Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Tamanho: px
Começar a partir da página:

Download "Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares"

Transcrição

1 universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares

2 Geometria anaĺıtica em R 3 [1 01] Fixamos um sistema de coordenadas: z O origem Ox Oy Oz eixos coordenados O y xoy xoz yoz planos coordenados x

3 Pontos e vetores em R 3 [1 02] x 1, x 2, x 3 coordenadas do ponto P z Associamos ao segmento de reta orientado OP o vetor X = x 1 x 2 x 3 y 1, y 2, y 3 coordenadas do ponto Q e seja Y o vetor associado a OQ Ao segmento de reta orientado P Q fica associado o vetor Z = x 1 x x 3 O X P Y x 2 Z Q y y 1 x 1 y 2 x 2 y 3 x 3

4 Adição, multiplicação por escalar e combinação linear [1 03] Sejam X e Y vetores em R 3 e α, β R escalares X Y Adição: Z = X + Y = x 1 x 2 + y 1 y 2 x 3 y 3 Multiplicação por escalar: αx = α x 1 + y 1 = x 2 + y 2 x 3 + y 3 x 1 x 2 αx 1 = αx 2 2X Z=X+Y Y X Y = ( 1)Y x 3 αx 3 αx 1 + βy 1 Combinação linear: Z = αx + βy = αx 2 + βy 2 αx 3 + βy 3 2X Z=2X Y Y

5 Vetores em R n [1 04] Os vetores em R 2 e R 3 generalizam-se a vetores em R n : X = x 1 x 2 x n R n Chamam-se componentes do vetor X aos números reais x 1, x 2,, x n Operações em R n adição de vetores: X + Y + Z multiplicação de um vetor por um escalar: 2X, Y, αz combinação linear de vetores: 2X Y + αz

6 Matrizes em R m R n [1 05] Os vetores em R n generalizam-se a vetores em R m R n a que chamamos MATRIZES A = a 11 a 1j a 1n a i1 a ij a in a m1 a mj a mn A é uma matriz com m linhas e n colunas, tem m n elementos diz-se matriz m n, de ordem m n, de dimensão m n

7 Matriz m n [1 06] A = a 11 a 1j a 1n a i1 a ij a in linha i a m1 a mj a mn coluna j a ij é o elemento ou entrada (i, j) da matriz A Notação abreviada: A = A m n = [a ij ] m n = [a ij ]

8 Matriz nula, matriz coluna e matriz linha [1 07] Matriz nula (m n), cujas entradas são todas iguais a 0, denota-se por O (ou O m n ) Matriz linha (1 n) [ a 11 a 1j a 1n ] Matriz coluna (m 1) a 11 a i1 a m1

9 Matriz quadrada de ordem n [1 08] matriz com o mesmo número de linhas e de colunas A = a 11 a 1i a 1n a i1 a ii a in a n1 a ni a nn diagonal principal

10 Matriz diagonal e matriz identidade [1 09] Uma matriz quadrada A = [a ij ] diz-se diagonal se a ij = 0, i j, ou seja, A = a a ii a nn Chama-se a matriz identidade de ordem n e denota-se por I (ou I n ) a uma matriz diagonal n n com a 11 = = a nn = 1

11 Matriz triangular [1 10] Uma matriz quadrada A = [a ij ] é triangular superior se a ij = 0, para i > j: a 11 a 1i a 1n A = 0 a ii a in, 0 0 a nn triangular inferior se a ij = 0, para i < j

12 Transposta de uma matriz [1 11] A transposta da matriz m n A = [a ij ] é a matriz n m A T = [a ji ] obtida por troca da posição relativa das linhas pelas colunas da matriz A, por exemplo A = a 11 a 12 a 13 a 21 a 22 a 23 A T = a 11 a 21 a 12 a 22 a 13 a 23 Propriedade: (A T ) T = A Uma matriz A diz-se simétrica se A = A T (Nota: toda a matriz simétrica é quadrada)

13 Igualdade, adição e multiplicação por escalar de matrizes [1 12] Sejam A = [a ij ], B = [b ij ] matrizes m n e α R As matrizes A e B são iguais, A = B, se a ij = b ij, i = 1,, m, j = 1,, n A soma de A e B é a matriz m n A + B = C = [c ij ] tal que c ij = a ij + b ij, i = 1,, m, j = 1,, n O produto de A pelo escalar α é a matriz m n αa = D = [d ij ] tal que d ij = α a ij, i = 1,, m, j = 1,, n A matriz m n A é uma combinação linear das matrizes A 1,, A k m n se A = α 1 A α k A k, α 1,, α k R

14 Propriedades da adição e da multiplicação por escalar [1 13] Propriedades da adição de matrizes comutativa: A + B = B + A, associativa: (A + B) + C = A + (B + C), admite elemento neutro: A + O = O + A = A, A possui simétrico aditivo: A + ( A) = ( A) + A = O, (A + B) T = A T + B T, para quaisquer matrizes m n A, B, C Propriedades da multiplicação por escalar de matrizes associativa: α (β A) = (α β) A, distributiva: (α + β) A = α A + β A, distributiva: α(a + B) = α A + α B, (αa) T = α A T, para quaisquer matrizes m n A, B, e α, β R

15 Multiplicação de matrizes caso 1 [1 14] Multiplicação de uma matriz linha por uma matriz coluna Dadas A = [a 1 a 2 a n ] e B = b 1 b 2 b n o produto da matriz linha A pela matriz coluna B é A B = a 1 b 1 + a 2 b a n b n = n a i b i i=1 Operação bem definida só se A e B possuem igual número de elementos!

16 Multiplicação de matrizes caso 2 [1 15] Caso geral: multiplicação de A matriz m n e B matriz n p sendo A = a 11 a 1j a 1n a i1 a ij a in e B = b 11 b 1j b 1p b i1 b ij b ip a m1 a mj a mn b n1 b nj b np o produto de A por B é a matriz m p AB = [c ij ] cuja entrada (i, j) resulta da multiplicação da linha i de A pela coluna j de B: c ij = a i1 b 1j + + a in b nj, i = 1,, m, j = 1,, p

17 Propriedades da multiplicação de matrizes [1 16] associativa: (AB)C = A(BC), distributiva à esquerda e à direita, em relação à adição: (A + Ã)B = AB + ÃB e A(B + B) = AB + A B, admite elemento neutro à esquerda e à direita: I m A = A = AI n, (αa)b = α (AB) = A(αB), (AB) T = B T A T, para quaisquer matrizes A, Ã m n, B, B n p, C p q e α R Nota importante: A multiplicação de matrizes não é comutativa!

18 Potência de uma matriz quadrada [1 17] Sejam A uma matriz n n e p N A potência p de A é a matriz n n dada por em que A 0 = I n, por convenção A p = A A p 1, Propriedades da potência de matrizes (A p ) q = A pq A p A q = A p+q Nota: Em geral (AB) p A p B p

19 Sistema de m equações lineares com n incógnitas [1 18] a 11 x a 1n x n = b 1 a m1 x a mn x n = b m A = a 11 a 1n X = x 1 B = b 1 a m1 a mn x n b m matriz dos coeficientes coluna das incógnitas coluna dos termos independentes

20 Forma matricial de um sistema linear [1 19] a 11 x a 1n x n = b 1 AX = B, a m1 x a mn x n = b m em que A é a matriz (m n) dos coeficientes do sistema, X é a coluna (n 1) das incógnitas, B é a coluna (m 1) dos termos independentes e a 11 a 1n b 1 M = [ A B ] = a m1 a mn b m é dita a matriz ampliada, aumentada ou completa m (n + 1) do sistema

21 Matriz escalonada por linhas [1 20] A primeira entrada não nula de cada linha é designada por pivot 0 a a a 3, a 1, a 2, a 3, = Abaixo de cada pivot só ocorrem zeros, Dadas duas linhas não nulas consecutivas, o pivot da linha i + 1 está numa coluna à direita da coluna que contém o pivot da linha i, As linhas nulas, caso existam, ocorrem só na parte inferior da matriz

22 Matriz escalonada por linhas reduzida [1 21] A matriz está na forma escalonada por linhas, Os pivots são todos iguais a 1, Acima de cada pivot só ocorrem zeros

23 Operações elementares nas linhas de uma matriz [1 22] 1 Troca da posição relativa de duas linhas, pe i e j: L i L j 2 Multiplicação de uma linha, pe i, por um escalar α 0: L i := α L i 3 Substituição de uma linha, pe i, pela que dela se obtém adicionando-lhe outra linha, pe j, multiplicada por um escalar β R: L i := L i + β L j Matrizes equivalentes por linhas Duas matrizes A e C são equivalentes por linhas e escreve-se A C se C resulta de A por aplicação de uma sequência finita de operações elementares nas linhas de A

24 Obtenção de uma matriz escalonada por linhas (reduzida) 1 [1 23] Teorema Toda a matriz m n é equivalente por linhas a uma matriz escalonada por linhas (reduzida) Exemplo ilustrativo do teorema anterior Passo 1: Encontrar, na 1 a coluna não nula, o 1 o elemento não nulo pivot A =

25 Obtenção de uma matriz escalonada por linhas (reduzida) 2 [1 24] Passo 2: Trocar linhas para colocar o pivot como 1 o elemento da coluna L 1 L 3 Passo 3: Operar com as linhas para obter zeros abaixo do pivot L 4 := L 4 L 1

26 Obtenção de uma matriz escalonada por linhas (reduzida) 3 [1 25] Passo 4: Considerar a submatriz que se obtém eliminando a 1 a linha e aplicar os passos 1 a 4 até esgotar as linhas Fim Passo 4: Obtém-se uma matriz escalonada por linhas equivalente a A

27 Obtenção de uma matriz escalonada por linhas (reduzida) 4 [1 26] Passo 5: Multiplicar as linhas não nulas pelos inversos dos pivots de modo a obter pivots iguais a L 1 := 1 2 L 1 L 2 := 1 2 L 2 L 3 := 1 2 L 3

28 Obtenção de uma matriz escalonada por linhas (reduzida) 5 [1 27] Passo 6: Operar com as linhas de modo a obter zeros acima dos pivots L 2 := L L 3 L 1 := L 1 L 2 L 1 := L L Obtém-se uma matriz escalonada por linhas reduzida equivalente a A

29 Aplicação à resolução de sistemas [1 28] Teorema Se as matrizes ampliadas de dois sistemas lineares são [ A B ] e [ C D ], tais que [ A B ] [ C D ], então os dois sistemas têm o mesmo conjunto de soluções Nota: Se B = D = 0, basta que A C para que os sistemas possuam o mesmo conjunto de soluções

30 Métodos de eliminação [1 29] Método de eliminação de Gauss 1 Dado o sistema AX = B, formar a sua matriz ampliada [ A B ] 2 Transformar [ A B ] numa forma escalonada por linhas [ C D ] 3 Escrever o sistema CX = D, ignorando as linhas nulas, e resolver por substituição ascendente Método de eliminação de Gauss-Jordan 1 Dado o sistema AX = B, formar a sua matriz ampliada [ A B ] 2 Transformar [ A B ] numa forma escalonada por linhas reduzida [ E F ] 3 Escrever o sistema EX = F, ignorando as linhas nulas, e resolver

31 Classificação de sistemas [1 30] Um sistema linear representado matricialmente por AX = B, tal que [ A B ] [ C D ], com a matriz [ C D ] escalonada por linhas, classifica-se em impossível se não possui solução; possível e determinado se possui uma única solução (todas as colunas de C têm pivot e não há pivot na coluna D); possível e indeterminado se possui uma infinidade de soluções (sendo o grau de indeterminação do sistema = n o de incógnitas livres = n o de colunas de C sem pivot)

32 Caraterística e classificação de sistemas [1 31] A caraterística da matriz A, car(a), é o número de pivots de uma matriz C escalonada por linhas equivalente, por linhas, a A O sistema linear AX = B com A m n e B m 1 é 1 impossível car(a) < car([a B]); 2 possível e determinado car(a) = car([a B]) = n; 3 possível e indeterminado de grau n car(a) car(a) = car([a B]) < n

33 Espaço das colunas de uma matriz [1 32] O espaço das colunas de uma matriz A m n, C(A), é o conjunto de todas as combinações lineares das colunas C 1,, C n de A, C(A) = { α 1 C α n C n, α 1,, α n R} Se X = [α 1 α n ] T, então AX = α 1 C α n C n, logo C(A) = {AX R m : X R n } Teorema Dada A m n e B m 1, temos B C(A) AX = B é um sistema possível

34 Espaço das linhas de uma matriz [1 33] O espaço das linhas de uma matriz A m n, L(A), é o conjunto de todas as combinações lineares das colunas L T 1,, LT m que resultam da transposta das linhas L 1,, L m de A, L(A) = { α 1 L T α ml T m, α 1,, α m R} Proposição Se A C, então L(A) = L(C) Como L(A) = C(A T ), temos B L(A) A T X = B é um sistema possível

35 Sistema homogéneo e nulidade [1 34] Um sistema diz-se homogéneo se os termos independentes são todos nulos: A X = 0 Todo o sistema homogéneo é possível pois possui pelo menos a solução nula, dita solução trivial Se A é m n e m < n, então AX = 0 admite uma solução não trivial A nulidade de A, nul(a), é o número de incógnitas livres do sistema AX = 0, nul(a) = n car(a)

36 Espaço nulo de uma matriz [1 35] O espaço nulo de A, N (A), é o conjunto de todas as soluções do sistema homogéneo associado a A m n, N (A) = {X R n : AX = 0} O espaço nulo de A, N (A), pode escrever-se como o conjunto de todas as combinações lineares de n car(a) colunas obtidas usando colunas da forma escalonada reduzida de A Teorema Dada A m n e B m 1, se o sistema AX = B é possível e se X é uma sua solução, então o conjunto de soluções do sistema é {X + Y : Y N (A)}

37 Inversa de uma matriz quadrada [1 36] Uma matriz A n n diz-se invertível se existe B n n tal que A B = B A = I n À única matriz B satisfazendo a relação anterior chama-se inversa de A e denota-se por A 1 Caso contrário (não existe B), A diz-se singular ou não invertível Teorema Se A n n é invertível, então a inversa de A é única Teorema Se A, B n n e B A = I n, então A B = I n

38 Propriedades da inversa e método para obter a inversa [1 37] Propriedades 1 (A 1 ) 1 = A; 2 (AB) 1 = B 1 A 1 ; 3 (A T ) 1 = (A 1 ) T ; para quaisquer A, B n n invertíveis Método prático para determinar a inversa [A I n ] [I n A 1 ] método de eliminação de Gauss-Jordan Teorema Uma matriz A n n é invertível se e só se A é equivalente por linhas a I n

39 Critérios de invertibilidade de uma matriz [1 38] Teorema Dada A n n, são equivalentes as afirmações 1 A é invertível 2 A I n 3 car(a) = n 4 nul(a) = 0 5 AX = B tem uma única solução X = A 1 B para cada B n 1 6 AX = 0 possui apenas a solução trivial 7 C(A) = R n 8 L(A) = R n 9 N (A) = {0}

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes. Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

Matrizes Reais conceitos básicos

Matrizes Reais conceitos básicos Cálculo Numérico Matrizes Reais conceitos básicos Wagner de Souza Borges FCBEE, Universidade Presbiteriana Mackenzie wborges@mackenzie.com.br Resumo O conceito de matriz tem origem no estudo de sistemas

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 15

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

a 21 a 22... a 2n... a n1 a n2... a nn

a 21 a 22... a 2n... a n1 a n2... a nn Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Capítulo 1 Matrizes e Determinantes 11 Generalidades Iremos usar K para designar IR conjunto dos números reais C conjunto dos números complexos Deste modo, chamaremos números ou escalares aos elementos

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Ficha de Exercícios nº 2

Ficha de Exercícios nº 2 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc Bacharelado em Sistemas de Informação Período 26. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc E-mails: damasceno2@hotmail.com damasceno2@uol.com.br damasceno24@yahoo.com.br Site: www.damasceno.info

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Aula 8 Variações da Eliminação de Gauss/Fatoração LU.

Aula 8 Variações da Eliminação de Gauss/Fatoração LU. Aula 8 Variações da Eliminação de Gauss/Fatoração LU. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1.

Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1. Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1 Matrizes 1 Considere as matrizes A = 1 2 3 2 3 1 3 1 2 Calcule

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Representação de Circuitos Lógicos

Representação de Circuitos Lógicos 1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

Notas de Aula. Álgebra Linear

Notas de Aula. Álgebra Linear Notas de Aula Álgebra Linear Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

Sistemas Lineares e Escalonamento

Sistemas Lineares e Escalonamento Capítulo 1 Sistemas Lineares e Escalonamento Antes de iniciarmos nos assuntos geométricos da Geometria Analítica, vamos recordar algumas técnicas sobre escalonamento de matrizes com aplicações na solução

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Matrizes e Sistemas de Equações Lineares

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Matrizes e Sistemas de Equações Lineares INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano o Ano Lectivo 2007/2008 Semestre o Apontamentos Teóricos:

Leia mais

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o Projeto TEIA DO SABER 006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof Dr José Ricardo Zeni Metodologias de Ensino

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 8ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

Notas de Aula. Álgebra Linear I

Notas de Aula. Álgebra Linear I Notas de Aula Álgebra Linear I Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51 1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine

Leia mais

Ficha de Trabalho nº11

Ficha de Trabalho nº11 Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Sistema de equações lineares e não lineares Tiago de Souza Farias

Leia mais

2y 2z. x y + 7z = 32 (3)

2y 2z. x y + 7z = 32 (3) UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Método Simplex Resolução Algébrica. Prof. Ricardo Santos

Método Simplex Resolução Algébrica. Prof. Ricardo Santos Método Simplex Resolução Algébrica Prof. Ricardo Santos Método Simplex A função objetivo f(x) pode ser expressa considerando a partição básica: f(x)=c T x= [ ] c T c T x B c T x c T x B N = + x B B N N

Leia mais

3.1. TRANSFORMAÇÕES LINEARES 79

3.1. TRANSFORMAÇÕES LINEARES 79 31 TRANSFORMAÇÕES LINEARES 79 Exemplo 317 Mostre que existe uma função T : R R satisfazendo à condição aditiva T (x + y) =T (x)+t (y), x, y R, mas não é uma transformação linear, isto é, T (x) 6= ax, paraalgumx

Leia mais

Matriz de Sensibilidade Modal

Matriz de Sensibilidade Modal Introdução ao Controle Automático de Aeronaves Matriz de Sensibilidade Modal Leonardo Tôrres torres@cpdeeufmgbr Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep Eng Eletrônica EEUFMG

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Álgebra Linear Computacional

Álgebra Linear Computacional Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços

Leia mais

3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico

3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico Sistemas Elétricos de Potência 3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico Professor: Dr. Raphael Augusto de Souza Benedito E-mail:raphaelbenedito@utfpr.edu.br disponível

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7!

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7! REALIZAÇÃO CANÔNICA DA SEQÜÊNCIA DE FIBONACCI Paulo Franca Bandel (IC) 1 & Marcos Antonio Botelho Labmat Laboratório de Matemática Experimental Departamento de Matemática Instituto Tecnológico de Aeronáutica

Leia mais

Duas aplicações da Topologia à Álgebra Linear. 1 Quando são duas matrizes semelhantes?

Duas aplicações da Topologia à Álgebra Linear. 1 Quando são duas matrizes semelhantes? Duas aplicações da Topologia à Álgebra Linear José Carlos Santos Departamento de Matemática Faculdade de Ciências da Universidade do Porto e-mail: jcsantos@fc.up.pt Resumo: Este artigo contém duas aplicações

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Determinantes 1 Permutação e Inversão 2 Determinantes de matriz de

Leia mais

Unidade III- Determinantes

Unidade III- Determinantes Unidade III- Determinantes - Situando a Temática A teoria dos determinantes tem origem em meados do século XVII, quando eram estudados processos para resolução de sistemas lineares Hoje em dia, embora

Leia mais

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de

Leia mais

Álgebra Linear - Exercícios (Determinantes)

Álgebra Linear - Exercícios (Determinantes) Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1

Leia mais

Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma

Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma Escola Secundária Gabriel Pereira FICHA DE EXERCÍCIOS Nº MATEMÁTICA A Rectas e Planos Nome: Nº: Ano Turma 1) Determina uma equação vectorial e cartesianas da recta que passa em A,1, 4 11) paralela ao vector

Leia mais