Escalonamento de matrizes
|
|
|
- Mafalda Cabreira de Caminha
- 7 Há anos
- Visualizações:
Transcrição
1 Escalonamento de matrizes Laura Goulart UESB 20 de Outubro de 2016 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
2 Operações elementares sobre as linhas Chamamos de operações elementares nas linhas de uma matriz uma das seguintes operações: Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
3 Operações elementares sobre as linhas Chamamos de operações elementares nas linhas de uma matriz uma das seguintes operações: E1) Permutação de linhas (L i L j ) Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
4 Operações elementares sobre as linhas Chamamos de operações elementares nas linhas de uma matriz uma das seguintes operações: E1) Permutação de linhas (L i L j ) E2) Multiplicação de linhas por um escalar não nulo (L i αl i ) Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
5 Operações elementares sobre as linhas Chamamos de operações elementares nas linhas de uma matriz uma das seguintes operações: E1) Permutação de linhas (L i L j ) E2) Multiplicação de linhas por um escalar não nulo (L i αl i ) E3) Substituição de uma linha pela soma desta com outra previamente multiplicada por um escalar não nulo. (L i L i + αl j ) Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
6 Operações elementares sobre as linhas Chamamos de operações elementares nas linhas de uma matriz uma das seguintes operações: E1) Permutação de linhas (L i L j ) E2) Multiplicação de linhas por um escalar não nulo (L i αl i ) E3) Substituição de uma linha pela soma desta com outra previamente multiplicada por um escalar não nulo. (L i L i + αl j ) Se uma matriz B puder ser obtida de A por meio de uma sequência nita de operações elementares diremos que A é equivalente a B e denotamos por A B. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
7 Propriedades Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
8 Propriedades Reexiva: A A Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
9 Propriedades Reexiva: Simétrica: A A A B B A Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
10 Propriedades Reexiva: A A Simétrica: A B B A Transitiva: A B e B C A C. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
11 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
12 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
13 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
14 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. iii) O pivô da linha i + 1 ocorre à direita acima do pivô da linha i (ie, os pivôs cam na "diagonal") Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
15 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. iii) O pivô da linha i + 1 ocorre à direita acima do pivô da linha i (ie, os pivôs cam na "diagonal") iv) Numa coluna todos os elementos abaixo do pivô são nulos. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
16 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. iii) O pivô da linha i + 1 ocorre à direita acima do pivô da linha i (ie, os pivôs cam na "diagonal") iv) Numa coluna todos os elementos abaixo do pivô são nulos. Qualquer matriz poderá ser reduzida para uma matriz escalonada através do Método de Eliminação de Gauss. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
17 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. iii) O pivô da linha i + 1 ocorre à direita acima do pivô da linha i (ie, os pivôs cam na "diagonal") iv) Numa coluna todos os elementos abaixo do pivô são nulos. Qualquer matriz poderá ser reduzida para uma matriz escalonada através do Método de Eliminação de Gauss. posto de A = no. de linhas não nulas na forma escalonada. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
18 Matriz Escalonada Uma matriz escalonada satisfaz as seguintes condições: i) Todas as linhas nulas ocorrem abaixo das linhas não nulas. ii) O primeiro elemento não nulo de cada linha não nula é chamado pivô. iii) O pivô da linha i + 1 ocorre à direita acima do pivô da linha i (ie, os pivôs cam na "diagonal") iv) Numa coluna todos os elementos abaixo do pivô são nulos. Qualquer matriz poderá ser reduzida para uma matriz escalonada através do Método de Eliminação de Gauss. posto de A = no. de linhas não nulas na forma escalonada. nulidade de A = n posto(a) Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
19 Matrizes Elementares Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
20 Matrizes Elementares Uma matriz elementar E M n (R) é uma matriz obtida de I n de uma única operação elementar. por meio Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
21 Matrizes Elementares Uma matriz elementar E M n (R) é uma matriz obtida de I n de uma única operação elementar. por meio Proposição Toda matriz elementar é inversível. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
22 Observação Seja A M n (R) e apliquemos uma operação elementar em A, obtemos uma matriz equivalente B. Se aplicarmos a mesma operação em I n, obteremos uma matriz elementar E. Armamos que B = E A. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
23 Observação Seja A M n (R) e apliquemos uma operação elementar em A, obtemos uma matriz equivalente B. Se aplicarmos a mesma operação em I n, obteremos uma matriz elementar E. Armamos que B = E A. Proposição A B e A inversível B é inversível. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
24 Determinação da Inversa Teorema A M n (R) é inversível sse A I n. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
25 Determinação da Inversa Teorema A M n (R) é inversível sse A I n. P A = I n A 1 = P Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
26 Determinação da Inversa Teorema A M n (R) é inversível sse A I n. P A = I n A 1 = P Em outras palavras, se A M n (R) é inversível, então existe uma sequência nita de operações elementares que torna A igual a matriz identidade I n. Essas mesmas sequências de operações aplicadas ao mesmo tempo em A e em I n transformam I n em A 1. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
27 Determinação da Inversa Teorema A M n (R) é inversível sse A I n. P A = I n A 1 = P Em outras palavras, se A M n (R) é inversível, então existe uma sequência nita de operações elementares que torna A igual a matriz identidade I n. Essas mesmas sequências de operações aplicadas ao mesmo tempo em A e em I n transformam I n em A 1. (A...In ) P (I n...a 1 ) Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
28 Determinação da Inversa Teorema A M n (R) é inversível sse A I n. P A = I n A 1 = P Em outras palavras, se A M n (R) é inversível, então existe uma sequência nita de operações elementares que torna A igual a matriz identidade I n. Essas mesmas sequências de operações aplicadas ao mesmo tempo em A e em I n transformam I n em A 1. (A...In ) P (I n...a 1 ) Corolário A é inversível sse det(a) 0. Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
29 Exemplo A = Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
30 Exemplo L 1 L 3 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
31 Exemplo L 2 L 2 5L 1 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
32 Exemplo L 3 L 3 5L Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
33 Exemplo L 1 L 1 +L 2 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
34 Exemplo L 2 ( 1)L 2 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
35 Exemplo L 3 L 3 +2L 2 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
36 Exemplo L 3 20 L 3 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
37 Exemplo L 1 L 1 14L 3 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
38 Exemplo L 2 L 2 +15L 3 Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
39 Exemplo Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
40 Resposta A 1 = Laura Goulart (UESB) Escalonamento de matrizes 20 de Outubro de / 20
3 - Subespaços Vetoriais
3 - Subespaços Vetoriais Laura Goulart UESB 16 de Agosto de 2018 Laura Goulart (UESB) 3 - Subespaços Vetoriais 16 de Agosto de 2018 1 / 10 Denição Um subespaço vetorial é um subconjunto de um e.v.r. que
Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Sistemas Lineares Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir
Método de eliminação de Gauss
Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma
Matrizes e sistemas de equações algébricas lineares
Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 23
Método de Gauss-Jordan e Sistemas Homogêneos
Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos
Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento
1 Matrizes e Determinantes
1 Matrizes e Determinantes 11 Introdução Definição (Matriz): Uma matriz A m n é um arranjo retangular de mn elementos distribuídos em m linhas horizontais e n colunas verticais: a 11 a 12 a 1j a 1n a 21
SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais
SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú Curso de Licenciatura em Matemática [email protected] 8
ÁLGEBRA MATRICIAL E O METÓDO DE GAUSS: POSSIBILIDADES PARA A
ÁLGEBRA MATRICIAL E O METÓDO DE GAUSS: POSSIBILIDADES PARA A EDUCAÇÃO BÁSICA Márcio Nascimento Universidade Estadual Vale do Acaraú VI SEPMAT - UECE 23 de março de 2017 1 / 115 Sumário 1 Brevíssimo Histórico
Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes
Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Determinantes. Prof. Márcio Nascimento
Determinantes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 4 de fevereiro
Sistemas - Relações entre as colunas da matriz ampliada
Sistemas - Relações entre as colunas da matriz ampliada Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra
Matrizes. Laura Goulart. 29 de Outubro de 2018 UESB. Laura Goulart (UESB) Matrizes 29 de Outubro de / 16
Matrizes Laura Goulart UESB 29 de Outubro de 2018 Laura Goulart (UESB) Matrizes 29 de Outubro de 2018 1 / 16 Motivação Chama-se matriz de ordem m por n uma tabela com m n elementos(em geral, números reais)
4-Operações de Matrizes
4-Operações de Matrizes Laura Goulart UESB 30 de Outubro de 2018 Laura Goulart (UESB) 4-Operações de Matrizes 30 de Outubro de 2018 1 / 16 4.1 - Adição de matrizes Dadas as matrizes A = (a ij ) e B = (b
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser
Unicidade da Forma Escalonada Reduzida de uma Matriz
1 Unicidade da Forma Escalonada Reduzida de uma Matriz Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 1 de maio de 24 Definição 1 Uma
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Matrizes - ALGA /05 1. Matrizes
Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril
Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:
ÁLGEBRA LINEAR A FICHA 2
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas
Determinantes e Matrizes Inversas
Determinante e Matrizes Inversas FFCLRP - USP Departamento de Computação e Matemática 10 de março de 2019 e Matrizes Inversas 1 Propriedades dos determinantes Propriedades dos determinantes Propriedades
Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho
Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Matrizes - Parte II Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =
Determinantes - Parte 02
Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 07
Sistemas Lineares e Matrizes
Sistemas Lineares e Matrizes Lino Marcos da Silva linosilva@univasfedubr Obs Este texto ainda está em fase de redação Por isso, peço a gentileza de avisar-me sobre a ocorrência de erros conceituais, gráficos
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada
Laboratório de Simulação Matemática. Parte 6 2
Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago
Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2
Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou
Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c
Álgebra Linear I - Lista 0 Transfromações inversas. Matriz inversa Respostas Estude se existe uma matriz A tal que ( ( a b b d A = c d a c para todos os valores de a, b, c e d. Resposta: Seja e dadas B
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
Unidade 3 - Transformações elementares de matrizes, matriz escaloconada. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 3 - Transformações elementares de matrizes, matriz escaloconada A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013
1 Determinante. det(a) = ρ. ( 1) J a 1j1 a 2j2... a njn. Exemplo 1.6. Determinante de 3a. ordem: a 11 a 12 a 13. a 21 a 22 a 23.
1 Determinante Determinante é uma função que associa a cada matriz quadradada A n n um número real Mais especificamente, é um número que obtemos através de produtos e somas dos elementos da matriz obedecendo
Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1
Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre
Sistema de Equaçõs Lineares
Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE
DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos
Método de Gauss-Jordan e Colunas Básicas de uma Matriz
Método de Gauss-Jordan e Colunas Básicas de uma Matriz Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra
Algoritmos Numéricos 2 a edição
Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares
Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho
Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)
Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos:
Resolução de Sistemas Lineares Método de Gauss O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Triangulares Procedimento
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
Avaliação e programa de Álgebra Linear
Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos
FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - o Semestre de / MEEC EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Método de Eliminação de Gauss Sistemas de equações lineares Uma equação linear nas variáveis (ou incógnitas) x ; ; x n ; é uma equação do
Matrizes e Sistemas Lineares
MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes
Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1
Vetores Laura Goulart UESB 21 de Julho de 2018 Laura Goulart (UESB) Vetores 21 de Julho de 2018 1 / 1 Introdução Muitas grandezas físicas como força para serem completamente identicadas precisam de comprimento,
Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz
Álgebra Linear. Professor Fabrício Oliveira. 25 de agosto de Universidade Federal Rural do Semiárido
Álgebra Linear Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 25 de agosto de 2010 Determinantes De maneira não formal Não daremos aqui a definição matematicamente correta. Determinantes
I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple
1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
NOTAS DE AULAS DE ÁLGEBRA LINEAR
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE EDUCAÇÃO E SAÚDE UNIDADE ACADÊMICA DE EDUCAÇÃO PERÍODO 011 TURNO: DATA: PROFESSORA: CÉLIA MARIA RUFINO FRANCO Aluno (a): NOTAS DE AULAS DE ÁLGEBRA LINEAR
Função Am. Laura Goulart. 4 de Fevereiro de 2019 UESB. Laura Goulart (UESB) Função Am 4 de Fevereiro de / 11
Função Am Laura Goulart UESB 4 de Fevereiro de 2019 Laura Goulart (UESB) Função Am 4 de Fevereiro de 2019 1 / 11 2-Função constante Uma função f : A R B R é dita uma função constante quando a cada elemento
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,
Cálculo Numérico BCC760
Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita
Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software
ª Lista de Exercícios (ALGA) Prof. Helder G. G. de Lima Legenda Cálculos Conceitos Teoria Software Questões. Mostre que as afirmações a seguir não são necessariamente verdadeiras para matrizes quadradas
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13
apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice 1 1 Matrizes,
Roteiros e Exercícios - Álgebra Linear v1.0
Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de
Introdução aos números inteiros
Introdução aos números inteiros Laura Goulart UESB 19 de Dezembro de 2017 Laura Goulart (UESB) Introdução aos números inteiros 19 de Dezembro de 2017 1 / 18 Adição Laura Goulart (UESB) Introdução aos números
