Pontas de prova para instrumentos
|
|
|
- Eliza Borba Gonçalves
- 9 Há anos
- Visualizações:
Transcrição
1 Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1
2 Pontas de prova para instrumentos Tipos principais: Pontas Passivas: apenas cabos e elementos R, L, C Alta impedância Baixa impedância Pontas Ativas: possuem amplificador interno (devem ser alimentadas) Alta impedância, alta frequência Entrada diferencial 2
3 Pontas de prova para instrumentos Características principais: Tensão máxima: define a máxima tensão que pode ser aplicada sem que haja danos ou fugas de corrente Banda passante: define a frequência máxima de utilização (- 3 db) Impedância: impedância complexa que o circuito percebe quando conectado à ponteira 3
4 Pontas de prova para instrumentos Circuito equivalente típico: Uma ponta de prova pode ser modelada por seus elementos de circuito R, L, C equivalentes: 4
5 Pontas de prova para instrumentos Circuito equivalente típico: A impedância vista pelo circuito a ser medido varia com a frequência Em altas frequência os elemento C e L são preponderantes sobre o R A resposta em frequência está diretamente ligada aos elementos R, L e C Erros de medida significativos podem ocorrer em altas frequências 5
6 Pontas de prova passivas Pontas de alta impedância: São formadas por cabos coaxiais acoplados diretamente ao circuito de entrada do instrumento no modo de alta impedância (1 MΩ) Não existe casamento de impedâncias entre cabocarga-fonte O condutor central do cabo é de alta resistência para atenuar as reflexões devidas ao descasamento São limitadas a baixas e médias frequências (até ~50 MHz) 6
7 Pontas de prova passivas Pontas de alta impedância: Circuito equivalente: Valores típicos: Rc: 200 Ω Cc: 150 pf Lc: 10 nh Ri: 1 MΩ Ci: 20 pf 7
8 Pontas de prova passivas Pontas de alta impedância com atenuador: Atenuador resistivo/capacitivo acoplado à entrada da ponteira Atenuações padrão: x10, x100, x1000 Aumento da tensão máxima de medida Aumento da impedância de entrada, redução do erro de medida Aumento da banda passante (até ~500 MHz) Necessário ajuste da capacitância de compensação 8
9 Pontas de prova passivas Pontas de alta impedância com atenuador: Circuito equivalente: Valores típicos atenuador x10: Ra: 9 MΩ Ca: 20 pf Lc: 10 nh 9
10 Pontas de prova passivas Pontas de baixa impedância: São formadas por cabos coaxiais de baixas perdas acoplados diretamente ao circuito de entrada do instrumento no modo de baixa impedância (50 Ω) Existe casamento de impedâncias entre cabo e instrumento Os conectores também possuem geometria adequada para manter a impedância do cabo (BNC, SMA, tipo N, etc) São usados em qualquer faixa de frequências (até ~20 GHz) 10
11 Pontas de prova passivas Pontas de baixa impedância: Circuito equivalente: Valores típicos: Ri: 50 Ω Ci: 1 pf 11
12 Pontas de prova passivas Pontas de baixa impedância com atenuador: Atenuador resistivo/capacitivo acoplado à entrada da ponteira Atenuações padrão: x10, x100 Aumento da tensão máxima de medida Aumento da impedância de entrada, redução do erro de medida em circuitos de alta impedância Banda passante até ~10 GHz 12
13 Pontas de prova passivas Pontas de baixa impedância com atenuador: Circuito equivalente: Valores típicos atenuador x10: Ra: 450 Ω Ca: 0.02 pf Lc: 1 nh 13
14 Pontas de prova ativas Pontas ativas de modo comum: São formadas por um amplificador de alta impedância acoplado a cabo coaxial de baixas perdas, conectado ao instrumento no modo de baixa impedância (50 Ω) Existe casamento de impedâncias entre cabo e instrumento Possibilitam medidas de circuitos de alta impedância em altas frequências São usados em qualquer faixa de frequências (até ~2 GHz) Necessitam de uma alimentação DC, custo elevado 14
15 Pontas de prova ativas Pontas ativas de modo comum: Circuito equivalente: Valores típicos: Ra1: 10 kω Ca1: 1 pf Ra2: 90 kω Ca2: 0.11 pf 15
16 Pontas de prova ativas Pontas ativas de modo diferencial: São formadas por um amplificador diferencial de alta impedância acoplado a cabo coaxial de baixas perdas, conectado ao instrumento no modo de baixa impedância (50 Ω) Não necessitam da conexão com o terra Possibilitam medidas de circuitos de alta impedância em modo diferencial e altas frequências Redução do ruído de modo comum São usados em qualquer faixa de frequências (até ~2 GHz) Necessitam de uma alimentação DC, custo elevado 16
17 Pontas de prova ativas Pontas ativas de modo comum: Circuito equivalente: Valores típicos: Ra1: 10 kω Ca1: 1 pf Ra2: 10 kω Ca2: 0.1 pf 17
18 Pontas de prova - Sobrecarga 18
19 Pontas de prova Exercício 6: Seja uma ponta de prova passiva com atenuação 10x usada em um osciloscópio, com as seguintes características: Z0=100 Ω, l=1 m, CT=50 pf. Determine o circuito de atenuação de entrada da ponta de prova, a resistência e indutância por unidade de comprimento do cabo de modo que ele opere com a maior banda passante possível. Dados adicionais: -impedância de entrada equivalente do osciloscópio: 1 MΩ//20 pf -utilize o modelo de linha de transmissão com parâmetros concentrados adaptado para operação até 500 MHz -efetue simulações no domínio do tempo e da frequência para analisar a tensão na entrada do osciloscópio e a impedância da ponta de prova em função da frequência 19
Integridade de Sinais Elétricos
UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Integridade de Sinais Elétricos Prof. Dr. Marlio Bonfim 1º semestre 2014 1 UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Composição
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre
Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão
Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética
Condicionamento de sinais analógicos
Condicionamento de sinais analógicos O condicionamento do sinal analógico do sensor/transdutor é uma etapa fundamental antes de ser efetuada a conversão A/D. Os principais processos de condicionamento
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET Definição : O offset é definido como uma tensão residual que aparece na saída do Amplificador Operacional quando
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] * A descrição em termos da matriz de impedância [Z] estabelece a relação entre tensão [V] e corrente
INSTRUMENTAÇÃO ELECTRÓNICA EXERCÍCIOS FILTROS
INSTRUMENTAÇÃO ELECTRÓNICA EXERCÍCIOS FILTROS 1. Num determinado sinal oriundo de um transdutor, observouse a presença de ruído de 100 Hz com a amplitude de 50 mvpp. O sinal de interesse pode apresentar
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Cálculos de Interrupção de alta freqüência Ron Roscoe O esquema acima representa
/LFHQFLDWXUDHP(QJHQKDULDGH 6LVWHPDVH&RPSXWDGRUHV,QVWUXPHQWDomRH0HGLGDV
81,9(6,'$'('$0$'(,$ ([HUFtFLRVDUHVROYHUQDDXOD Considere a função YW representada na figura. (Exercício adaptado do Prob. 1 de [1]). )LJXUD. Oscilograma com uma tensão rectangular. Determine: D Os valores
Aula Prática 01. O Amplificador Diferencial e Aplicações
Aula Prática 01 I - Objetivos O objetivo desta aula prática é estudar o amplificador diferencial, suas propriedades e aplicações. A técnica adotada é reforçar a noção de associação de amplificadores em
Circuito de Entrada para Osciloscópio Digital
Circuito de Entrada para Osciloscópio Digital O propósito deste projeto é criar um estágio de entrada para um Scope digital. O sistema deverá ter o mesmo comportamento de um Scope convencional, com todos
Aula 4. Amplificador Operacional Configurações I
Aula 4 Amplificador Operacional Configurações I Amplificadores Operacionais (Amp. Op.) Definição: O amplificador operacional (AmpOp) é um amplificador de múltiplos estágios, de elevado ganho, alta impedância
26/06/17. Ondas e Linhas
26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.11 / 2.20 / 2.29 Prova P.I Capts. 1 e
236 Conjunto eletrômetro
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Equipamentos 127 V 220 V Multímetro digital 07134.00 07134.00 1 Cabo de conexão, 32A, 50cm, vermelho
Amplificadores Operacionais
AULA 05 Amplificadores Operacionais Prof. Rodrigo Reina Muñoz [email protected] 2 o Trimestre de 2018 1 Conteúdo Amplificadores Operacionais CMRR Configuração inversora Configuração não inversora
1 Introdução às linhas de transmissão
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Ondas e Linhas Prof. Dr. Helder Alves Pereira Lista de exercícios 1 Introdução às linhas de transmissão 1.1 Notas de Aula
INSTITUTO POLITÉCNICO DE TOMAR
INSTITUTO POLITÉCNICO DE TOMAR Departamento de Engenharia Electrotecnica Electrónica II 2007-2008 Recurso Data: 15-07-2008 ---------------------------------------------------------------------------------------------------------------
Introdução teórica Aula 10: Amplificador Operacional
Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações
I. B. de Paula CONDICIONAMENTO DE SINAIS E MEDIDAS ELÉTRICAS
CONDICIONAMENTO DE SINAIS E MEDIDAS ELÉTRICAS 1 Revisão da aula passada Ruído e interferência: podem ocorrer em quase todas as aplicações de engenharia onde existe transmissão de informações 2 Revisão
Assunto : Amplificadores com configuração base comum e coletor comum.
Quarta Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração base comum e coletor comum. Amplificadores base-comum Os amplificadores com configuração base comum têm
NBESTA00713SA Eletrônica Analógica Aplicada AULA 18. Osciladores. Prof. Rodrigo Reina Muñoz T2 de 2018
AULA 8 Osciladores Prof. odrigo eina Muñoz [email protected] T2 de 208 Conteúdo Estabilidade Critério de Barkhausen Diferentes tipos de oscildores 2 Osciladores São circuitos que produzem um sinal
AMPLIFICADORES OPERACIONAIS
AMPLIFICADORES OPERACIONAIS OBJETIVOS: Analisar o funcionamento de um amplificador operacional e seus principais parâmetros. INTRODUÇÃO TEÓRICA O nome amplificador operacional (também denominado op-amp)
Cabo Coaxial Fino ou 10 Base 2 também conhecido como Thin Cable ou RG58, suas características são:
Cabo Coaxial Um Cabo coaxial é constituído de um condutor interno circundado por um condutor externo, tendo entre os condutores, um dielétrico que os separa. O condutor externo é por sua vez circundado
CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.
MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA EXPERIMENTAL EXPERIÊNCIA 1: INSTRUMENTAÇÃO
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
P U C E N G E N H A R I A LABORATÓRIO DE ELETRÔNICA 2 EXPERIÊNCIA 5: Amplificador com Transistor de Efeito de Campo de Junção - JFET
P U C LABORATÓRIO DE ELETRÔNICA 2 E N G E N H A R I A EXPERIÊNCIA 5: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. 5. Conceito:
RA332 Módulo de Aquisição Remota (16A/32D)
RA332 Módulo de Aquisição Remota (16A/32D) Características Técnicas [ra332-datasheet-pt rev 3.2] Sumário 1 Características Principais 1 2 Especificações 2 Aquisição Analógica........................................
LABORATÓRIO DE DCE3 EXPERIÊNCIA 3: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: Turma: Professor:
P U C E N G E N H A R I A LABORATÓRIO DE DCE3 EXPERIÊNCIA 3: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: 1. Lista
EXPERIÊNCIA N 04 OFFSET
EXPERIÊNCIA N 04 OFFSET Fundação Universidade Federal de Rondônia Núcleo de Tecnologia Departamento de Engenharia Elétrica - DEE Disciplina de Eletrônica II I. OBJETIVOS Observar na prática o efeito do
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
1.1 Montar o circuito de acordo com o apresentado na figura 1. Cuidado ao montar, especialmente verificando a conexão de cada um dos "jumpers".
I. Lista de Material 01 módulo MCM5/EV com fonte de alimentação 01 gerador de funções com cabos 01 osciloscópio com 02 pontas de prova 01 multímetro digital 01 chave de fenda pequena fios para ligação
UNIVERSIDADE PAULISTA. Circuitos Eletrônicos Relatório de Laboratório de Eletrônica. Realizada : / / 2011 Entrega : / / 2011
UNIVERSIDADE PAULISTA Circuitos Eletrônicos Relatório de Laboratório de Eletrônica Prof. Realizada : / / 2011 Entrega : / / 2011 Relatório : Aceito Recusado Corrigir (Visto) EXPERIÊNCIA 06 MEDIDA DA RESPOSTA
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
4. AMPLIFICADORES OPERACIONAIS
. AMPLIFICADOES OPEACIONAIS Fernando Gonçalves Instituto Superior Técnico Teoria dos Circuitos e Fundamentos de Electrónica - 00/005 O Amplificador Operacional O amplificador operacional é um componente
CAPÍTULO 2 LINHAS DE TRANSMISSÃO
CAPÍTULO 2 LINHAS DE TRANSMISSÃO TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA 1 2.1 PORQUE LINHAS DE TRANSMISSÃO? E x = E0x cos( wt - bz) Comportamento no espaço: l Distribuição da tensão no espaço e no tempo
1299 Circuitos elétricos acoplados
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3031 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
Física Experimental Aula10 Propagação de sinais em cabos coaxiais
Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n
Microeletrônica. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microeletrônica.php. Sala 5017 E
Microeletrônica Prof. Fernando Massa Fernandes https://www.fermassa.com/microeletrônica.php Sala 5017 E [email protected] http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof. Germano
VCC M4. V sa VEE. circuito 2 circuito 3
ES238 Eletrônica Geral I ř semestre de 2006 09/out/2006 SEGUNDA CHAMADA Para os transistores bipolares presentes, considere que I sat = 0 2 A, V T = 25mV e β = 00.. Obtenha o ganho de tensão M7 v en v
MÓDULO FI 75MHz. Descrição do circuito:
MÓDULO FI 75MHz. O módulo FI 75MHz é uma placa de 9 pol x 3,5 pol conectado a placa-mãe em J6 e localizado no quarto nicho (slot) da direita do rádio. É utilizado na recepção e transmissão. A Figura 5-19
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #1 (1) DIODOS EM SÉRIE No circuito da figura a seguir
1 Exercícios. Carlos Marcelo Pedroso. 17 de abril de 2010
Exercícios Carlos Marcelo Pedroso 17 de abril de 2010 1 Exercícios Exercício 1: Quais os dois principais mecanismos que proporcionam a condução de corrente em materiais? Quais as características (microscópicas)
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 22 Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.9 / 2.11/ 2.16 / 2.20 /
Laboratório Experimental
1 Roteiro de práticas de Introdução à Intrumentação Biomédica Prof. Adilton Carneiro Laboratório Experimental Prática I: Caracterização e construção de circuitos básicos com amplificadores operacionais
ONDAS E LINHAS DE TRANSMISSÃO
ONDAS E LINHAS DE TRANSMISSÃO Prof. Pierre Vilar Dantas Turma: 0092-A Horário: 5N ENCONTRO DE 26/04/2018 1 Linhas de Transmissão 2 Circuito de telecomunicações Na sua forma mais elementar, um circuito
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 1/3 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 1/3 Sistemas de guiamento de ondas;
Lista de Exercícios Amplificadores Operacionais
Lista de Exercícios Amplificadores Operacionais Para solução dos exercícios, suponha o amplificador operacional ideal e a alimentação simétrica de 12V. 1- Para os circuitos abaixo, diga qual configuração
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração emissor comum sem e com a resistência no emissor. Determinação dos parâmetros destes circuitos. Obs: embora
Amplificador Proporcional no Conector
Amplificador Proporcional no Conector RP 30116/10.03 /8 Tipo VT-SSPA1 Série 1X HAD 7072 Índice Conteúdo Características Página Dados para pedido 2 Visão geral dos tipos 2 Possibilidades de aplicação 3
Guia de laboratório de Electrónica II. Realimentação (2º trabalho)
Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores Secção de Electrónica Guia de laboratório de Electrónica II Realimentação (2º trabalho) Grupo Nº Número Nome Turno:
ALFAKITS AS-50
KIT PLACA AMPLIFICADOR 50 W RMS ESTÉREO Primeiramente queremos agradecer a aquisição do KIT PLACA AMPLIFICADOR 50W RMS ESTÉREO Mod.AS-50 da ALFAKITS. Este manual procura detalhar todo o processo de montagem
Introdução a proteção de redes ativas de distribuição em CC
Introdução a proteção de redes ativas de distribuição em CC Eletrônica de Potência para Redes Ativas de Distribuição Refs.: Per Karlsson, DC Distributed Power Systems - Analysis, Design and Control for
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Conversores Estáticos (ELP )
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Conversores Estáticos (ELP - 236) AULA LAB 4 SIMULAÇÃO DE CONVERSORES CA-CA DE BAIXA FREQÜÊNCIA 1 INTRODUÇÃO Esta aula
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031/3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 03 GUIA DE EXPERIMENTOS / RELATÓRIO COMPORTAMENTO
Aquisição dados. Conversão DA. Conversão AD. Outros tipos de conversores AD. Características de conversores AD e DA
Aquisição dados Conversão DA Conversão AD Outros tipos de conversores AD Características de conversores AD e DA Processamento de Sinais Instrumentos de Medida Osciloscópio Multímetro Processamento Digital
Multicomutadores DiSEqC
Multicomutadores DiSEqC Recepção digital/analógica de 2 satélites 9 entradas, 8 satélite 1 terrestre 4 16 saídas (ligações ao receptor) Fonte de alimentação incorporada Via de retorno D-SEB 9x4N D-SEB
CAPÍTULO 6 RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS
CAPÍTULO 6 ESOLUÇÕES DOS EXECÍCIOS POPOSTOS Exercício 6.1 : Ver texto (página 11). Exercício 6. : Ver texto (páginas 19 a 131). Exercício 6.3 : Ver texto (página 11). Exercício 6.4 : Ver texto (página
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Filtros Passivos Introdução A variação de frequência de uma fonte senoidal altera a
MULTÍMETRO DIGITAL MODELO: ET-2801 CARACTERÍSTICAS ET /5
MULTÍMETRO DIGITAL MODELO: CARACTERÍSTICAS Display duplo LCD 4 ¾ de 4000/40000 contagens. Display com Barra Gráfica Analógica de 41 segmentos. True RMS: AC/AC+DC. Taxa de Amostragem: 3 vezes por segundo.
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
ELT703 - EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE
ELT03 EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE 1. OBJETIVOS: Levantamento da V IO, I B, I B e seus efeitos na relação de saída; Ajuste de Offset externo e interno; Medição do Slew Rate (Taxa de Subida)..
O CIRCUITO RC. Objetivo do Experimento: Investigar o processo de carga e de descarga de um capacitor.
O CIRCUITO RC Material utilizado: - Uma fonte de f.e.m. CC variável (0 30 V) - Um capacímetro (0 2 mf) - Um voltímetro (0 50 V, impedância de entrada de 1 MΩ) - Um ohmímetro (0 1 MΩ) - Uma chave Morse
REVISÃO ELETRÔNICA ANALÓGICA II
REVISÃO ELETRÔNICA ANALÓGICA II POR GABEL VINICIOS SILVA MAGANHA Revisão da matéria de Eletrônica Analógica II Amplificadores Operacionais. HTTP://WWW.GVENSINO.COM.BR A matéria de Eletrônica Analógica
Circuitos Elétricos 2
Circuitos Elétricos 2 Tópico 2: Desempenho dos Circuitos em Função da Frequência Prof. Dr. Alex da 1 Rosa LARA ENE UnB www.ene.unb.br/alex Introdução No estudo de circuitos em regime permanente senoidal,
EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL PROFS ELISABETE GALEAZZO, LEOPODO YOSHIOKA E ANTONIO C. SEABRA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
DESCARGA EM CIRCUITO RC
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / 1. Introdução
ALFAKITS A-30
KIT PLACA AMPLIFICADOR 30 W RMS MONO C/ PRÉ-AMPLIFICADOR Primeiramente queremos agradecer a aquisição do KIT PLACA AMPLIFICADOR 30W RMS MONO com pré-amplificador Mod.A30 da ALFAKITS. Este manual procura
