou quando queremos inverter uma matriz de ordem baixa (2 ou 3 em geral).
22 a b Dada uma matriz c d inversível, sua inversa é dada 1 d b por. ad bc c a
23
Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em
Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em tantos detalhes para os concursos desejados. Assim,
Determinante de uma matriz quadrada
Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante
Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)
Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 206 Sumário DETERMINANTE... Exemplo... Exemplo 2... EXERCÍCIOS FUNDAMENTAIS... Exemplo 3... EXERCÍCIOS FUNDAMENTAIS...
Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)
1 Determinante. det(a) = ρ. ( 1) J a 1j1 a 2j2... a njn. Exemplo 1.6. Determinante de 3a. ordem: a 11 a 12 a 13. a 21 a 22 a 23.
1 Determinante Determinante é uma função que associa a cada matriz quadradada A n n um número real Mais especificamente, é um número que obtemos através de produtos e somas dos elementos da matriz obedecendo
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número
Determinantes e Matrizes Inversas
Determinante e Matrizes Inversas FFCLRP - USP Departamento de Computação e Matemática 10 de março de 2019 e Matrizes Inversas 1 Propriedades dos determinantes Propriedades dos determinantes Propriedades
Álgebra Linear. Aula 02
Álgebra Linear Aula Determinante Para aproveitar 1% dessa aula vocês precisam saber: ü Matrizes ü Equação do 1º grau ü Equação do º grau Como representamos o determinante de uma matriz? Colocando os elementos
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Apostila de Matemática 11 Determinante
Apostila de Matemática 11 Determinante 1.0 Definições A determinante só existe se a matriz for quadrada. A tabela é fechada por 2 traços. Determinante de matriz de ordem 1 a 11. 1 2.0 Determinante Matriz
determinantes rita simões departamento de matemática - ua
determinantes rita simões ([email protected]) departamento de matemática - ua 204-205 determinante de uma matriz sejam l,..., l n as linhas de uma matriz do tipo n n; para cada n N, existe uma única função
Álgebra Linear. Professor Fabrício Oliveira. 25 de agosto de Universidade Federal Rural do Semiárido
Álgebra Linear Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 25 de agosto de 2010 Determinantes De maneira não formal Não daremos aqui a definição matematicamente correta. Determinantes
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio Município: Sombrio Disciplina: Matemática Série: 2 ano Nível: Ensino médio Professor: Giovani Marcelo Schmidt Tempo estimado: Cinco aulas
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril
Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:
Determinantes. Prof. Márcio Nascimento
Determinantes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 4 de fevereiro
Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas a Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... COFATOR... Exemplo... TEOREMA DE
Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a
Determinantes 1 Introdução Até agora nós estudamos vários tipos de matrizes e suas mais diversas ordens Em especial, vimos a matriz quadrada, que tinha o mesmo número de linhas e colunas Toda matriz quadrada
UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE
DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante
Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =
Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como
n. 4 DETERMINANTES: SARRUS E LAPLACE
n. 4 DETERMINANTES: SARRUS E LAPLACE A toda matriz quadrada está associado um número ao qual damos o nome de determinante. Determinante é uma função matricial que associa a cada matriz quadrada um escalar,
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2
RaciocínioLógico TFC -C G U Tele - Transmitido Teoria Mais de 360 aprovados na Receita Federal em 2006 Prof.Milton Ueta Data de impressão: 08/02/2008 67 das 88 vagas no AFRF no PR/SC 150 das 190 vagas
EAD DETERMINANTES CONCEITO:
1 EAD DETERMINANTES CONCEITO: Dada uma Matriz Quadrada de ordem n, dizemos que Determinante de ordem n é um número associado a essa Matriz conforme determinadas leis. Representamos o Determinante de uma
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 23
A multiplicação de matrizes não é uma operação
A multiplicação de matrizes não é uma operação tão simples como as outras já estudadas até aqui; não basta multiplicar os elementos correspondentes. Vamos introduzi-la por meio da seguinte situação: Durante
Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Gabriella Teles)
7 PC Sampaio Ale Amaral Rafael Jesus Gabriel Ritter Semana (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores
Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos
Sistemas Lineares. ( Aula 3 )
Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um
Determinantes. Matemática Prof. Mauricio José
Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes
UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz
DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)
DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha
1 Matrizes e Determinantes
1 Matrizes e Determinantes 11 Introdução Definição (Matriz): Uma matriz A m n é um arranjo retangular de mn elementos distribuídos em m linhas horizontais e n colunas verticais: a 11 a 12 a 1j a 1n a 21
a 21 a 22... a 2n... a n1 a n2... a nn
Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino
Matrizes. Curso de linguagem matemática Professor Renato Tião
Matrizes Curso de linguagem matemática Professor Renato Tião Uma matriz A m n é uma maneira de apresentar informações numéricas ou algébricas dispostas como numa tabela com m linhas e n colunas cercada
Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn
Guia-1 Revisão de Matrizes, Determinantes, Vetores e Sistemas Lineares SMA00 - Complementos de Geometria e Vetores Estagiária PAE: Ingrid Sofia Meza Sarmiento 1 Introdução Este texto cobre o material sobre
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Acadêmico(a) Turma: Capítulo 3: Determinantes
1 Acadêmico(a) Turma: Capítulo 3: Determinantes Como dito no capítulo anterior, matrizes e determinantes são usados para solucionar sistemas lineares. O determinante é um resultado número de operações
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7 Plano e Programa de Ensino Matrizes Exemplos Ordem de Uma Matriz Exemplos Representação 7 Matriz Genérica m x n 8 Matriz Linha 9 Exemplos Matriz Coluna Exemplos Diagonal de Uma
Produto Misto, Determinante e Volume
15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................
Matrizes e Sistemas Lineares
MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes
ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO
ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
V MATRIZES E DETERMINANTES
V MATRIZES E DETERMINANTES Por que aprender Matrizes e Deter erminant minantes?... Algumas vezes, para indicar com clareza determinadas situações, é necessário formar um grupo ordenado de números dispostos
MATRIZES E DETERMINANTES. a, com índices duplos, onde
MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes
Capítulo 8: Determinantes
8 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 8: Determinantes Sumário 1 Propriedades dos Determinantes 211 11 Propriedades Características 211 12 Propriedades
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de
Determinantes. Determinante é um número real que se associa a uma matriz quadrada. Determinante de uma Matriz Quadrada de 2ª Ordem
Introdução Determinante é um número real que se associa a uma matriz quadrada Determinante de uma Matriz Quadrada de 2ª Ordem É a diferença entre o produto dos elementos da diagonal principal e da diagonal
Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos
Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento
Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,?
SÉRIES NUMÉRICAS Séries Numéricas Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos: 2,10,12,16,17,18,19,?
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
ÁLGEBRA LINEAR - MAT0024
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 10 a Lista de exercícios
3. Calcule o determinante das matrizes abaixo.
Gabarito - Lista de Exercícios # Professor Pedro Hemsley Calcule o determinante das matrizes x abaixo deta = det = ( ) = detb = det = = 9 detc = det = 9 8 ( ) = 8 detd = det = = 0 0 dete = det = 0 ( 9)
UFSC Matrizes. Prof. BAIANO
UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em
MATRIZES E DETERMINANTES
PET-FÍSICA MATRIZES E DETERMINANTES Aula 7 TATIANA MIRANDA DE SOUZA ANA CAROLINA DOS SANTOS LUCENA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido
MP-208: Filtragem Ótima com Aplicações Aeroespaciais
MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.1: Álgebra Linear e Matrizes Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica [email protected] São José
Regra para calcular o determinante de matrizes quadradas de ordem 2x2:
O cálculo do determinante de uma matriz quadrada ou triangular é importante para ajudar a solucionar uma série problemas de álgebra, tais como: Determinar se uma matriz possui inversa (se ela é inversível)
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
Dou Mó Valor aos Autovalores
1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 01/1 LEIC - A EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Determinantes. 1 1 Determinantes Pode-se de nir det A, o determinante de uma matriz A M nn (K), como o valor da função de M nn (K)
Introdução ao determinante
ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld
Capítulo 3 - Sistemas de Equações Lineares
Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 22
2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas
Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.
Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 07
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
Aula 7 - Revisão de Álgebra Matricial
23 de Abril de 2018 // 26 de Abril de 2018 Introdução Objetivo da revisão: revisar a notação matricial, técnicas de álgebra linear e alguns resultados importantes Conteúdos: 1 Vetores e matrizes 2 Operações
Fração, Potenciação, Radiciação, Matrizes e Sistemas Lineares - Ozias Jr.
Conjuntos Números naturais, N: {0,1,2,3,..} Números inteiros, Z: {...,-3,-2,-1,0,1,2,3,...} Números racionais, Q: {..., -3,565656..., -2, 0, 1,888..., 3,...} Números irracionais: I: {, 3, 5, π, e 1, }
Matrizes e Sistemas Lineares
Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em
2. Calcule o determinante das matrizes 3x3 abaixo Calcule o determinante das matrizes abaixo. 2 =1 ( 1) 3 3=
Gabarito - Lista de Exercícios # - Métodos Quantitativos em Economia - FCE-UERJ Professor Pedro Hemsley - 0.. Calcule o determinante das matrizes x abaixo. deta = det = ( ) = detb = det = = detc = det
