Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1 Prof. Fernando Massa Fernandes Sala 5017 E fernando.fernandes@uerj.br Aula 18

2 Revisão.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos em que pode ocorrer reflexão no próprio gerador: Duas reflexões Z g Impedância série (Impedância de saída)do gerador Solução geral é válida ao longo da linha: Solução geral na entrada da linha: V ( z)=v +0 (e i β z +Γl ei β z ) V ( l)=v in=v +0 (e i βl +Γ l e i β l ) V +0 i β z I ( z)= (e Γl e i β z ) Z0 V +0 i βl I ( l)=i in = (e Γl e i β l ) Z0

3 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Zg Impedância série do gerador solução geral da tensão na linha Da corrente na linha Iin V +0 =? Vg V in = Z g + Z in Z in V in = V ( l)

4 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Vg Impedância série do gerador Da corrente na linha Iin Vg V in = Z g + Z in Z in V in = V ( l) Substituindo Γl pela expressão em Zl e Z0 Substituindo Zin pela expressão em Zl e Z0 Obtemos Amplitude da onda progressiva na posição da carga.

5 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Vg Impedância série do gerador Sendo Na linha o coeficiente de reflexão olhando na direção do gerador.

6 Revisão.6 Descasamento entre gerador e carga * Modelo geral: Casos em que pode ocorrer reflexão no próprio gerador: Duas reflexões Z g Impedância série (Impedância de saída)do gerador Tensão na entrada da linha: Z in V ( l)=v in=v g Z in +Z g Tensão da onda incidente na carga: Z0 e i βl V =V g Z 0 +Z g (1 Γl Γ g e i β l ) + 0 Solução geral na entrada da linha: V ( l)=v in=v +0 (e i βl +Γ l e i β l ) V +0 i βl I ( l)=i in = (e Γl e i β l ) Z0

7 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Potência transferida para a linha 1 * P = ℜ(V in I in ) V in I in V in = Z in 1 1 P = V in ℜ( ) Z in Z in = Vg Z in + Z g ** Como Zg é fixa (gerador), devemos encontrar o valor de Zin que maximiza a potencia entregue pelo gerador. Z 1 1 in P = V g ℜ( ) Z in + Z g Z in

8 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Potência entregue na carga ** Como Zg é fixa (gerador), devemos encontrar o valor de Zin que maximiza a potencia entregue pelo gerador. Z in 1 1 P = V g ℜ( ) Z in + Z g Z in Z in = R in + jx in Z g = R g + jx g R in 1 P = V g ( R in + R g ) +( X in + X g )

9 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: R in 1 P = V g ( R in + R g ) +( X in + X g ) Casos especiais: Carga acoplada a linha (ZL = Z0) => (Zin = Z0) R in = Z 0 X in = 0 Z0 1 P = V g ( Z 0 + R g ) + X g Gerador acoplado a linha carregada (Zg = Zin) R in = R g X in = X g Rg 1 P = V g 4 ( R g + X g )

10 Revisão.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: R in 1 P = V g ( R in + R g ) +( X in + X g ) Casos especiais: Acoplamento conjugado ( Zin = Zg* ) R in = R g X in = X g Potência entregue máxima (ideal) 1 V g P = 8 Rg Quanto menor o valor de Rg do gerador melhor será a eficiência

11 5. Casamento de impedância Stub único * Técnica popular Assim como o transformador λ/4. * Stub comprimento de linha em circuito aberto ou em curto-curcuito. Conveniente, pois pode ser fabricado como parte do meio de transmissão. Circuito aberto Linhas de microfita Curto-circuito Coaxial e guia de onda * Os parâmetros de ajuste são A distância d, da carga até a posição do stub. O valor de reatância (susceptância) proporcionado pelo stub. Revisão

12 Revisão 5. Casamento de impedância Stub único * Técnica popular Assim como o transformador λ/4. * Stub comprimento de linha em circuito aberto ou em curto-curcuito. Conveniente, pois pode ser fabricado como parte do meio de transmissão. Circuito aberto Linhas de microfita Curto-circuito Coaxial e guia de onda * Sempre que a carga possuir componente real. Admitância normalizada (carta de Smith) * Os parâmetros de ajuste são y 0=1 Transformação da impedância da carga A distância d, da carga até a posição do stub. O valor de reatância (susceptância) proporcionado pelo stub. y L 1± jx d Susceptância (xd = -xd) no stub y s jx d

13 Admitância normalizada (carta de Smith) Revisão y 0=1 Transformação da impedância da carga y L 1± jx d Susceptância (xd = -xd) no stub y s jx d Carta de admitância => Giro a impedância ZL de 180 na carta de Smith.

14 Revisão 5. Casamento de impedância Stub único Exemplo 5. (Livro): Acoplamento de impedância utilizando um stub-único de derivação. Para uma carga com impedância ZL = 60 i80 Ω faça o projeto de acoplamento de impedância utilizando um stub de derivação (paralelo em curto-circuito) para uma rede de casamento entre a carga e uma linha de 50 Ω. Obtenha duas soluções equivalentes.

15 Revisão

16 Revisão 5. Casamento de impedância Stub único Exemplo 5. (Livro): Acoplamento de impedância utilizando um stub-único de derivação. Para uma carga com impedância ZL = 60 i80 Ω faça o projeto de acoplamento de impedância utilizando um stub de derivação (paralelo em curto-circuito) para uma rede de casamento entre a carga e uma linha de 50 Ω. Obtenha duas soluções equivalentes.

17 Revisão 5. Casamento de impedância Stub único Exemplo 5. (Livro): Acoplamento de impedância utilizando um stub-único de derivação. Para uma carga com impedância ZL = 60 i80 Ω faça o projeto de acoplamento de impedância utilizando um stub de derivação (paralelo em curto-circuito) para uma rede de casamento entre a carga e uma linha de 50 Ω. Obtenha duas soluções equivalentes.

18 Revisão 5. Casamento de impedância Stub único Exercício proposto: Um amplificador de circuito integrado de micro-ondas apresenta impedância de saída ZA = 150 i 375 Ω, na frequência 1 GHz. a) Determine a resistência Rth e a capacitância C0 para o circuito equivalente de Thévenin da saída do amplificador. b) Na carta de Smith, desenhe a curva que representa a impedância da saída do amplificador na banda entre 1GHz e GHz, quando este é conectado a uma linha com impedância característica Z0 = 75Ω. c) Utilizando a carta de Smith, faça o projeto do acoplamento de impedância entre a saída do amplificador e a linha de 75Ω, para máxima eficiência em GHz. Utilize um stub-único de derivação em circuito aberto e escolha a solução que proporciona a menor distância entre o amplificador e a linha.

19 Revisão

20 Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal * Parte fundamental do intenso processo de projetar um sistema ou um componente de micro-ondas! A rede de casamento de impedância é idealmente sem perdas => Utiliza elementos reativos como capacitores, indutores, stubs, etc => Tipicamente, a impedância vista na rede de casamento (na direção da carga) é projetada para ter Z0.

21 Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal * Parte fundamental do intenso processo de projetar um sistema ou um componente de micro-ondas! Vantagens: => Maximizar a entrega de potência. => Incrementar a razão sinal/ruído (antenas, LNAs, etc )

22 5.1 Casamento de impedância Elementos discretos (rede-l) * Aplicável quando o comprimento dos elementos (capacitores e indutores) for muito menor que o comprimento de onda do sinal. => Ld < ~λ/10

23 5.1 Casamento de impedância Elementos discretos (rede-l) * Duas configurações possíveis: => Quando a carga normalizada (zl = ZL/Z0) esta dentro do circulo 1 + jx na carta de Smith. => Quando a carga normalizada (zl = ZL/Z0) esta fora do circulo 1 + jx na carta de Smith.

24 5.1 Casamento de impedância Elementos discretos (seção-l) * Duas configurações possíveis: => Quando a carga normalizada (zl = ZL/Z0) esta dentro do circulo 1 + jx na carta de Smith. * Solução Analítica para situação (a): Z L =R L + j X L

25 5.1 Casamento de impedância Elementos discretos (seção-l) * Duas configurações possíveis: * Solução Analítica para situação (b): Z L =R L + j X L => Quando a carga normalizada (zl = ZL/Z0) esta fora do circulo 1 + jx na carta de Smith.

26 5.1 Casamento de impedância Elementos discretos (seção-l) Exemplo 5.1 : Casamento de impedância com seção-l Faça o projeto de uma seção-l para casar uma carga RC com uma impedância ZL = 00 j100 Ω a uma linha de 100 Ω na frequência de 500 MHz.

27 5.1 Casamento de impedância Elementos discretos (seção-l) Exemplo 5.1 : Casamento de impedância com seção-l Faça o projeto de uma seção-l para casar uma carga RC com uma impedância ZL = 00 j100 Ω a uma linha de 100 Ω na frequência de 500 MHz. * Situação (a): Duas soluções

28 5.1 Casamento de impedância Elementos discretos (seção-l) Exemplo 5.1 : Casamento de impedância com seção-l Faça o projeto de uma seção-l para casar uma carga RC com uma impedância ZL = 00 j100 Ω a uma linha de 100 Ω na frequência de 500 MHz. * Situação (a): Duas soluções

29 5.1 Casamento de impedância Elementos discretos (seção-l) Exemplo 5.1 : Casamento de impedância com seção-l Faça o projeto de uma seção-l para casar uma carga RC com uma impedância ZL = 00 j100 Ω a uma linha de 100 Ω na frequência de 500 MHz.

30 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Comprimento incremental da linha: R, resistência em série por comprimento (Ω/mm) L, Indutância em série por comprimento (H/mm) G, condutância de derivação por comprimento (S/mm) C, capacitância de derivação por comprimento (F/mm)

31 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Com perdas: β γ = α+i β = ( R+ j ω L)(G+ j ωc ) R+ j ω L Z0 = = γ R+ j ω L G+ j ω C γ = ( j ω L)( j ω C )(1+ R G RG R G + ) )(1+ ) = j ω LC 1 j ( ω L ω C ω ² LC jωl jωc

32 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Com perdas: R G RG γ = j ω LC 1 j( + ) ω L ω C ω ² LC Em alta frequência, quando e Expandindo em série de Taylor em torno de j ω LC ( sem perdas) RG ~0 ω ² LC R G ( + )<< 1 ω L ωc Podemos incluir as perdas como uma correção de primeira ordem: = α + jβ

33 .7 Linha de transmissão com perdas Com perdas (alta frequência): RG ~0 ω ² LC = α + jβ

34 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda.

35 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda.

36 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda. Impedância intrínseca do material Resistência de superfície do material

37 .7 Linha de transmissão com perdas Exemplo: Utilizando os resultados do exercício.3, determine a constante de atenuação da linha coaxial na aproximação de baixa perda e sem aproximação. Compare os resultados. γ=α+i β= ( R+ j ω L)(G+ j ωc )

38 .7 Linha sem distorções Distorção β (geral) não é linear com a frequência (ω) como em β = ω LC Geral Velocidade de fase v f = ω /β β = a ω (linear em ' ω' ) v p (constante ) β, Não linear v p, varia com ω Componentes do sinal com freq diferentes chegam em momentos diferentes no receptor (Distorção do sinal) = α + iβ Linha sem distorção R G = L C β = ω LC

39 .7 Linha com perdas carregada Baixa perda Z 0 L C Na distância l da carga ZL, V ( l)=v in =V +0 (e γ l +Γ e γ l ) V +0 γ l I ( l )=I in = (e Γ e γ l ) Z0 Z in V ( l)=v in=v g Z in +Z g

40 .7 Potência entregue na linha (Pin) P IN = 1 * ℜ[V ( l) I ( l) ] V ( l)=v in =V +0 (e γ l +Γ e γ l ) V +0 γ l I ( l)=i in = (e Γ e γ l ) Z0 γ = α+iβ Z0 e γ l V =V g Z 0 + Z g (1 Γl Γ g e γ l ) + 0

41 .7 Potência entregue na linha (Pin) P IN = 1 * ℜ[V ( l) I ( l) ] V ( l)=v in =V +0 (e γ l +Γ e γ l ) V +0 γ l I ( l)=i in = (e Γ e γ l ) Z0 γ = α+iβ Perda de potência na linha Potência entregue na carga (ZL)

42 .7 Método da perturbação para calcular α Método Padrão! (Campos/Geometria) Potência sendo transmitida no ponto z P ( z) = P 0 e α z P 0 (fluxo de potência na linha sem perdas) Teor de Poynting Perda de potência por comprimento. (W/m) Para o campo que não se modifica ao longo da linha

43 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coaxial pelo método da perturbação. P0 = Campos TEM 1 x H * ). d ℜ[( E S ] Fluxo de potência = Vetor de Poynting

44 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coaxial pelo método da perturbação. Perda no condutor (Pc) Lei de Joule no metal (bom condutor) Rs Rs (W/m) Pc = J ds = H t ds J S = n x H d S = dl ρ d θ RS = ωμ σ

45 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coaxial pelo método da perturbação. Perda no dielétrico (Pd) Do teorema de Poynting,, dv + ω (,, ) dv P d = σ V E E + μ H V (W/m)

46 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coaxial pelo método da perturbação. V 0 P0 = Z0 R S V P lc = + b 4 π Z0 a ( ) P ld,, π ωε = V ln b/ a 0 * Essa mesma fórmula é obtida a partir da aproximação de baixa perda (alta frequência)

47 Capt. Exercício proposto Transferência de potência Exercício.9 (Livro): Uma linha de transmissão de 50Ω é acoplada a uma fonte de 10V e alimenta uma carga de 100Ω. a) Se a linha possui comprimento de,3λ e atenuação 0,5 db/λ, encontre as potências λ e atenuação 0,5 db/λ, encontre as potências entregue pela fonte, perdida na linha, e entregue na carga. b) Encontre a potência perdida no gerador e a potência total consumida na fonte.

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 19 Revisão 2.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 17 Revisão 2.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 0 Exercícios selecionados do capítulo.1 /.3 /.8 /.9 /.11/.16 /.0 /.3 /.9 Prova P. Capt.

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fermassa@lee.uerj.br Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 20 5. Casamento de impedância Elementos discretos (seção-l) Exemplo 5. : Casamento de

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 8 Exercícios selecionados do capítulo. /.3 /.8 /.9 /./.6 /.0 /.3 /.9 Prova P. Capt. (exercícios

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 17 2.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos em que

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 7 Exercícios selecionados do capítulo. /.3 /.8 /.9 /./.6 /.0 /.3 /.9 Prova P. Capt. (exercícios

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 6 .4 Carta de Smith z IN + Γ e j θ = = r L + jx L jθ Γ e * Correlação gráfica de três

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.11 / 2.20 / 2.29 Prova P.I Capts. 1 e

Leia mais

* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão

* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão .4 Carta de Smith * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão * 939 Laboratórios Bell (Philip Smith) Durante o desenvolvimento de tecnologia radar. Estabelece graficamente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 22 Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.9 / 2.11/ 2.16 / 2.20 /

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 13 Revisão Modelo de elementos distribuídos Modelar a linha em pequenos elementos de

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 15 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 14 Cap. 2 Teoria de linhas de transmissão Revisão Cap. 2 Teoria de linhas de transmissão

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 16 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 15 * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância

Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância Módulo II Linhas de Transmissão Carta de Smith Casamento de Impedância Casamento de impedância A máxima transferência de potência à carga em uma LT sem perdas é obtida quando a impedância de entrada da

Leia mais

26/06/17. Ondas e Linhas

26/06/17. Ondas e Linhas 26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 26 Revisão Revisão Linha de transmissão planar Tecnologia Planar (grande interesse prático)

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 27 Capt. 3 Linha de microfita Revisão Exercício proposto Projeto CAD em linha de microfita.

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3 Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3 Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 1/3 Sistemas de guiamento de ondas;

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 7 https://www.air-stream.org/technical-references/ antenna-polarisation Solução de onda

Leia mais

Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza de Carvalho 1 Linha Fendida e Transformador de Quarto de Onda (Páginas 68 a 75 no Livro texto) Tópicos: Linha fendida (slotted line) Casamento de impedância: transformador de quarto

Leia mais

Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais

Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Módulo II Linhas de Transmissão Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Linhas sem Perdas As linhas de transmissão disponíveis comercialmente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 8 Revisão - Incidência normal à superfície da interface (meio geral) Γ é o coeficiente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 11 Propagação da energia eletromagnética ao longo do comprimento da linha. Modo de propagação

Leia mais

1 Introdução às linhas de transmissão

1 Introdução às linhas de transmissão Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Ondas e Linhas Prof. Dr. Helder Alves Pereira Lista de exercícios 1 Introdução às linhas de transmissão 1.1 Notas de Aula

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 22 Capt. 3 Linhas de transmissão e guias de onda Desenvolvimento do conceito de transmissão

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Capt. 3 Exercício prático: Guia oco - retangular i) Qual a banda de operação desse guia e sua provável

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 6 Revisão Equação de onda Solução de onda plana 2 E μϵ E =0 2 t 2 2 H μϵ H =0 2 t 2

Leia mais

Profa. Dra. Fatima Salete Correra

Profa. Dra. Fatima Salete Correra Profa. Dra. Fatima Salete Correra SUMÁRIO Introdução Definições gerais de ganho de potência de redes de dois acessos Discussão de estabilidade de redes Critérios de estabilidade Círculos de estabilidade

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br * A descrição em termos da matriz de impedância [Z] estabelece a relação entre tensão [V] e corrente

Leia mais

Física Experimental Aula10 Propagação de sinais em cabos coaxiais

Física Experimental Aula10 Propagação de sinais em cabos coaxiais Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n

Leia mais

Pontas de prova para instrumentos

Pontas de prova para instrumentos Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Filtros de Micro-ondas Tópicos abordados: (Capítulo 8 pgs 402 a 408 do livro texto) Aplicação do Método da Perda de inserção no: Projeto

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Acoplador 3dB Filtros passa baixa Somente o campo H possui componente na direção de propagação

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 2 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Explique

Leia mais

Circuitos Ativos em Micro-Ondas

Circuitos Ativos em Micro-Ondas Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre

Leia mais

ANTENAS E PROPAGAÇÃO MEAero 2010/2011

ANTENAS E PROPAGAÇÃO MEAero 2010/2011 ANTENAS E PROPAGAÇÃO MEAero 2010/2011 1º Teste, 07-Abr-2011 (com resolução) Duração: 1H30 DEEC Resp: Prof. Carlos Fernandes Problema 1 Considere um satélite de órbita baixa (450 km) usado para prospecção

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão aspectos básicos (Páginas 48 a 56 no Livro texto) Objetivos: Discutir comportamento de L.T. Em altas frequências. Introduzir

Leia mais

Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão

Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento

Leia mais

Adaptação de Impedâncias por Transformador de ¼ Onda

Adaptação de Impedâncias por Transformador de ¼ Onda Adaptação de Impedâncias por Transformador de ¼ Onda PRÁTICA 04 Aline Coelho de Souza aboratório de Ondas e inhas Turma 1 Professor:Jonas Ribeiro Departamento de Engenharia de Eletricidade Universidade

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 10 Reflexão e transmissão de onda plana - Exercício 1.9: Uma região entre z = 0 cm e

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 23 (Após aula 22 de exercícios ) Acoplador 3dB Filtros passa baixa Modo TE Ondas H (TEn

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 10 Reflexão e transmissão de onda plana Revisão - Incidência oblíqua em interface dielétrica

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

CAPÍTULO 1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1 1.1 OBJETIVOS DO CURSO Objetivo principal: Fornecer ao estudante fundamentos teóricos e aspectos práticos necessários ao projeto de circuitos analógicos que operam em freqüências

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 4

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 4 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 4 1 Das eq de Maxwell em meio homogêneo, linear, isotrópico e livre de cargas e correntes

Leia mais

Módulo II Linhas de Transmissão

Módulo II Linhas de Transmissão Módulo II Linhas de Transmissão Linhas de Transmissão Introdução Equações do Telegrafista Modelos por Parâmetros Distribuídos Ondas harmônicas no tempo em LTs Impedância Característica Teorema de Poynting

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão Coef. de Reflexão e impedância de entrada (Páginas 56 a 60 no Livro texto) Objetivos: Campos eletromagnéticos em Linhas de Transmissão.

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 5

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 5 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 5 1 Revisão Equação de onda Solução de onda plana 2 E μ ϵ 2 E t 2 = 0 2 H μ ϵ 2 H t 2 = 0

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 4

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 4 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 4 1 Conceitos fundamentais Equações de Maxwell (MKS) Revisão E = B t M (1) (2) H = D t + J

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Divisores de Potência e Acopladores Direcionais Tópicos abordados: (Páginas 4 a 8 do livro texto) Divisor de junção T Divisor resistivo Divisores

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 9 Revisão - Incidência normal à superfície da interface (meio geral) Γ é o coeficiente

Leia mais

CAPÍTULO 2 LINHAS DE TRANSMISSÃO

CAPÍTULO 2 LINHAS DE TRANSMISSÃO CAPÍTULO 2 LINHAS DE TRANSMISSÃO TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA 1 2.1 PORQUE LINHAS DE TRANSMISSÃO? E x = E0x cos( wt - bz) Comportamento no espaço: l Distribuição da tensão no espaço e no tempo

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Representação de parâmetros de circuito para guias ocos (tensão, corrente e impedância). Representação

Leia mais

Linha de transmissão

Linha de transmissão Linha de transmissão Um troço elementar de uma linha de transmissão (par simétrico ou cabo coaxial) com comprimento dz pode ser modelado por um circuito: I(z) Ldz Rdz I(z+dz) Parâmetros primários: R [Ω

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 24 Acoplador 3dB Filtros passa baixa Modo TE Ondas H (TEn Ez = 0; Hz 0) Somente o campo

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas (Revisão) Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS Ondas Eletromagnéticas são uma forma de transportar energia

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3 Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3 Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 2/3 Impedância de Entrada; Coeficiente

Leia mais

ONDAS EM LINHAS DE TRANSMISSÃO

ONDAS EM LINHAS DE TRANSMISSÃO TE053-Ondas Eletromagnéticas ONDAS EM LINHAS DE TRANSMISSÃO PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Conceitos Fundamentais sobre Guias de Ondas

Leia mais

Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão

Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão Os cálculos em linhas de transmissão ou em guias de onda utilizam as fórmulas que foram dadas anteriormente, são portanto de difícil

Leia mais

10/05/17. Ondas e Linhas

10/05/17. Ondas e Linhas 10/05/17 1 Casamento de impedância (pags 234 a 240 do Pozar) Casamento de impedância com toco simples em série. Casamento de impedância com toco simples em paralelo. CASAMENTO DE IMPEDÂNCIA COM TOCO DUPLO.

Leia mais

Integridade de Sinais Elétricos

Integridade de Sinais Elétricos UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Integridade de Sinais Elétricos Prof. Dr. Marlio Bonfim 1º semestre 2014 1 UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Composição

Leia mais

EN3624 Sistemas de Micro-ondas

EN3624 Sistemas de Micro-ondas EN3624 Sistemas de Micro-ondas Dispositivos Passivos Dispositivos passivos em Micro-ondas Divisores e Combinadores de potência Acopladores Circuladores e Isoladores Dispositivos passivos em Micro-ondas

Leia mais

10/05/17. Ondas e Linhas

10/05/17. Ondas e Linhas 10/05/17 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 10/05/17 Guias de Onda Guias de onda são estruturas

Leia mais

Módulo II Linhas de Transmissão. Carta de Smith

Módulo II Linhas de Transmissão. Carta de Smith Módulo II Linhas de Transmissão Ferramenta gráfica para resolver problemas envolvendo linhas de transmissão e casamento de impedância. Foi desenvolvida em 1939 por Phillip Smith, engenheiro do Bell Telephone

Leia mais

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Tópicos abordados: (Capítulo 12 pgs 564 a 570 do livro texto) Estabilidade de Amplificadores de micro-ondas Circulos de estabilidade Testes

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 109 do Pozar) Linhas de Transmissão de placas paralelas. Modos TEM Modos TE e TM 31/05/17 2 Linha de Transmissão de Placas Paralelas Vamos considerar os campos de uma

Leia mais

Escola Politécnica FAP GABARITO DA P1 13 de setembro de 2005

Escola Politécnica FAP GABARITO DA P1 13 de setembro de 2005 P1 Física IV Escola Politécnica - 2005 FAP 2204 - GABARITO DA P1 13 de setembro de 2005 Questão 1 Uma fonte de tensão alternada está acoplada a um transformador ideal que por sua vez está conectado a um

Leia mais

26/06/17. Ondas e Linhas

26/06/17. Ondas e Linhas 26/06/17 1 Microstrip e Stripline (pags 141 a 150 do Pozar) Impedância característica Constante de propagação Atenuação (contribuições do condutor e do dielétrico) 26/06/17 2 Stripline A L.T. do tipo Stripline

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Onda Plana Uniforme no espaço livre (Capítulo 11 Páginas 375 a 384) Onda Plana Uniforme em dielétricos com

Leia mais

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais

ET720- Sistemas de energia elétrica I Capítulo 5 Linhas de transmissão

ET720- Sistemas de energia elétrica I Capítulo 5 Linhas de transmissão ET720- Sistemas de energia elétrica I Capítulo 5 Linhas de transmissão Exercícios 5.1 Ocondutordealumíniopuro,identificadopelonomecódigoBluebell,écompostopor37fiosde0,167 dediâmetro cada um. As tabelas

Leia mais

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET. MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta

Leia mais

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs 1 Universidade Tecnológica Federal do Paraná Campus Campo Mourão Engenharia Eletrônica LT34C - Circuitos Elétricos Prof. Dr. Eduardo G Bertogna Lista de Exercícios P1 Entregar resolvida individualmente

Leia mais

CORRENTES DE CONDUÇÃO E DE DESLOCAMENTO a) Formas instantâneas densidade de corrente condução: j c = σ e densidade de corrente de deslocamento: j = d / dt. d b) Formas fasoriais densidade de corrente condução:

Leia mais

09/05/18. Ondas e Linhas

09/05/18. Ondas e Linhas 09/05/18 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 09/05/18 Guias de Onda Guias de onda são estruturas

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Filtros de Micro-ondas Tópicos abordados: (Capítulo 8 pgs 48 a 415 do livro texto) Transformação de filtros Dimensionamento de frequência

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) INTITUTO NACIONAL DE PEQUIA EPACIAI (INPE) Concurso Público - NÍVEL UPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVA PROVA

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho 1 Prof. Daniel Orquiza SJBV Bibliografia Básica: POZAR, D. M. Microwave Engineering, 4th ed., Wiley, 2011. Complementar: Hayt, W. H. e Buck, J. A.,

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 40 Módulo 10 Drawing of Michael Faraday's 1831 experiment showing electromagnetic induction between coils of wire, using 19th century apparatus,

Leia mais

Acoplador Direcional. SEL 369 Micro-ondas/SEL5900 Circuitos de Alta Frequência. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP

Acoplador Direcional. SEL 369 Micro-ondas/SEL5900 Circuitos de Alta Frequência. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Acoplador Direcional SEL 369 Micro-ondas/SEL59 Circuitos de Alta Frequência Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir

Leia mais

UNIVERIDADE Telles Villas DO ESTADO DO RIO DE JANEIRO UERJ TRANSMISSÃO DE CCAT/ LINHAS DE ¼ DE

UNIVERIDADE Telles Villas DO ESTADO DO RIO DE JANEIRO UERJ TRANSMISSÃO DE CCAT/ LINHAS DE ¼ DE Professor: Pós DSc. José Eduardo UNIVERIDADE Telles Villas DO ESTADO DO RIO DE JANEIRO UERJ Grupo: Raphael Pedrosa Filipi de Paula Thiago Santos TRANSMISSÃO DE CCAT/ LINHAS DE ¼ DE Funcionamento de um

Leia mais

Electrotecnia Teórica (1º Semestre 2000/2001)

Electrotecnia Teórica (1º Semestre 2000/2001) Electrotecnia Teórica (º Semestre 2000/200) Exame #2 (25-Jan-200) Resolver cada problema numa folha separada Electrotecnia Teórica (º Semestre 2000/200) Duração: 2.30 horas SEM CONSULTA Problema Linhas

Leia mais

Módulo II Linhas de Transmissão. Circuito com gerador e carga

Módulo II Linhas de Transmissão. Circuito com gerador e carga Módulo II Linhas de Transmissão Circuito com gerador e carga Circuito com Gerador e Carga Anteriormente havíamos considerado a existência de uma descontinuidade na interface entre linha e impedância de

Leia mais

Casamento de Impedâncias Utilizando Stubes

Casamento de Impedâncias Utilizando Stubes UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIAS EXÁTAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA DE ELETRICIDADE DISCIPLINA DE LABORATÓRIO DE ONDAS E LINHAS PROFESSOR JONAS RIBEIRO RELATÓRIO V Casamento

Leia mais

Capítulo 5: Casamento de impedância e transistor em Rf

Capítulo 5: Casamento de impedância e transistor em Rf Casamento de e transistor em Rf Introdução Cir. Eletrônica Aplica. Aplicação: Prover a máxima transferência possível de potência entre fonte e carga Teorema em DC: máxima potência será transferida da fonte

Leia mais

Dispositivos e Circuitos de RF

Dispositivos e Circuitos de RF Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Filtros de Micro-ondas Tópicos abordados: (Capítulo 10 pgs 393 a 399 do livro texto) Filtros Seção m-derived Filtros compostos Os filtros

Leia mais

FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009

FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009 P1 FÍSICA IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P1 22 de setembro de 2009 Questão 1 Um circuito RLC em série é alimentado por uma fonte que fornece uma tensão v(t) cosωt. O valor da tensão

Leia mais

Copyright 2000 Wander Rodrigues

Copyright 2000 Wander Rodrigues Copyright 2000 Wander Rodrigues Normalização!Normalizar qualquer grandeza é dividir seu valor real pelo valor característico desta mesma grandeza. Normalizado = Valor Real Valor Característico Normalização!Uma

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 20 Desenvolvimento do conceito de transmissão de potência em alta frequência e baixa

Leia mais