PLANO DE ENSINO E APRENDIZAGEM
|
|
|
- Levi Lagos Fraga
- 9 Há anos
- Visualizações:
Transcrição
1 SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA: DISCIPLINA: ÁLGEBRA LINEAR MUNICÍPIO: SEMESTRE: 01/2013 PERÍODO: a TURMA: II EMENTA: Sistemas Lineares, Espaços Vetoriais. Base de um Espaço Vetorial. Transformações Lineares. Matriz de uma Transformação Linear. Espaços com Produto Interno. Autovalores e Autovetores. Diagonalização de Operadores. III - OBJETIVOS GERAIS: Fornecer uma base teórico-prática sólida dos espaços e das transformações de modo a permitir suas aplicações nas diversas áreas da Matemática.
2 (MANHÃ/TARDE) Identificar uma matriz real e suas partes como elementos, linhas, colunas e a ordem. Escrever uma matriz na forma de tabela a partir da definição dada. Conhecer a definição de algumas matrizes especiais. Saber efetuar três operações matriciais: adição, multiplicação por um escalar e multiplicação de matrizes. Saber usar as propriedades destas operações em cálculos matriciais. Capítulo 1 Matrizes 1.1 Matrizes 1.2 Operações com matrizes 07/01 - Manhã pelos alunos Determinar a transposta de uma matriz, reconhecer uma matriz simétrica e reconhecer quando uma matriz é inversa de outra. Conhecer as três operações elementares sobre as linhas de uma matriz, saber obter a matriz escalonada a partir de uma matriz dada. Capítulo 1 Matrizes 1.3 Matrizes especiais 1.4 Escalonamento 07/01 - Tarde Saber identificar matrizes inversíveis, usar as operações elementares para calcular a inversa de uma matriz inversível. Saber calcular o determinante de uma matriz de ordem 2 e 3. Capítulo 1 Matrizes 1.5 Inversão de matrizes 1.6 Cálculo de determinantes 08/01-Manhã
3 Reconhecer uma equação linear e saber resolver. Reconhecer um sistema linear. Escrever um sistema linear em notação matricial. Resolver sistema linear por escalonamento. Discutir um sistema linear a partir do posto das matrizes associadas ao sistema Capítulo 2 Sistemas 2.1 Resolução de sistemas 2.2 Eliminação gaussiana 08/01-Tarde 09/01 Manhã (8-10) 1ª. Avaliação prova escrita e individual Saber a definição de espaço vetorial real. Conhecer os principais exemplos de espaços. Saber usar propriedades elementares de espaços. Capítulo 3 Espaços 3.1 Axiomas de espaço vetorial 09/01-Manhã (10-12)
4 Saber a definição de subespaço, saber reconhecer quando um subconjunto é um subespaço vetorial. Saber determinar a interseção e a soma de subespaços. Reconhecer quando a soma de subespaços é soma direta. Capítulo 3 Espaços 3.2 Subespaço vetorial 3.3 Operações com subespaço 09/01 - Tarde pelos alunos Identificar quando um vetor é combinação linear de outros. Saber calcular o subespaço gerado por um conjunto. Calcular o gerador de um subespaço. Saber como identificar conjunto L.D. e L.I. Capítulo 3 Espaços 3.4 Subespaço gerado 3.5 Dependência e independência linear 10/01 - Manhã Saber e compreender a definição de base de um espaço vetorial. Saber determinar a base de um espaços e determinar sua dimensão Saber a definição de transformação, operador e funcional linear. Saber identificar quando uma transformação é linear. Capítulo 3 Espaços 3.6 Base e dimensão 4.1 Transformação linear 10/01 Tarde
5 Saber determinar uma transformação linear a partir de uma base. Saber definir e calcular núcleo e imagem de uma transformação linear. Conhecer o posto e a nulidade de uma transformação linear. Conhecer e saber aplicar o teorema do núcleo e da imagem. 4.2 Determinação de uma transformação linear 4.3 Núcleo e imagem 11/01-Manhã Estudo dirigido Leitura do texto com resolução dos exercícios Saber reconhecer transformações inversíveis e calcular sua inversa. Saber a definição e o significado de isomorfismo de espaços. 4.4 Isomorfismo de espaços 11/01 Tarde (14-16) 11/01-Tarde (16-18) 2ª. Avaliação prova escrita e individual
6 Saber determinar a matriz de uma transformação linear. Saber determinar as coordenadas de um vetor em relação a diferentes bases. Calcular a matriz de mudança de base. Reconhecer matrizes semelhantes. 4.5 Matriz de uma transformação linear 4.6 Mudança de base 12/01-Manhã pelos alunos Aplicar o conhecimento teórico de transformações para obter reflexões, dilatações e rotações no plano. Conhecer e saber usar as propriedades básicas do produto interno. Saber definir e calcular norma, distância e ângulo entre vetores. 4.7 Transformações no plano Capítulo 5 Espaços com produto interno e ortogonalidade 12/01 Tarde 5.1 Espaços euclidianos Reconhecer conjuntos ortogonais e ortonormais. Reconhecer subespaços ortogonais. Conhecer projeções ortogonais. Usar o processo de ortogonalização de Gram- Schmidt para obter bases ortonormais. Capítulo 5 Espaços com produto interno e ortogonalidade 5.2 Bases ortogonais 5.3 Projeções ortogonais 14/01 Manhã
7 Saber definir autovalor, autovetor e polinômio característico de um operador. Determinar os autovalores e autovetores de um operador. Reconhecer um operador diagonalizável e obter sua forma diagonal. Capítulo 6 Autovalores e Autovetores 6.1 Autovalor e autovetor 6.2 Diagonalização de operadores 14/01 Tarde pelos alunos Exercícios 15/01-Manhã (08/10) Quadro e pincel 15/01-Manhã (10/12) 3ª avaliação Prova escrita e individual.
8 X - REFERÊNCIAS: 1 J. L. BOLDRINI, W. FIGUEIREDO. Álgebra Linear. Harper & Row do Brasil, São Paulo, SEYMOUR LIPSCHUTZ. Álgebra Linear.. Coleção Schaum. Editora McGraw-Hill do Brasil, São Paulo, DAVID C. LAY. Álgebra Linear e suas aplicações. Livros Técnicos e Científicos S.A., Rio de Janeiro, A. STEINBRUCH, P. WINTERLE. Álgebra Linear. Editora McGraw-Hill, São Paulo, COMPLEMENTARES: 1 - B. NOBLE, J. W. DANIEL. Álgebra Linear Aplicada. Editora Prentice-Hall do Brasil Ltda, Rio de janeiro, ELON L. LIMA. Álgebra Linear. (Coleção Matemática Universitária). Instituto de Matemática Pura e Aplicada, Rio de Janeiro, F. U. COELHO, MARY L. LOURENÇO. Um curso de Álgebra linear. Edusp, São Paulo, K. HOFFMAN, R. KUNZE. Álgebra Linear. Livros Técnicos e Científicos Editora, Rio de Janeiro, M. R. SPIEGEL, R.E. MOYER. Teoria e Problemas de Álgebra. Coleção Schaum. Bookman, Porto Alegre, 2004.
PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear
UNIVERSIDADE FEDERAL DO PARÁ PLANO NACIONAL DE FORMAÇÃO DE PROFESSORES DA EDUCAÇÃO BÁSICA PARFOR CURSO DE LICENCIATURA EM MATEMÁTICA PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear I IDENTIFICAÇÃO 1.1. Disciplina:
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA
Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA EMENTA: Vetores. Matrizes. Determinantes. Sistemas Lineares Transformações Lineares. Produto Vetorial. Produto Escalar. Espaços vetoriais.
PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.
PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO
DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: ÁLGEBRA LINEAR E CÁLCULO VETORIAL Código da Disciplina: NDC152 Curso: Engenharia Civil Semestre de oferta da disciplina: 2 Faculdade responsável: NÚCLEO DE DISCIPLINAS
0.1 Matrizes, determinantes e sistemas lineares
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente
Transformações Lineares. Diagonalização de Operadores.
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA MAT 137 Introdução à Álgebra Linear PLANO DE ENSINO 2017/II (sujeito a alterações durante o semestre letivo)
CYNTHIA FEIJO SEGATTO 25/10/2017 (2017/2) 05/11/2018 (2019/1)
Instituto de Matemática e Estatística Departamento de Matemática Pura e Aplicada Dados de identificação Disciplina: ÁLGEBRA LINEAR I - A Período Letivo: 019/1 Período de Início de Validade : 017/ Professor
INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática
INTRODUÇÃO À ÁLGEBRA LINEAR Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática PLANO DE ENSINO: 1. EMENTA: Matrizes. Sistemas de Equações Lineares. Espaços Vetoriais 2. CARGA HORÁRIA: 60
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
n. 33 Núcleo de uma transformação linear
n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).
RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA:
RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: determinantes Se o determinante da matriz é diferente de zero existe a inversa, logo: det M 0 M -1 1 =. M det M Quem é M? É a matriz adjunta, que é a matriz transposta
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
Centro Universitário Fundação Santo André Faculdade de Engenharia Engº Celso Daniel FAENG Plano de disciplina 2015
Centro Universitário Fundação Santo André Faculdade de Engenharia Engº Celso Daniel FAENG Plano de disciplina 2015 Curso: Engenharia Ambiental Disciplina: Álgebra Linear - Código: 1122B1 Carga Horária:
n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ).
n. 2 MATRIZ INVERSA Modo : utilizando a matriz identidade Seja A uma matriz quadrada de ordem n. Dizemos que A é matriz invertível se existir uma matriz B tal que A. B = B. A = I. (I = matriz unidade ou
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Lista 8 de Álgebra Linear /01 Produto Interno
Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z
n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS
n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,
(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.
Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
10 a Lista de Exercícios
Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
Elementos de Matemática Avançada
Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos
Prof. Drª Marília Brasil Xavier REITORA. Profª. Drª. Maria das Graças Silva VICE-REITORA
Prof. Drª Marília Brasil Xavier REITORA Profª. Drª. Maria das Graças Silva VICE-REITORA Prof. Dr. Ruy Guilherme Castro de Almeida PRÓ-REITOR DE ENSINO E GRADUAÇÃO Profª. M.Sc. Maria José de Souza Cravo
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Geometria Analítica e Álgebra Linear
AULA 1 - Matrizes Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Matrizes 2. Determinantes 3. Sistemas de
Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática
Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1
DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 Departamento de Estatística Setor de Ciências Exatas Disciplina: Elementos Básicos para Estatística Código: CE065 Natureza: Semestral Carga Horária:
Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte
MINISTÉRIO DA EDUCAÇÃO
IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS
Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
7 Formas Quadráticas
Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA DE PRODUÇÃO MECÂNICA Missão do Curso: Propiciar, ao Engenheiro de Produção Mecânica, o conhecimento
Álgebra linear A Primeira lista de exercícios
Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b
Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO
C U R S O D E E N G E N H A R IA C IVIL Autorizado pela Portaria nº 276, de 30/05/15 DOU de 31/03/15 Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Código: Pré-requisito: ----- Período Letivo:
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro
O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS
O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS Eduardo Corrêa Pedrosa (monitor) Profª. Drª. Ana Maria Luz Fassarella do Amaral (orientadora) GANP001 Motivação Este projeto
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7 Plano e Programa de Ensino Matrizes Exemplos Ordem de Uma Matriz Exemplos Representação 7 Matriz Genérica m x n 8 Matriz Linha 9 Exemplos Matriz Coluna Exemplos Diagonal de Uma
Universidade do Algarve Faculdade de Ciências e Tecnologia Departamento de Matemática Programa da Disciplina Álgebra Linear e Geometria Analítica
Universidade do Algarve Faculdade de Ciências e Tecnologia Departamento de Matemática Programa da Disciplina de Álgebra Linear e Geometria Analítica Curso da Licenciatura em Eng.ª do Ambiente Ano Lectivo
ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller
ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
2 Álgebra Linear (revisão)
Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA CÓDIGO DENOMINAÇÃO CRÉDITOS CARGA HORÁRIA Tot. T P L Tot. T
n. 32 Regras para achar a transformação linear correspondente
n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da
7 Formas Quadráticas
Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA MECÂNICA Missão do Curso: Formar engenheiros mecânicos com sólida formação técnica-científica, capazes
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 7 Operadores Normais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 7: Operadores Normais Meta
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Universidade Federal de Uberlândia Faculdade de Matemática
Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais
Dependência linear e bases
Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência
