Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1 Prof. Fernando Massa Fernandes Sala 5017 E fernando.fernandes@uerj.br Aula 13

2 Revisão

3 Modelo de elementos distribuídos Modelar a linha em pequenos elementos de circuito de tamanho Δz << λ permite aplicar teoria de circuitos. Revisão

4 Revisão Modelo de elementos distribuídos Modelar a linha em pequenos elementos de circuito de tamanho Δz << λ permite aplicar teoria de circuitos. R Resistência série devida a condutividade finita dos conectores. (Ω/m) L Auto-indutância total entre os condutores. ( H /m) G Condutância de derivação devida à perda dielétrica no material (S /m) entre os condutores. C Capacitância de derivação devida a proximidade dos condutores. (F /m)

5 Revisão Solução de onda Das equações do telegrafista com fonte senoidal e tomando a derivada em z: * Equações de onda! d V ( z) γ V ( z)=0 dz * Ondas de tensão e corrente => Solução de onda V ( z)=v +0 e γ z +V -0 e+ γ z d I ( z) γ I ( z)=0 dz I ( z)=i +0 e γ z + I -0 e +γ z Exemplo de modelo de circuito de linha de transmissão Apostila de eletrônica 5 Centro Paula souza

6 Revisão Impedância característica da linha (z0) Relação entre as amplitudes da tensão e corrente * Ondas de tensão e corrente V ( z)=v +0 e γ z +V -0 e+ γ z I ( z)= 1 + γ z - +γ z (V 0 e V 0 e ) Z0 I ( z)= I +0 e γ z + I -0 e + γ z Impedância característica da linha Z 0= R +i ω L R +i ω L = γ G+i ω C * Na posição da carga, z = 0. V +0 I + 0 = V -0 I 0 =Z 0

7 Revisão Potência entregue na carga (z = 0) V ( z)=v +0 e γ z +V -0 e+ γ z I ( z)= 1 + γ z - +γ z (V 0 e V 0 e ) Z0 constante de prop. complexa => 1 P l = ℜ{ V (0) I *(0)} γ= ( R+i ω L).(G+i ω C)=α+i β Impedância característica da linha Z 0= R +i ω L R +i ω L = γ G+i ω C * Na posição da carga, z = 0. V +0 I + 0 = V -0 I 0 =Z 0

8 Revisão No domínio do tempo v(z,t) γ=α+iβ V ( z)=v +0 e γ z +V -0 e+ γ z iωt + γ z 0 v ( z, t)=v ( z) e =(V e - +γ z 0 +V e )e iω t Complexos V +0 = V +0 e i Φ+ V -0 = V -0 e i Φ - v ( z, t)=(v +0 e α z e iβ z +V -0 e +α z e+ iβ z )e i ω t => v ( z, t )= V +0 cos( ω t β z+ Φ+ ) e α z + V -0 cos ( ω t + β z+ Φ- )e + α z

9 Revisão Linha sem perdas (R = G = 0) γ= ( R+i ω L).(G+i ω C)=α+iβ Z 0= α=0 β = ω LC R +i ω L R +i ω L L = Z = 0 γ G+i ω C C Comprimento de onda Velocidade de fase π π λ= β λ = ω LC 1 vf = ω vf = β LC * comparação com onda plana eletromagnética: η = μ ϵ β = ω μ ϵ vf = 1 μ ϵ

10 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Tensão entre os condutores (C1 e C) Corrente sendo transportada V ( z)=v 0 e±i β z I ( z)=i 0 e±i β z

11 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Tensão entre os condutores (C1 e C) Corrente sendo transportada V ( z)=v 0 e±i β z I ( z)=i 0 e±i β z Como o modelo de elementos de circuito esta relacionado aos campos? R: Conservação de energia e potência (teorema de Poynting).

12 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Relação entre o modelo de circuitos e os campos: Energia armazenada nos campos <=> Indutância e Capacitância da linha. Energia magnética armazenada Da teoria de circuitos W m =L I0 μ L= H. H * ds ( H /m) I 0 S 4 μ Do teorema de Poynting W m (H )= H. H * ds ( para 1 metro) 4 S

13 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Relação entre o modelo de circuitos e os campos: Energia armazenada nos campos <=> Indutância e Capacitância da linha. Energia elétrica armazenada Da teoria de circuitos W e =C V0 * C= ϵ E. E ds ( F /m) V o S 4 Do teorema de Poynting W e ( E )= ϵ E. E * ds ( para 1 metro) 4 S

14 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Relação entre o modelo de circuitos e os campos: Energia dos campos dissipada <=> Resistência dos condutores e condutância do dielétrico. Energia sendo dissipada por efeito Joule Da teoria de circuitos P c =R R= I0 R * Do teorema de Poynting P c = S H t. H t dl S =C +C 0 1 RS I 0 H t. H *t dl ( Ω / m) C1 +C ωμ 1 = σ σ δp Bom condutor R S =ℜ( η)=

15 Revisão. Análise dos campos em linhas de transmissão Linhas de campo em uma linha de transmissão TEM arbitrária. Relação entre o modelo de circuitos e os campos: Energia dos campos dissipada <=> Resistência dos condutores e condutância do dielétrico.,, Energia sendo dissipada por efeito Joule pelo termo de amortecimento dielétrico ( ϵ ) Da teoria de circuitos P d =G V0 Do teorema de Poynting P d = ω ϵ,, E ds S ϵ =ϵ, i ϵ,, =ϵ, (1 i tg δ ) ϵ,, =ϵ, tg δ,, ω ϵ * ds ( S /m) G= E. E V 0 S

16 Revisão. Análise dos campos em linhas de transmissão Relação entre o modelo de circuitos e os campos: Geral μ * H. H ds ( H /m) I 0 S L= * C= ϵ E. E ds ( F /m) V o S R= RS I 0 H t. H *t dl ( Ω /m) C 1 +C,, ω ϵ G= E. E * ds (S /m) V 0 S

17 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura: Os campos de uma onda que se propaga no modo TEM possuem a mesma configuração dos campos estáticos, em um capacitor cilíndrico a menos da constante e γ z

18 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura: Os campos de uma onda que se propaga no modo TEM possuem a mesma configuração dos campos estáticos, em um capacitor cilíndrico a menos da constante e γ z μ L= H. H * ds ( H /m) I 0 S

19 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura: Os campos de uma onda que se propaga no modo TEM possuem a mesma configuração dos campos estáticos, em um capacitor cilíndrico a menos da constante e γ z * C= ϵ E. E ds ( F /m) V o S

20 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura: Os campos de uma onda que se propaga no modo TEM possuem a mesma configuração dos campos estáticos, em um capacitor cilíndrico a menos da constante e γ z R= RS I 0 C 1 +C H t. H *t dl ( Ω / m)

21 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura: Os campos de uma onda que se propaga no modo TEM possuem a mesma configuração dos campos estáticos, em um capacitor cilíndrico a menos da constante e γ z,, ω ϵ G= E. E * ds (S /m) V 0 S

22 . Análise dos campos em linhas de transmissão Exemplo.1 Parâmetros de linha de transmissão para uma linha coaxial. (considerando que o material dos condutores é o mesmo) Considere a linha coaxial com a geometria apresentada na figura:

23 . Análise dos campos em linhas de transmissão * A constante de propagação, a impedância característica, e a atenuação da maioria das linhas de transmissão são usualmente obtidas diretamente da solução na teoria dos campos. ** Em linhas de geometria simples é possível determinarmos os parâmetros de circuito equivalentes (L, C, R, G) a partir dos cálculos simples apresentados. *** Em linhas de geometria mais complexa, em geral, é necessária a utilização de softwares CAD que utilizam elementos finitos (FEM).

24 . Análise dos campos em linhas de transmissão

25 . Análise dos campos em linhas de transmissão Exercício.3 - Livro O cabo coaxial semirrígido RG-40U possui um condutor interno com diâmetro de 0,91 mm e um dielétrico com diâmetro externo de 3,0 mm (mesmo diâmetro do condutor externo). Ambos os condutores são de cobre, e o material dielétrico utilizado é o Teflon. Calcule os parâmetros R, L, G e C dessa linha em 1GHz, e utilize o resultado para encontrar a impedância característica e atenuação da linha em 1GHz.

26 . Análise dos campos em linhas de transmissão Exercício.3 - Livro O cabo coaxial semirrígido RG-40U possui um condutor interno com diâmetro de 0,91 mm e um dielétrico com diâmetro externo de 3,0 mm (mesmo diâmetro do condutor externo). Ambos os condutores são de cobre, e o material dielétrico utilizado é o Teflon. Calcule os parâmetros R, L, G e C dessa linha em 1GHz, e utilize o resultado para encontrar a impedância característica e atenuação da linha em 1GHz. * Compare seus resultados com a especificação do fabricante. * comente sobre as discrepâncias.

27

28 .3 - Linha de transmissão sem perdas terminada numa carga ZL Onda gerada em z < 0 Onda refletida em z = 0 V ( z) =Z 0 I ( z) Ao longo da linha * Na posição da carga, z = 0. V +0 + γ z 0 I ( z)=i e 0 +I e +γ z I + 0 = V -0 I 0 =Z 0

29 .3 - Linha de transmissão sem perdas terminada numa carga ZL Ao longo da linha Z=0 Onda refletida Coef. de reflexão (z=0) V ( z) =Z 0 I ( z)

30 .3 - Linha de transmissão sem perdas terminada numa carga ZL Ao longo da linha Z=0 Onda refletida Coef. de reflexão (z=0) V ( z) =Z 0 I ( z)

31 .3 - Linha de transmissão sem perdas terminada numa carga ZL Potência média entregue (no ponto z) V * ( 1 Γ ) P = ℜ [ V ( z). I ( z) ]= Z0 + P = P P Incidente - Refletida Não depende de z!

32 .3 - Linha de transmissão sem perdas terminada numa carga ZL Potência média entregue (no ponto z) V * ( 1 Γ ) P = ℜ [ V ( z). I ( z) ]= Z0 Não depende de z! Potência média entregue máxima (Γ=0) Casamento de impedância ( ZL = Z0 ) Potência média entregue nula (Γ=1) Z L

33 .3 - Linha de transmissão sem perdas terminada numa carga ZL Potência média entregue (no ponto z) V * ( 1 Γ ) P = ℜ [ V ( z). I ( z) ]= Z0 Perda de retorno (RL) Quando (Γ=0) Linha lisa Não depende de z! V ( z) = V +0 0 db Γ= 1 db Γ=0 A amplitude da voltagem (da onda estacionária) na linha é constante

34 .3 - Linha de transmissão sem perdas terminada numa carga ZL Perda de retorno (RL) Quando (Γ=0) Linha lisa Exemplo: Casamento de impedância (Γ 0,0)70 MHz

35 .3 - Linha de transmissão sem perdas terminada numa carga ZL Onda estacionária (Γ 0) (Z L Z 0 ) Onda incidente + Onda refletida O módulo da tensão (amplitude) oscila ao longo da linha Na distância l da carga (z = - l ) O coef de reflexão pode ser escrito

36 .3 - Linha de transmissão sem perdas terminada numa carga ZL Onda estacionária (Γ 0) (Z L Z 0 ) Onda incidente + Onda refletida O módulo da voltagem (amplitude) oscila ao longo da linha (z = - l ) Quando e j ( Θ β l) = 1 V MAX = V 0.(1 + Γ ) + e j ( Θ β l) = 1 V MIN = V 0.(1 Γ ) + Γ Γ(l)

37 .3 - Linha de transmissão sem perdas terminada numa carga ZL Onda estacionária Onda incidente + Onda refletida (Γ 0) (Z L Z 0 ) Generalização do coef de reflexão Γ( z) = V -0. e j β z V +0. e j β z V -0 e j β l ( z= l) Γ(l) = + + j β z = Γ(0). e j β l V0 e Razão da onda estacionária Casamento de impedância em função da distância do gerador

38 .3 - Linha de transmissão sem perdas terminada numa carga ZL Impedância de entrada ZIN, na distância l = -z da carga Γ(0)

39 .3 - Linha de transmissão sem perdas terminada numa carga ZL Casos especiais de linha de transmissão sem perdas i) ZL = 0, curto circuito (Γ = -1) ii) ZL =, circuito aberto (Γ = +1) iii) Linha de comprimento l = (λ/4) + (nλ/) (transformador quarto de onda) iv) Junção entre linhas de transmissão

40 .3 - Linha de transmissão sem perdas terminada numa carga ZL i) Linha de transmissão terminada em curto circuito ZL = 0, curto circuito (Γ = -1) Impedância puramente complexa! (sistema conservativo)

41 .3 - Linha de transmissão sem perdas terminada numa carga ZL ii) Linha de transmissão terminada em circuito aberto ZL =, circuito aberto (Γ = +1) Impedância puramente complexa! (sistema conservativo)

42 .3 - Linha de transmissão sem perdas terminada numa carga ZL i) Linha de transmissão terminada em curto circuito ii) Linha de transmissão terminada em circuito aberto

43 .3 - Linha de transmissão sem perdas terminada numa carga ZL iii) Linha de comprimento l = (λ/4) + (nλ/), n =1,,3... β. ŀ = π λ.( + n λ ) = π + n π tan ( β. ŀ ) = λ 4

44 .3 - Linha de transmissão sem perdas terminada numa carga ZL iii) Linha de comprimento l = (λ/4) + (nλ/), n =1,,3... β. ŀ = π λ.( + n λ ) = π + n π tan ( β. ŀ ) = λ 4 Transformador quarto de onda Útil para o casamento de impedância quando sabemos λ e sabemos que ZL > Z0, mas não sabemos exatamente o valor de ZL. Linha com comprimento que transforma inversamente a impedância da carga ZL Para l = n.(λ/) tan ( β. ŀ ) = 0

45 .3 - Linha de transmissão sem perdas terminada numa carga ZL iv) Junção entre linhas de transmissão Linha Z0 alimenta a Z1 linha Na região z > 0 Na região z < 0 Em z = 0 (assumindo que não existem ondas refletidas)

46 .3 - Linha de transmissão sem perdas terminada numa carga ZL iv) Junção entre linhas de transmissão Linha Z0 alimenta a Z1 linha Perda de inserção

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 14 Cap. 2 Teoria de linhas de transmissão Revisão Cap. 2 Teoria de linhas de transmissão

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 15 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 11 Propagação da energia eletromagnética ao longo do comprimento da linha. Modo de propagação

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 16 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 7 Exercícios selecionados do capítulo. /.3 /.8 /.9 /./.6 /.0 /.3 /.9 Prova P. Capt. (exercícios

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 8 Exercícios selecionados do capítulo. /.3 /.8 /.9 /./.6 /.0 /.3 /.9 Prova P. Capt. (exercícios

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fermassa@lee.uerj.br Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 20 5. Casamento de impedância Elementos discretos (seção-l) Exemplo 5. : Casamento de

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 19 Revisão 2.6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 18 Revisão.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos em

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 4

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 4 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 4 1 Das eq de Maxwell em meio homogêneo, linear, isotrópico e livre de cargas e correntes

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 4

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 4 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 4 1 Conceitos fundamentais Equações de Maxwell (MKS) Revisão E = B t M (1) (2) H = D t + J

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 15 * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão

Leia mais

* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão

* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão .4 Carta de Smith * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão * 939 Laboratórios Bell (Philip Smith) Durante o desenvolvimento de tecnologia radar. Estabelece graficamente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 0 Exercícios selecionados do capítulo.1 /.3 /.8 /.9 /.11/.16 /.0 /.3 /.9 Prova P. Capt.

Leia mais

Módulo II Linhas de Transmissão

Módulo II Linhas de Transmissão Módulo II Linhas de Transmissão Linhas de Transmissão Introdução Equações do Telegrafista Modelos por Parâmetros Distribuídos Ondas harmônicas no tempo em LTs Impedância Característica Teorema de Poynting

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 7 https://www.air-stream.org/technical-references/ antenna-polarisation Solução de onda

Leia mais

Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão

Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 5

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 5 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 5 1 Revisão Equação de onda Solução de onda plana 2 E μ ϵ 2 E t 2 = 0 2 H μ ϵ 2 H t 2 = 0

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 6 Revisão Equação de onda Solução de onda plana 2 E μϵ E =0 2 t 2 2 H μϵ H =0 2 t 2

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fernando.fernandes@uerj.br Aula 6 .4 Carta de Smith z IN + Γ e j θ = = r L + jx L jθ Γ e * Correlação gráfica de três

Leia mais

Física Experimental Aula10 Propagação de sinais em cabos coaxiais

Física Experimental Aula10 Propagação de sinais em cabos coaxiais Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 8 Revisão - Incidência normal à superfície da interface (meio geral) Γ é o coeficiente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 17 Revisão 2.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos

Leia mais

Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais

Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Módulo II Linhas de Transmissão Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Linhas sem Perdas As linhas de transmissão disponíveis comercialmente

Leia mais

1 Introdução às linhas de transmissão

1 Introdução às linhas de transmissão Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Ondas e Linhas Prof. Dr. Helder Alves Pereira Lista de exercícios 1 Introdução às linhas de transmissão 1.1 Notas de Aula

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 22 Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.9 / 2.11/ 2.16 / 2.20 /

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.11 / 2.20 / 2.29 Prova P.I Capts. 1 e

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 22 Capt. 3 Linhas de transmissão e guias de onda Desenvolvimento do conceito de transmissão

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão aspectos básicos (Páginas 48 a 56 no Livro texto) Objetivos: Discutir comportamento de L.T. Em altas frequências. Introduzir

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 27 Capt. 3 Linha de microfita Revisão Exercício proposto Projeto CAD em linha de microfita.

Leia mais

26/06/17. Ondas e Linhas

26/06/17. Ondas e Linhas 26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 17 2.6 Descasamento entre gerador e carga (sem perdas) * Modelo geral: Casos em que

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Acoplador 3dB Filtros passa baixa Somente o campo H possui componente na direção de propagação

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 9 Revisão - Incidência normal à superfície da interface (meio geral) Γ é o coeficiente

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 20 Desenvolvimento do conceito de transmissão de potência em alta frequência e baixa

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Profundidade Pelicular e Teorema de Poyinting (Capítulo 11 Páginas 384 a 394) Profundidade Pelicular Teorema

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3 Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3 Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 1/3 Sistemas de guiamento de ondas;

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Desenvolvimento do conceito de transmissão de potência em alta frequência e baixa perda. 1893 Heaviside

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 10 Reflexão e transmissão de onda plana - Exercício 1.9: Uma região entre z = 0 cm e

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 2 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Explique

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão Coef. de Reflexão e impedância de entrada (Páginas 56 a 60 no Livro texto) Objetivos: Campos eletromagnéticos em Linhas de Transmissão.

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 3

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 3 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 3 1 Conceitos fundamentais Campos EMs em meio material E = B t M (1) (2) (3) (4) H = D t D

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 26 Revisão Revisão Linha de transmissão planar Tecnologia Planar (grande interesse prático)

Leia mais

CORRENTES DE CONDUÇÃO E DE DESLOCAMENTO a) Formas instantâneas densidade de corrente condução: j c = σ e densidade de corrente de deslocamento: j = d / dt. d b) Formas fasoriais densidade de corrente condução:

Leia mais

Conceitos Fundamentais Aula 2

Conceitos Fundamentais Aula 2 Conceitos Fundamentais Aula Ondas lectromagnéticas A descrição de uma estrutura ondulatória envolve coordenadas espaciais e a coordenada temporal. Nem todas as funções f(x,y,z,t) são ondas. Ondas Planas

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Aula 2

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Aula 2 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 2 1 Introdução Programa 1. Introdução 2. Conceitos fundamentais do eletromagnetismo 3. Teoria

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 10 Exercícios - Exercício 1.9: Uma região entre z = 0 cm e z = 20 cm é preenchida por

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Capt. 3 Exercício prático: Guia oco - retangular i) Qual a banda de operação desse guia e sua provável

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 10 Reflexão e transmissão de onda plana Revisão - Incidência oblíqua em interface dielétrica

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas (Revisão) Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS Ondas Eletromagnéticas são uma forma de transportar energia

Leia mais

Física IV Escola Politécnica GABARITO DA P1 10 de setembro de Hz C

Física IV Escola Politécnica GABARITO DA P1 10 de setembro de Hz C Física IV - 4320402 Escola Politécnica - 2013 GABARITO DA P1 10 de setembro de 2013 Questão 1 O circuito da figura é usado para determinar a capacitância do capacitor. O resistor tem resistência de 100

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 24 Acoplador 3dB Filtros passa baixa Modo TE Ondas H (TEn Ez = 0; Hz 0) Somente o campo

Leia mais

Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza de Carvalho 1 Linha Fendida e Transformador de Quarto de Onda (Páginas 68 a 75 no Livro texto) Tópicos: Linha fendida (slotted line) Casamento de impedância: transformador de quarto

Leia mais

CAPÍTULO 1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1 1.1 OBJETIVOS DO CURSO Objetivo principal: Fornecer ao estudante fundamentos teóricos e aspectos práticos necessários ao projeto de circuitos analógicos que operam em freqüências

Leia mais

Teoria Experiência de Linhas de Transmissão

Teoria Experiência de Linhas de Transmissão Teoria Experiência de Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância

Leia mais

ONDAS EM LINHAS DE TRANSMISSÃO

ONDAS EM LINHAS DE TRANSMISSÃO TE053-Ondas Eletromagnéticas ONDAS EM LINHAS DE TRANSMISSÃO PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Conceitos Fundamentais sobre Guias de Ondas

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br * A descrição em termos da matriz de impedância [Z] estabelece a relação entre tensão [V] e corrente

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 3 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Resolver

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Onda Plana Uniforme no espaço livre (Capítulo 11 Páginas 375 a 384) Onda Plana Uniforme em dielétricos com

Leia mais

UFSM-CTISM. Projeto de Redes sem Fio Aula-04

UFSM-CTISM. Projeto de Redes sem Fio Aula-04 UFSM-CTISM Projeto de Redes sem Fio Aula-04 Professor: Andrei Piccinini Legg Santa Maria, 2012 Ocorre quando uma onda eletromagnética em colide com um objeto que possui dimensões muito grandes em comparação

Leia mais

Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa

Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator

Leia mais

Experiência 1. Linhas de Transmissão

Experiência 1. Linhas de Transmissão Experiência 1. Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância de

Leia mais

Exercícios de Eletromagnetismo II

Exercícios de Eletromagnetismo II Exercícios de Eletromagnetismo II Antonio Carlos Siqueira de Lima 2014/2 Resumo Nesse documento são apresentados alguns exercícios sobre eletromagnetismo. Eles são baseados no livro texto: Campos & Ondas

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 23 (Após aula 22 de exercícios ) Acoplador 3dB Filtros passa baixa Modo TE Ondas H (TEn

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Onda Plana Uniforme no espaço livre (Capítulo 11 Páginas 375 a 384) Onda Plana Uniforme em dielétricos com

Leia mais

Escola Politécnica

Escola Politécnica PS Física IV Escola Politécnica - 008 FAP 04 - GABARITO DA SUB Questão 1 O circuito RLC mostrado na figura possui de um capacitor com capacitância C, um indutor com indutância variável L e uma lâmpada

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 4 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 *1) Mostre

Leia mais

Módulo III Guias de Ondas. Guias de Ondas Retangulares Guias de Ondas Circulares

Módulo III Guias de Ondas. Guias de Ondas Retangulares Guias de Ondas Circulares Módulo III Guias de Ondas Guias de Ondas Retangulares Guias de Ondas Circulares Guias de Ondas Linhas de transmissão paralelas não são blindadas e, portanto, o campo elétrico entre os dois fios acaba irradiando

Leia mais

Física IV Escola Politécnica GABARITO DA P1 2 de setembro de 2014

Física IV Escola Politécnica GABARITO DA P1 2 de setembro de 2014 Física IV - 43040 Escola Politécnica - 014 GABARITO DA P1 de setembro de 014 Questão 1 Aplica-se uma ddp v(t) = V sen(ωt) nos terminais de um circuito constituído em série por um indutor de indutância

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 8 - Projeto de Radome W /m 2 *Fundamentals of Applied Electromagnetics, Ulaby and Ravaioli,

Leia mais

CAPÍTULO 2 LINHAS DE TRANSMISSÃO

CAPÍTULO 2 LINHAS DE TRANSMISSÃO CAPÍTULO 2 LINHAS DE TRANSMISSÃO TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA 1 2.1 PORQUE LINHAS DE TRANSMISSÃO? E x = E0x cos( wt - bz) Comportamento no espaço: l Distribuição da tensão no espaço e no tempo

Leia mais

Escola Politécnica FAP GABARITO DA P1 13 de setembro de 2005

Escola Politécnica FAP GABARITO DA P1 13 de setembro de 2005 P1 Física IV Escola Politécnica - 2005 FAP 2204 - GABARITO DA P1 13 de setembro de 2005 Questão 1 Uma fonte de tensão alternada está acoplada a um transformador ideal que por sua vez está conectado a um

Leia mais

Para um trecho de uma L.T. podemos utilizar o seguinte modelo:

Para um trecho de uma L.T. podemos utilizar o seguinte modelo: Modulo1 Caracterizamos as Linhas de Transmissão como sendo o elemento que faz a interligação entre uma fonte geradora de energia ou de informação e a carga ou estação As linhas de transmissão se caracterizam

