AUTOVALORES E AUTOVETORES
|
|
|
- Ágatha de Oliveira Esteves
- 7 Há anos
- Visualizações:
Transcrição
1 AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos v tais que: Um escalar λ é um autovalor de T se T (v) = λv O vetor não-nulo v é chamado de autovetor de T associado ao autovalor λ. A toda transformação linear podemos associar uma matriz. Seja T A : R n R n v A v onde A é a matriz com relação as bases canônicas. Definiremos autovalor e autovetor de uma matriz. Definição 3 Seja A n n. Um escalar λ é um autovalor da matriz A se existir um vetor v R n, v 0, tal que Av = λv. O vetor não-nulo v é chamado de autovetor de A associado ao autovalor λ. Logo: 1. Autovalores são também chamados de valores próprios ou valores característicos. Nesses casos, os autovetores são chamados de vetores próprios ou vetores característicos, respectivamente.. O escalar λ é uma número real ou complexo. 3. Note que v = 0 sempre satisfaz Av = λv, mas 0 não é uma autovetor, pois segundo a definição v deve ser não-nulo. Pergunta: Dada A n n, como encontrar λ e v? Segundo a definição, λ é autovalor de A se existir um vetor não-nulo v tal que: Av = λv Av λv = 0 (A λi)v = 0 (1) Tem-se assim, um sistema de equações lineares homogêneo. Para tal sistema tem-se uma única solução (solução trivial). Neste caso det(a λi) 0 infinitas soluções. Neste caso det(a λi) = 0 1
2 É desejável que v 0, portanto para que o sistema (1) admita infinitas soluções, det(a λi) = 0 Definição 4 Seja A = [a ij m n uma matriz n n. O determinante a 11 λ a 1 a 1n a 1 a λ a n p(λ) = det(a λi n ) = a n1 a n a nn λ é chamado de polinômio característico de A. A equação p(λ) = det(λi n A) = 0 é a equação característica de A. Teorema 5 Os autovalores de A n n são as raízes do polinômio característico de A. Definição 6 Multiplicidade Algébrica de um autovalor,é a quantidade de vezes que ele aparece como raiz do polinômio característico. Definição 7 Multiplicidade Geométrica de um autovalor λ é a dimensão do subespaço de autovetores associados a λ. [ 5 Exemplo 8 Seja A = Deseja-se encontrar o vetor v e o escalar λ tal que Av = λv [ [ [ 5 x x = λ y y [ [ [ [ 5 x x 0 λ = y y 0 ([ [ ) [ [ x 0 λ = 0 1 y 0 1- Cálculo dos autovalores 5 λ λ = 0 (5 λ)( λ) 4 = 0 Tem-se, λ 7λ + 6 = 0 ou (λ 6)(λ 1) = 0 Logo, λ 1 = 1 e λ = 6
3 - Cálculo dos autovetores associados ao autovalor λ 1 = 1 [ [ [ 5 x x = 1 y y Resolvendo este sistema tem-se [ v = x x 3- Cálculo dos autovetores associados ao autovalor λ = 6 [ [ [ 5 x x = 6 y y Resolvendo-se este sistema tem-se v = [ y y Teorema 9 Se A n n é uma matriz triangular então os autovalores de A n n são os elementos da diagonal principal. Exemplo 10 Seja [ 1 0 Então, λ 1 0 λ = 0 ( λ)( λ) = 0 λ 1 =, λ = Observe que o cálculo de autovalores envolve dois pontos O cálculo de determinantes Encontrar as raízes de um polinômio de grau n. Note que quando se tem uma matriz de ordem maior do que 4, o processo para se calcular o determinante começa a se tornar demorado e também para tais matrizes a equação característica é uma equação polinomial e não existem fórmulas para se determinar as soluções de equações polinomiais de grau maior do que 4. Neste caso, utilizam-se métodos numéricos para encontrar autovalores e autovetores, que não fazem parte do escopo deste curso para podem ser vistos em Poole (004). Teorema 11 Seja A m n e sejam λ 1, λ,..., λ m distintos autovalores de A com os respectivos autovetores v 1, v,..., v m. Então, v 1, v,..., v m são linearmente independentes. Exemplo 1 Seja T : R R definida por T (x, y) = ( 3x + 4y, x + y) cuja matriz com relação a base canônica é [
4 Autovalores: λ 1 = 1 e λ = Autovetores associados a λ 1 : (1,1) Autovetores associados a λ : (4,1) Teorema 13 Seja A n n e λ 1, λ,..., λ n autovalores de A. Então: det A = n i=1 λ i n i=1 a ii = n i=1 λ i Exemplo 14 Seja T : R [ R definida por T (x, y) = ( 3x + 4y, x + y) cuja matriz com 3 4 relação a base canônica é 1 Autovalores: λ 1 = 1 e λ = Teorema 15 Os autovalores de uma matriz triangular são os elementos da sua diagonal principal. Exemplo 16 Seja T : R 3 canônica é R 3 uma transformação linear cuja matriz com relação a base
5 1 Semelhança e Diagonalização Para matrizes triangulares e matrizes diagonais, que seus autovalores se manifestam de forma transparente, pois são os elementos de sua diagonal principal. Seria interessante relacionar uma matriz a outra matriz triangular ou diagonal de forma que ambas tivessem exatamente os mesmos autovalores. Um procedimento para a conversão de uma matriz quadrada em uma forma triangular é o método da eliminação de Gauss, mas infelizmente esse processo não preserva os autovalores da matriz. Comenta-se nesta seção, um tipo diferente de transformação de uma matriz que é bem comportada em relação aos autovalores. 1.1 Matrizes Semelhantes Definição 17 Sejam A e B matrizes n n. Dizemos que A é semelhante a B se existir uma matriz n n invertível P tal que P 1 AP = B. Se A é semelhante a B, escrevemos A B. Exemplo 18 A = que [ Diagonalização [ 1 1 [ 1 0 é semelhante a B = pois existe P = [ [ [ 1 0 = 1 [ tal A possibilidade de uma matriz quadrada ser semelhante a uma matriz diagonal está relacionada estreitamente com os autovalores e autovetores da matriz. Definição 19 Uma matriz n n é diagonalizável se existe uma matriz diagonal D tal que A seja semelhante a D, ou seja, se existe uma matriz P n n invertível tal que P 1 AP = D. Teorema 0 Seja A n n. Entao, A será diagonalizável se, e somente se, tiver n autovetores linearmente independentes. Mais precisamente, existem uma matriz invertível P e uma matriz diagonal D de maneira que P 1 AP = D se, e somente se, as colunas de P forem n autovetores de A, linearmente independentes, e os elementos da diagonal de D forem os autovalores correspondentes àqueles, colocados na mesma ordem. Teorema 1 Se A n n possui n autovalores distintos entre si, então A é diagonalizável. Exemplo Sendo possível, determine P que diagonaliza A. [ 3 A = 5 Os autovalores de A são λ 1 = 1 e λ = 4. Os autovetores associados v 1 = (3, 1) t e v = (1, ) t. [ 3 1 P = 1 5
6 Exemplo 3 Sendo possível, determine P que diagonaliza A. 3 1 A = Os autovalores de A são λ 1 = 0, λ = 1 e λ 3 = 1. Os autovetores associados v 1 = (3, 1, 1) t, v = (1,, 0) t e v 3 = (0,, 1) t. P = Exemplo 4 Sendo possível, determine P que diagonaliza A. [ 1 1 A = 0 1 Os autovalores de A são λ 1 = λ = 1. Os autovetores associados são múltiplos de v 1 = (1, 0) t. A não pode ser diagonalizada. Teorema 5 Seja V é um espaço vetorial de dimensão n e T : V V um operador linear que possui n autovalores distintos, então V possui uma base cujos vetores são todos autovetores de T. Definição 6 Seja T : V V um operador linear. Diz-se que T é um operador diagonalizável se existe uma base de V cujos elementos são autovetores de T. 1.3 Potência de Matriz Se A é uma matriz diagonalizável, então Logo Exemplo 7 Seja A = [ A = P DP 1 A k = (P DP 1 )(P DP 1 ) (P DP 1 ) A k = P DP 1 P DP 1 P DP 1 A k = P D P 1 P DP 1 A k = P D k P 1. Calcule A 10 6
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Autovetor e Autovalor de um Operador Linear
Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é
Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17
Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.
Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A
Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.
Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas
Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos
Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores
Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia
Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte
Valores próprios (de uma matriz): tais que det(a I) = 0. Vectores próprios (de uma matriz) associados a um valor próprio : v 2 N (A I)n f0g
Polinómio característico: det(a I) Valores próprios (de uma matriz): tais que det(a I) Vectores próprios (de uma matriz) associados a um valor próprio : v N (A I)n fg N (A I) é o subespaço próprio associado
APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES
Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela
Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria
Lista de Exercícios - Autovalores e autovetores Legenda Cálculos Teoria Geometria Questões. Considere o quadrado determinado pelos pontos A(0, 0), B(, 0), C(, ) e D(0, ).Em cada item aplique o referido
Autovalores e Autovetores
Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução
ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller
ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é
Multiplicidade geométrica
Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde
Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.
Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:
TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1
Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno
Álgebra Linear I - Aula Autovetores e autovalores de uma transformação
Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma
P3 de Álgebra Linear I
P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
CM005 Álgebra Linear Lista 2
CM005 Álgebra Linear Lista 2 Alberto Ramos 1. Seja M M n (R) uma matriz. Mostre que se {v 1,..., v p } R n é linearmente dependente, então {Mv 1,..., Mv p } é também linearmente dependente. Agora suponha
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Dou Mó Valor aos Autovalores
1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
FORMA CANÔNICA DE JORDAN
FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis
Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Exercício 1. Seja A = (a i j ) uma matriz diagonal sobre
(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.
Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante
1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55
Capítulo LINE LINE Autovetor e Autovalor 9 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Matrizes Simétricas, o Teorema Espectral e Operadores Auto-adjuntos 8 4 Formas Bilineares,
1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2
UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Exercícios sobre AUTOVALORES e AUTOVETORES Professora: Graciela Moro. Encontre
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
Álgebra Linear I - Aula 20
Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios
Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada
Forma Canônica de Matrizes 2 2
Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de
Ficha de Trabalho 09 e 10
Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização
Algoritmos Numéricos 2 a edição
Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares
Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II
Módulos 1e2 Volume 2ª edição Hernando Bedoya Ricardo Camelier Álgebra Linear II 1 Álgebra Linear II Volume 1 - Módulos 1 e 2 2ª edição Hernando Bedoya Ricardo Camelier Apoio: Fundação Cecierj / Consórcio
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
6 Valores e Vectores Próprios de Transformações Lineares
Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =
3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!
UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS
UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA DIAGONALIZAÇÃO DE MATRIZES SIMETRICAS DE 2º ORDEM. BELO HORIZONTE 2012 ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA
Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos
G4 de Álgebra Linear I
G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
Capítulo 4 - Valores e Vectores Próprios
Capítulo 4 - Valores e Vectores Próprios Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17
MAT-27 Lista-09 Outubro/2011
MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante
Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho
Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
folha prática 5 valores próprios e vetores próprios página 1/3
folha prática 5 valores próprios e vetores próprios página 1/ Universidade de Aveiro Departamento de Matemática 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue
Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q
Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
ficha 4 valores próprios e vectores próprios
Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12
Álgebra Linear I - Aula 21
Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.
Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
7 temos que e u =
Capítulo 1 Complementos de Álgebra Linear 11 Introdução Seja A = [a ij ] uma matriz quadrada de ordem n e pensemos na transformação linear R n! R n que a cada cada vector u R n faz corresponder um vector
Valores e vectores próprios
Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci
0.1 Lista: Autovalores, autovetores
0. Lista: Autovalores, autovetores (Prof. Patricia, Katiani, Graciela). Encontre os autovalores das transformações lineares dadas: (a) T : R 2 R 2 tal que T(x,y) = (2y,x). (b) T : R 2 R 2 tal que T(x,y)
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018
MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação
3 a Avaliação Parcial - Álgebra Linear
3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.
Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril
Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:
2 Álgebra Linear (revisão)
Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento
Álgebra Linear I - Aula 19
Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a
Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A
Lista 8 de Álgebra Linear /01 Produto Interno
Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z
1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.
ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V
1 Auto vetores e autovalores
Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
Exponencial de uma matriz
Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2
Lista de exercícios 13 Diagonalização
Universidade Federal do Paraná 2 semestre 206. Algebra Linear Olivier Brahic Lista de exercícios 3 Diagonalização Exercícios da Seção 6. Exercício : Para cada uma das seguintes matrizes, encontre os autovalores
Álgebra Linear Diagonalização de Operadores
Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática
