2 Álgebra Linear (revisão)
|
|
|
- Nicholas Aragão Nobre
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza
2 Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento desta disciplina. Espaços Vetoriais e Transformações Lineares Tópicos básicos: corpok ( neste curso somenterouc ) espaço vetorial (ou espaço linear) V sobre um corpo K subespaços combinação linear dependência e independência lineark( L.D. e L.I. )
3 corpo K ( field ou scalar field ) o um corpok possui as operações soma ( + ) e multiplicação ( ) na soma se k 1 e k 2 K, então (k 1 + k 2 ) K e na multiplicação se k 1 e k 2 K, então (k 1 k 2 ) K o os elementos de um corpok são chamados de escalares ( scalars ) o se k K, e k 0, então k 1 K : k 1 = inverso de k, i.e., k. k 1 = 1 o se k K, k K : k = simétrico de k, i.e., k+k = 0 o o menor corpo que existe é o conjunto Z 2 = { 0, 1 }, em que 1+1=0 o outros exemplos de corpo sãoq(racionais),r(reais) ec(complexos) o as frações do tipo (k 1 /k 2 ), k 2 0, é outro exemplo de corpo o já o conjunto Z (relativos) não formam um corpok o neste curso o corpo K será apenas R (reais) ouc(complexos) o as operações soma ( + ) e multiplicação ( ) satisfazem propriedades de associatividade e de comutatividade.
4 espaços vetoriais V (vectorial space) sobre um corpo K o um espaço vetorial às vezes também é chamado de espaço linear V o um espaço vetorial V possui as operações soma ( + ) e multiplicação por escalar ( ) na soma se xe y V, então (x+y) V e na multiplicação por escalar se k K e x V, então (k. x) V o exemplos de espaço vetorial V são: R (reais), R 2,R n, C (complexos), C n o as matrizes quadradas 2x2 ou nxn também são exemplos de espaços vetoriais V o os polinómios de ordem n também são um exemplo de espaço vetorial V o as operações soma ( + ) e multiplicação por escalar ( ) satisfazem propriedades de associatividade e de comutatividade : (x+y)+z = x+(y+z); k 1. (k 2.x) = (k 1.k 2 ). x; (x+y) = (y+x); e (k 1 +k 2 ). x = k 1.x+k 2.x, para x, y, z V e k 1, k 2 K
5 Outros tópicos: dimensão de um espaço vetorial (ou espaço linear) V [ dim (V) ] Nota: pode haver espaços de dimensão infinita (e.g., espaços de funções ) base β de um espaço vetorial (ou espaço linear) Teorema 1 Seja V um espaço vetorial (ou espaço linear) de dimensão n, então: i) Qualquer conjunto L.I. com n elementos de V é uma base de V. ii) Qualquer conjunto L.I. com mais de n elementos de V é L.D. iii) Todas as bases de V têm n elementos.
6 coordenadas de um vetor v V em relação à uma base β: [v] β = vetor cuja as componentes são as coordenadas de v na base de β Teorema 2 Seja V um espaço vetorial, dim (V) = n, β e β duas bases de V e v V, então: [v] β = M [v] β onde M = matriz mudança de base, formada da seguinte maneira: as colunas de M são os vetores da base β na base β.
7 Transformação linear T: V V propriedades: T(v 1 + v 2 ) = Tv 1 + Tv 2 e T(kv) = k Tv Domínio, Contradomínio, Imagem e Núcleo de T: V V o Domínio de T = D (T) = V; o Contradomínio de T = V ; o Imagem de T = Im (T) = {v V : existe v V, Tv = v }; o Núcleo de T =N(T) = ker(t) = {v V : Tv = 0}; Teorema 3 O núcleo e a imagem de uma transformação linear são espaços vetoriais. posto (ou rank ) de T : ρ(v) = rank (V) = dim (Im (T)); nullity de T = dim (N (T)).
8 Teorema 4 Seja T: V V uma transformação linear, dim (V) = n, dim (V ) = n, β = {v 1, v 2,, v n } e β = {v 1, v 2,, v n }, então: i) T é univocamente determinada pelos n vetores y i = T v i, i = 1, 2,, n. ii) T pode ser univocamente determinada em relação às bases β e β pela matriz n x n [T] β β cujas colunas são [y i ] β, i = 1, 2,, n. Teorema 5 ρ(t) = rank (T) = = nº máximo de vetores linha (ou vetores colunas) L.I. de [T] β β, quaisquer que sejam as bases escolhidas β e β. uma transformação linear T : V V tem rank máximo ( full rank ) se rank (T) = o máximo possível para a matriz que representa T = o menor destes 2 números: nº linhas ou nº colunas de T.
9 operador linear T : V V, i.e., quando V = V funcional linear f : V K, i.e., quando V = K Teorema 6 T : V V, operador linear, então [T] β β = M -1 [T] β β M onde M é a matriz de mudança de base, de β para β (definida acima). operador identidade: I: V V, Iv = v operadores inversíveis: T: V V, é inversível se existe T -1 : V V (transformação inversa) tal que T T -1 = I = T -1 T Transformações similares: T: V V é similar a S: V V se existe M: V V inversível tal que S = M -1 T M
10 Teorema 7 As matrizes que representam um operador linear em bases diferentes são similares. Teorema 8 [TP] β β = [T] β β [P] β β Teorema 9 Seja T: V V uma transformação linear, então: dim (V) = rank (T) + dim (ker (T)) injeção: T é injetora se T v 1 = T v 2 v 1 = v 2 sobrejeção: T: V V é sobrejetora se qualquer v V, existe v V tal que T v = v bijeção: T é bijetora se T é injetora e sobrejetora.
11 Teorema 10 T é injetora se e somente se ker(t) = {0} determinante de uma matriz det (T) Teorema 11 det (TP) = det (T) det (P); det (I) = 1; Se T é inversível, det (T -1 ) = 1/det (T); Se T não é inversível, det (T) = 0; Se T tem rank máximo, det (T) 0; Se T e S são similares, det (T) = det (S).
12 autovalores e autovetores de T: Seja T: V V, λ K, v V, v 0 Se Tv = λv, então λ é autovalor e v é autovetor (associado a λ) espectro de T: σ(t) = conjunto de autovalores de T polinómio característico (λ) de T (λ) = det (T λi) = det (λi T) Teorema 12 Seja T: V V um operador linear, então as 3 afirmações abaixo são equivalentes: i) λ σ(t), isto é, λ é um autovalor de T; ii) (T λi) não é inversível; iii) (λ) = 0, isto é, λ é uma raiz do polinómio característico (λ).
13 Teorema 13 Dois operadores similares possuem o mesmo polinómio característico. operador diagonalizável: Se existe operador similar que é representado por matriz diagonal Multiplicidade de um autovalor: é a sua multiplicidade como raiz de (λ). Teorema 14 Autovalores distintos possuem autovetores associados L.I.
14 Obrigado! Felippe de Souza
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação
Parte 2 - Espaços Vetoriais
Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado
Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Exercício 1. Seja A = (a i j ) uma matriz diagonal sobre
0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.
Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Verdadeiro ou falso?
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:
1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações
Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0
Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho
Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts
Álgebra Linear I - Aula 20
Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova Substitutiva - 04/12/2013 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala
AUTOVALORES E AUTOVETORES
AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).
REVISÃO DE ÁLGEBRA LINEAR
REVISÃO DE ÁLGEBRA LINEAR I) INTRODUÇÃO D1. Estabilidade para a operação + : x E, y E, x + y E D2. Definição de grupo comutativo (Abeliano): (E,+) é um grupo comutativo se e somente se: 1) Associatividade:
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l
Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
Teoria Espectral em Espaços de Hilbert
Teoria Espectral em Espaços de Hilbert Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense 22 de setembro de 2016 Espaços Vetoriais de Dimensão Finita Sejam V
3 a. Lista de Exercícios
Última atualização 07/05/008 FACULDADE Engenharia Disciplina: Álgebra Linear Professor(: Data / / Aluno(: urma a Lista de Exercícios Dentre as aplicações, as mais importantes são as aplicações lineares
Universidade Federal de Uberlândia Faculdade de Matemática
Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
0.1 Matrizes, determinantes e sistemas lineares
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.
Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
3 a Avaliação Parcial - Álgebra Linear
3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7 Plano e Programa de Ensino Matrizes Exemplos Ordem de Uma Matriz Exemplos Representação 7 Matriz Genérica m x n 8 Matriz Linha 9 Exemplos Matriz Coluna Exemplos Diagonal de Uma
P3 de Álgebra Linear I
P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.
ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V
CM005 Álgebra Linear Lista 2
CM005 Álgebra Linear Lista 2 Alberto Ramos 1. Seja M M n (R) uma matriz. Mostre que se {v 1,..., v p } R n é linearmente dependente, então {Mv 1,..., Mv p } é também linearmente dependente. Agora suponha
Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos
Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO
INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear
Dou Mó Valor aos Autovalores
1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A
. Repare que ao multiplicar os vetores (-1,1) e
Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais
Álgebra Linear I. Resumo e Exercícios P3
Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v
Aula 25 - Espaços Vetoriais
Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado
Álgebra Linear I - Aula 19
Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a
Roteiros e Exercícios - Álgebra Linear v1.0
Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará
Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.
Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V
MA71B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto. LISTA 5 - Espaços Vetoriais
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 5 - Espaços Vetoriais Desenvolvidas
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:
GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor
Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,
APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES
Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela
3 a LISTA DE EXERCÍCIOS
UNIVERSIDADE FEDERAL DA BAHIA DEARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR I rofs: Enaldo Vergasta e Glória Márcia a LISTA DE EXERCÍCIOS Sejam u (x, y, z e v (x, y, z vetores do R Verifique se cada uma das
TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto
(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.
Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que
1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny
1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações
Autovetor e Autovalor de um Operador Linear
Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1
(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.
Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas
6 Valores e Vectores Próprios de Transformações Lineares
Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016
1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de
Álgebra Linear I - Aula Autovetores e autovalores de uma transformação
Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):
a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre
Álgebra Linear. Transformações Lineares
Álgebra Linear Transformações Lineares Fórmulas e Resumo Teórico Para fins gerais, considere V um espaço vetorial e uma transformação T: V W. Propriedades de Transformações Lineares - T é linear se: Para
MAE125 Álgebra Linear /1 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Exercício 1. Prove que cada uma das transformações
(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.
Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante
Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria
Lista de Exercícios - Autovalores e autovetores Legenda Cálculos Teoria Geometria Questões. Considere o quadrado determinado pelos pontos A(0, 0), B(, 0), C(, ) e D(0, ).Em cada item aplique o referido
Questão 1: Seja V o conjunto de todos os pares ordenados de números reais. Denamos a adição e a multiplicação por escalar em V por
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 4 - Espaços Vetoriais Desenvolvidas
MAE125 Álgebra Linear /2 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as
1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:
Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço
Soluções dos trabalhos de 1 a 7
Universidade Federal Rural do Semiárido-UFERSA Departamento de Ciências Exatas e Naturais Curso: Bacharelado em Ciência e Tecnologia e Computação Disciplina: Álgebra Linear Aluno(a): Soluções dos trabalhos
A forma canônica de Jordan e aplicações. 2 Resultados. 2.1 Triangularização. Marcos Alves dos Santos e José Carlos Corrêa Eidam(Orientador)
A forma canônica de Jordan e aplicações Marcos Alves dos Santos e José Carlos Corrêa Eidam(Orientador) Universidade de São Paulo (USP), Brasil [email protected] Universidade de São Paulo (USP), Brasil