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho 1 Prof. Daniel Orquiza SJBV Bibliografia Básica: POZAR, D. M. Microwave Engineering, 4th ed., Wiley, 2011. Complementar: Hayt, W. H. e Buck, J. A.,

Leia mais

d = t sen (θ a θ b ). b

d = t sen (θ a θ b ). b Universidade Federal do Rio de Janeiro Instituto de Física Física IV 019/1 Lista de Exercícios do Capítulo Propriedades da Luz Professor Carlos Zarro 1) Três espelhos interceptam-se em ângulos retos. Um

Leia mais

Ondas e Linhas. Prof. Daniel Orquiza. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho

Ondas e Linhas. Prof. Daniel Orquiza. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho 1 Linhas de transmissão SWR, Perda de Retorno e Perda de Inserção (Páginas 59 a 63 no Livro texto) Tópicos: Coef. de onda estacionária (SWR) Coef.

Leia mais

Pontas de prova para instrumentos

Pontas de prova para instrumentos Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de

Leia mais

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame) º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas

Leia mais

Física IV Escola Politécnica GABARITO DA P1 31 de agosto de Considere o circuito RLC série mostrado na figura abaixo

Física IV Escola Politécnica GABARITO DA P1 31 de agosto de Considere o circuito RLC série mostrado na figura abaixo P1 Física IV - 43040 Escola Politécnica - 010 GABARITO DA P1 31 de agosto de 010 Questão 1 Considere o circuito RLC série mostrado na figura abaixo L C v(t)=v sen( ωt) m R O gerador de corrente alternada

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 109 do Pozar) Linhas de Transmissão de placas paralelas. Modos TEM Modos TE e TM 31/05/17 2 Linha de Transmissão de Placas Paralelas Vamos considerar os campos de uma

Leia mais

10/05/17. Ondas e Linhas

10/05/17. Ondas e Linhas 10/05/17 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 10/05/17 Guias de Onda Guias de onda são estruturas

Leia mais

Ondas Eletromagnéticas Resumo

Ondas Eletromagnéticas Resumo Ondas Eletromagnéticas Resumo SEL SEL 317 Sistemas de comunicação Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir de apoio às

Leia mais

09/05/18. Ondas e Linhas

09/05/18. Ondas e Linhas 09/05/18 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 09/05/18 Guias de Onda Guias de onda são estruturas

Leia mais

FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009

FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009 P1 FÍSICA IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P1 22 de setembro de 2009 Questão 1 Um circuito RLC em série é alimentado por uma fonte que fornece uma tensão v(t) cosωt. O valor da tensão

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO I Ondas eletromagnéticas planas 1) Uma onda de Hz percorre

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW username@ifi.unicamp.br F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.

Leia mais

Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância

Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância Módulo II Linhas de Transmissão Carta de Smith Casamento de Impedância Casamento de impedância A máxima transferência de potência à carga em uma LT sem perdas é obtida quando a impedância de entrada da

Leia mais

TRANSMISSÃO DE ENERGIA ELÉTRICA

TRANSMISSÃO DE ENERGIA ELÉTRICA UNESDADE FEDEAL DE JU DE FOA Graduação em Engenharia Elétrica TANSMSSÃO DE ENEGA ELÉTA POF. FLÁO ANDESON GOMES E-mail: flavio.gomes@ufjf.edu.br Aula Número: 07 urso de Transmissão de Energia Elétrica Aula

Leia mais

I ind. Indução eletromagnética. Lei de Lenz. Fatos (Michael Faraday em 1831): 2 solenóides

I ind. Indução eletromagnética. Lei de Lenz. Fatos (Michael Faraday em 1831): 2 solenóides Lei de Lenz Fatos (Michael Faraday em 1831): solenóides A I ind A I ind ao se ligar a chave, aparece corrente induzida na outra espira I di > 0 ao se desligar a chave, também aparece corrente induzida

Leia mais

ANTENAS E PROPAGAÇÃO MEAero 2010/2011

ANTENAS E PROPAGAÇÃO MEAero 2010/2011 ANTENAS E PROPAGAÇÃO MEAero 2010/2011 1º Teste, 07-Abr-2011 (com resolução) Duração: 1H30 DEEC Resp: Prof. Carlos Fernandes Problema 1 Considere um satélite de órbita baixa (450 km) usado para prospecção

Leia mais

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais