No. USP Nome Nota Bancada
|
|
|
- Bianca Ribeiro Antas
- 7 Há anos
- Visualizações:
Transcrição
1 ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031/ LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 03 GUIA DE EXPERIMENTOS / RELATÓRIO COMPORTAMENTO DE COMPONENTES PASSIVOS Profa. Elisabete Galeazzo / Prof. Leopoldo Yoshioka Versão 2018 No. USP Nome Nota Bancada Data: Turmas: Profs: Objetivos da experiência Nesta experiência exploraremos diferentes funcionalidades do osciloscópio. Além disso, vamos entender o significado de dois modos de operação do gerador de funções: modos High Z e 50. Ênfase também será dada à análise de circuitos com componentes passivos, a fim de verificarmos experimentalmente o comportamento da reatância capacitiva e indutiva em função da frequência. Equipamentos e materiais Osciloscópio Agilent modelo DSOX2002A; Gerador de funções Agilent modelo 33500B; Multímetro de bancada de 6 ½ dígitos, modelo 34401A; Multímetro portátil e RLC Meter; Protoboard, fios e cabos; Resistores, capacitor e indutor. PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 1
2 PARTE EXPERIMENTAL 1. Gerador de funções: modelo equivalente e modos de operação Objetivos: Interpretar o significado dos modos de operação do gerador de funções (50 e HIGH Z) e determinar experimentalmente a resistência interna desse equipamento. 1.1 Programe o gerador Agilent 33500B nesta sequência: modo de operação High Z, sinal senoidal, 1 V RMS, 1 khz. i) Meça a tensão eficaz V na saída do gerador em aberto (ou seja, sem carga (R = )) com um multímetro de bancada (Agilent 3440A) (use cabo BNC-bananas) e compare com o valor indicado no painel do gerador. Em um protoboard, conecte um resistor (R) nominal de 47 em série com o gerador de funções. ii) Meça a tensão eficaz V sobre a carga com o multímetro. R Valor da tensão indicada no painel do gerador V eficaz (em volts) i) Aberto ( ) ii) 47 iii) Esboce o circuito completo (com o valor da carga e o modelo equivalente do gerador), e calcule R g (resistência interna) do gerador. Visto do professor PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 2
3 1.2 Altere o modo de operação do gerador para 50. Na sequência, reajuste a sua tensão de saída para 1 V RMS. i) Meça a tensão eficaz V na saída do gerador em aberto com um multímetro de bancada e compare com o valor indicado no painel do gerador. Conecte um resistor (R) nominal de 47 em série com o gerador de funções. ii) Meça a tensão V sobre a carga. R Valor da tensão indicada no painel do gerador V eficaz (em volts) i) Aberto ( ) ii) Discuta a diferença entre as tensões obtidas na carga (de 47 ) e na saída do gerador (em aberto) nos dois modos de operação. 1.4 Conclua qual é a finalidade de utilizar-se o modo de operação 50 no gerador de funções. 2. Funcionalidades do Osciloscópio: acoplamento CC e AC Objetivos: Explorar os recursos de acoplamento CC e AC do osciloscópio 2.1 Programe o gerador de funções para fornecer um sinal senoidal de 1 khz, 5 V PP e offset de 2 V em High Z. Coloque o osciloscópio na condição default setup (fábrica padrão). Visualize a forma de onda do sinal do gerador de funções simultaneamente nos dois canais do osciloscópio. No entanto, não use as pontas de prova, mas sim dois cabos BNC-BNC para ligar o gerador os canais 1 e 2. Para isso será necessário utilizar um adaptador BNC tipo T na saída do PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 3
4 gerador para ligar os dois cabos coaxiais, como exemplificado na Figura 1. Mantenha o canal 1 no acoplamento CC (ou DC) e o canal 2 no acoplamento CA (ou AC). Para isso, tecle os botões 1 e 2 do osciloscópio e selecione a função desejada através da softkey acoplamento. Adaptador BNC tipo T Exemplo de derivação do sinal da saída de um gerador de funções utilizando-se o adaptador tipo T Figura 1 Utilização do adaptador BNC tipo T. No osciloscópio, confira se as atenuações dos canais 1 e 2 estão adequadas e altere as escalas gráficas para melhor visualização dos dois sinais. Lembre-se que as pontas de prova atenuam o sinal de dez vezes, mas cabos coaxiais não! Utilize também seus conhecimentos de trigger para deixar o sinal estável. Coloque a referência de zero dos dois canais na mesma linha (ou seja, na mesma posição vertical) do osciloscópio e imprima a tela resultante com os recursos do computador, salvando a imagem da tela do osciloscópio em um pen-drive. Para salvar a imagem do osciloscópio no dispositivo pen-drive, efetue:. Insira o pen-drive no conector USB frontal do equipamento;. Acione o botão Save no painel do osciloscópio. No menu das softkeys, selecione salvar e escolha um formato de arquivo (ex. BMP);. Acione a softkey definições e escolha ret invertida (para inverter a cor do fundo do gráfico e deixá-lo branco);. Pressione a softkey salvar. Para imprimir um gráfico a partir do computador, efetue: Visualize a imagem do gráfico na tela do computador e tecle PrtScn. Selecione New Snapshot ; capture mode = region, e com o mouse selecione a região que deseja imprimir. A seguir, tecle imprimir, selecionando uma das duas impressoras disponíveis no laboratório. Na folha de impressão com os gráficos, identifique e comente sobre:. Todas as informações importantes indicadas ao redor da tela do osciloscópio; PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 4
5 . A fonte e a tensão de trigger utilizados.. Quais são as diferenças observadas entre os sinais dos canais 1 e Meça os seguintes parâmetros nos dois canais do osciloscópio: valor médio, valor eficaz (RMS) e V PP. Indique estes valores na tabela:: Acoplamento VPP Valor eficaz: CC RMS N CICLOS Valor médio: MÉDIA N CICLOS Canal 1 Canal 2 i) Analisando-se os valores da tabela, interprete qual é o efeito de se utilizar o acoplamento CA (ou AC) ou CC (ou DC) nas medições. 3. Reatâncias Capacitivas e Indutivas Objetivos: Observar o comportamento elétrico (tensão-corrente) de elementos reativos em função da frequência. 3.1 Antes de montar o circuito RL a ser utilizado, ilustrado na Figura 2 (com os valores nominais dos componentes iguais a: R = 47 e L = 3 mh), meça os valores experimentais dos componentes. O indutor deve ser medido no equipamento LCR meter em 1 khz. Veja como utilizar esse equipamento seguindo-se as instruções do folheto situado junto ao mesmo. PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 5
6 Grandeza Valor nominal Valor medido Resistência (R) Indutância (L) do indutor Resistência série do L (resistência do fio de enrolamento do indutor) 47 3 mh 10 Obs: após as medidas, coloque as duas pontas do LCR meter em curto e coloque-as no pino de indicação de terra no painel frontal do equipamento, caso você esteja utilizando o equipamento Agilent. Figura 2 Circuito RL. Programe o gerador de sinais para fornecer um sinal senoidal na frequência de 100 Hz, 2 V PP e offset nulo em HIGH-Z. Antes de usar as pontas de prova do osciloscópio para medir os sinais, conecte-as ao Demo2 e verifique se estão ajustadas e com a atenuação adequada (lembre-se da experiência anterior!). Caso não estejam ajustadas, chame o professor. Meça os valores eficazes (ou RMS) de V R e V L para diversas frequências (f) do sinal de entrada (entre 100 Hz e 4 khz, indicadas na tabela a seguir) e a defasagem entre tensão no indutor e corrente do circuito. Altere as escalas vertical e horizontal do osciloscópio para melhor visualização dos três sinais de tensão. Anote na tabela os valores medidos e calcule a corrente e o módulo da impedância Z L a partir da tensão no indutor e corrente do circuito. Indique as unidades das grandezas nos ( ). PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 6
7 Tabela com os valores experimentais e calculados: Valores experimentais Valores calculados Freq. (Hz) V g ( ) V L ( ) V R ( ) (V L V R) I ( ) Z L ( ) k 2 k 4 k i) Encontre experimentalmente a frequência em que V L = V R. Nesta condição, qual está sendo a relação entre X L e R? ii) Represente graficamente o módulo da impedância do indutor em função da frequência. Discuta o comportamento de Z L em função de f a partir da curva experimental. Módulo da Impedância ( ) visto do professor: Frequência ( ) PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 7
8 iii) O módulo da impedância do indutor estimado graficamente para frequência nula é condizente com o esperado teoricamente? Justifique. 3.2 Antes de montar o circuito RC que será utilizado nesse item, esboçado na Figura 3, meça os componentes R e C com os seguintes valores nominais: R = 1 k e C = 220 nf. Utilize o equipamento RLC meter para medição do capacitor C em 1 khz ou com o multímetro portátil. Grandeza Valor nominal Valor experimental Resistência (R) 1 k Capacitância (C) 220 nf Mantenha a mesma configuração inicial do gerador do item anterior: High Z, sinal senoidal de 100 Hz, 2 Vpp e offset nulo. Figura 3 - Circuito RC PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 8
9 No osciloscópio, confira se as atenuações dos canais 1 e 2 estão adequadas, e altere as escalas gráficas para melhor visualização dos três sinais. Meça com o osciloscópio os valores eficazes de V R e V C para diversas frequências (f) do sinal de entrada (entre 100 Hz e 4 khz). Anote na tabela a seguir os valores medidos e calcule a corrente eficaz (RMS) e o módulo da impedância do capacitor, a partir da tensão no capacitor e corrente do circuito. Valores experimentais Freq. (Hz) V g ( ) V C ( ) V R ( ) (V C V R) 100 Valores calculados I ( ) Z C ( ) k 2 k 4 k i) Encontre experimentalmente a frequência em que V C = V R. Nesta condição, qual está sendo relação entre X C e R? PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 9
10 ii) Represente graficamente o módulo da impedância do capacitor em função da f. Módulo da Impedância ( ) visto do professor: Frequência ( ) iii) Discuta o comportamento do módulo da impedância do capacitor em função da frequência a partir da curva experimental. PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 10
11 ITEM ADICIONAL (bônus de 1,0 no relatório): Utilize a mesma montagem de circuito do item 3.2 (Figura 3), onde R = 1 k e C = 220 nf. Programe o gerador de funções para fornecer uma onda quadrada de 50 khz, 2 V PP e offset nulo em HIGH-Z. Visualize as formas de onda da tensão do gerador (v g) e do capacitor (v C) com as pontas de prova do osciloscópio. Obs: corrija a atenuação das pontas de prova, se necessário. i) Obtenha a forma de onda corrente (i(t)) do circuito em função do tempo (t) (dica: use a função MATH). Visualize 5 períodos dos três sinais. Minimize os ruídos dos sinais, caso seja necessário. Obs: Caso apareçam spikes (picos estreitos de intensidade variada) nas transições dos sinais, despreze-os para o cálculo das grandezas. Esboce os gráficos da v C(t) e da i(t), indicando nele os valores de T, V max, V min, I max, I min do circuito: Escalas do eixo y: Canal 1 (v g(t)): Canal 2 (v C(t)): Função Math: Escala do eixo x: ii) Qual é a relação entre a forma de onda da tensão no capacitor e da forma de onda da corrente? iii) A partir dos valores experimentais, calcule o valor da capacitância C (você pode usar a expressão 5 da Introdução Teórica). Ao finalizar o experimento, desligue todos os equipamentos e deixe a sua bancada organizada! PSI3031/3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 03 Pag. 11
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 3 COMPORTAMENTO DE COMPONENTES
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 04 GUIA DE EXPERIMENTOS e RELATÓRIO REVISÃO DAS
No. USP Nome Nota Bancada GUIA E ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 2 - MEDIÇÃO DE GRANDEZAS ELÉTRICAS Profa. Elisabete
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3031 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 2 - Medição de Grandezas Elétricas
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3031 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS. EXPERIÊNCIA 2 - Medição de Grandezas Elétricas: Valor Eficaz e Potência
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 GUIA DE EXPERIMENTOS EXPERIÊNCIA
EXPERIÊNCIA 2 MEDIÇÕES DE GRANDEZAS ELÉTRICAS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos EXPERIÊNCIA 2 MEDIÇÕES DE GRANDEZAS ELÉTRICAS 1º semestre de 2018 Profa. Elisabete Galeazzo / Prof. Leopoldo
Experiência 9 Redes de Primeira ordem Circuitos RC. GUIA e ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º semestre de 2019 Experiência 9 Redes de
REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 Experiência 9 REDES DE
Redes de Primeira ordem Circuitos RC e RL
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º semestre de 2016 Experiência 8 Redes de
Experiência 10: REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2018 Elisabete Galeazzo e Leopoldo
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA EXPERIMENTAL EXPERIÊNCIA 1: INSTRUMENTAÇÃO
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
Experiência 9 Redes de Primeira ordem Circuitos RC. GUIA e ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º semestre de 2018 Experiência 9 Redes de
GUIA EXPERIMENTAL E RELATÓRIO
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI EPUSP PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 7 Resposta em Frequência de Circuitos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 Experiência 7 Resposta
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS EXPERIÊNCIA 1: INSTRUMENTAÇÃO
EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL PROFS ELISABETE GALEAZZO, LEOPODO YOSHIOKA E ANTONIO C. SEABRA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 05 CIRCUITOS COM AMPLIFICADOR OPERACIONAL
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Marcelo N.P. Carreño, Cinthia Itiki, Inés Pereyra 2019 Experiência
EXPERIÊNCIA 10 MODELOS DE INDUTORES E CAPACITORES. No. USP Nome Nota Bancada RELATÓRIO
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 EXPERIÊNCIA 10 MODELOS
AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS ELETRÔNICOS Retificadores (ENG - 20301) AULA LAB 01 PARÂMETROS
Aprender a montar um circuito retificador de meia onda da corrente alternada medindo o sinal retificado;
36 Experimento 4: Osciloscópio e Circuitos Retificadores 1.4.1 Objetivos Aprender a utilizar um gerador de sinais, bem como um osciloscópio digital para medição da amplitude de uma tensão alternada, período,
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 4 Cossenoides, Fasores e Impedâncias Roteiro para
Universidade Estadual de Maringá. Centro de Ciências Exatas. Departamento de Física NOÇÕES BÁSICAS PARA A UTILIZAÇÃO DO OSCILOSCÓPIO DIGITAL
Universidade Estadual de Maringá Centro de Ciências Exatas Departamento de Física Material Didático para Física Experimental IV NOÇÕES BÁSICAS PARA A UTILIZAÇÃO DO OSCILOSCÓPIO DIGITAL Tektronix TBS 1022
Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido.
Experiência Metrologia Elétrica Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. ) Monte uma ponte de Wheatstone
Lab.04 Osciloscópio e Gerador de Funções
Lab.04 Osciloscópio e Gerador de Funções OBJETIVOS Capacitar o aluno a utilizar o osciloscópio e o gerador de funções; Usar o osciloscópio para observar e medir formas de onda de tensão e de corrente.
AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório
Experiência 2 Metrologia Elétrica. Medições com Osciloscópio e Gerador de Funções
Experiência 2 Metrologia Elétrica Medições com Osciloscópio e Gerador de Funções 1) Meça uma onda senoidal de período 16,6ms e amplitude de 4V pico a pico, centrada em 0V. Em seguida configure o menu Measures
2 Qual é valor da reatância capacitiva para um sinal de freqüência f = 5kHz em um capacitor de
PRÉ-RELATÓRIO 7 Nome: turma: Leia atentamente o texto da Aula 7, PARTE A Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C? Como
Física Experimental II - Experiência E10
Física Experimental II - Experiência E10 Osciloscópio e Circuitos de Corrente Alternada OBJETIVOS Aprendizado sobre funcionamento do osciloscópio e sua utilização em circuitos simples de corrente alternada.
UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP
UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS INTRODUÇÃO TEÓRICA - EXPERIÊNCIA 2 Medições de
PARTE 1. Transistores como Chave de Potência Introdução Projeto (transistor como chave de potência)
Exp. 3 Dispositivos de Potência B 1 PARTE 1. Transistores como Chave de Potência 1.1. Introdução Esta parte da experiência tem como objetivo estudar o comportamento de transistores operando como chaves.
2 Qual é valor da reatância capacitiva para um sinal de freqüência f = 5kHz em um capacitor de
PRÉ-REATÓRIO 7 Nome: turma: eia atentamente o texto da Aula 7, PARTE A Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C? Como ela
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp. 5 Amplificadores de Pequenos Sinais e Exp. 6 Amplificadores de
Resposta em Frequência. Guilherme Penello Temporão Junho 2016
Resposta em Frequência Guilherme Penello Temporão Junho 2016 1. Preparatório parte 1: teoria Experiência 9 Resposta em Frequência Considere inicialmente os circuitos RC e RL da figura abaixo. Suponha que
1. Introdução. O experimento de Retificadores, tem como principais objetivos:
Exp. 1 Retificadores B 1 1. Introdução O experimento de Retificadores, tem como principais objetivos: desenvolvimento de técnicas de projeto de circuitos retificadores, e comparando as aproximações feitas,
SINAIS E SISTEMAS MECATRÓNICOS
SINAIS E SISTEMAS MECATRÓNICOS Laboratório #1: Introdução à utilização de aparelhos de medida e geração de sinal: multímetro, osciloscópio e gerador de sinais Mestrado Integrado em Engenharia Mecânica
ROTEIRO 09 e 10 Circuito Amplificador de Pequenos Sinais
- UTFPR DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO 09 e 10 Circuito Amplificador de Pequenos Sinais Visto
Escola Politécnica - USP
Escola Politécnica - USP PSI 2325 Laboratório de Eletrônica I Exp 8: Amplificadores para Pequenos Sinais Equipe: - Turma: - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2002 1. Objetivos
ELETRÔNICA / INSTALAÇÕES ELÉTRICAS EXPERIÊNCIA 10
1 OBJEIVOS: Determinar o ganho de tensão de circuitos com amplificador operacional; 2 - EQUIPAMENO a) Gerador de sinais; b) Osciloscópio digital; c) Unidade Central de Processamento PU-2000; d) Placa de
EXPERIÊNCIA 3 Análise de Fourier de Sinais Periódicos GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI EPUSP PSI 3214 - LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA (2017) EXPERIÊNCIA 3 Análise de Fourier de
Ressonância Circuito RLC (AC)
Ressonância Circuito RLC (AC) Objetivo: Medir a frequência de ressonância de um circuito RLC em série de corrente alternada (AC). Materiais: (a) Um resistor R; (b) Um capacitor C; (c) Um indutor L; (d)
Experiência 1 INSTRUMENTAÇÃO LABORATORIAL. Relatório. No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3031 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º quadrimestre de 2017 Experiência 1 INSTRUMENTAÇÃO
Introdução teórica Aula 8: Fonte de Tensão Regulada. Regulador LM7805. Fonte de tensão regulada. EEL7011 Eletricidade Básica Aula 8 EEL/CTC/UFSC
Introdução teórica Aula 8: Fonte de Tensão Regulada Regulador LM7805 78xx é o nome de uma popular família de reguladores positivos de tensão. É um componente comum em muitas fontes de alimentação. Eles
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp.1 Retificadores Turma: ( ) SEG - T1-2 ( ) TER T3 ( ) SEX T4-5 Prof(s):
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
ELETRÔNICA / INSTALAÇÕES ELÉTRICAS EXPERIÊNCIA 06
ELERÔNICA / INSALAÇÕES ELÉRICAS 1 - OBJEIVOS a) determinar o ganho de tensão de um amplificador transistorizado a partir de valores medidos; b) determinar o ganho de corrente de um amplificador transistorizado
Filtros Passa alta e passa baixa
Filtros Passa alta e passa baixa Objetivo: Medir a corrente elétrica sobre o indutor e o capacitor em um circuito em paralelo de corrente alternada (AC). Materiais: (a) Dois resistores de igual resistência
Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada
Experimento 7 Circuitos RC e RL em corrente alternada 1. OBJETIO Parte A: Circuito RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação
ROTEIRO OFICIAL 04 Circuito Retificador de Onda Completa
- UTFPR Departamento Acadêmico de Eletrotécnica DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO OFICIAL 04 Circuito
INSTITUTO DE FÍSICA DA UNIVERSIDADE
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nome completo) Prof(a).:... Diurno Noturno Data : / / Experiência 5 RESSONÂNCIA
1. Objetivos. Analisar a resposta harmônica do amplificador e compará-la com os resultados esperados.
1. Objetivos Estudar o emprego de transistores bipolares em circuitos amplificadores através de projeto e implementação de um circuito amplificador em emissor comum. Analisar a resposta harmônica do amplificador
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
4 Seja um circuito composto por um resistor R e um capacitor C, associados em série, alimentado por um gerador cuja voltagem gerada é dada por V g
PRÉ-RELATÓRIO 7 Nome: turma: Leia atentamente o texto da Aula 8, Experimento 7 Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C?
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos. 1. Introdução
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos 1. Introdução O experimento Fontes de Tensão tem como principais objetivos: estudo do funcionamento do
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP. Experiência 01
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 3031 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 01 Profa. Elisabete Galeazzo Prof.
Aula Prática: Filtros Analógicos
Curso Técnico Integrado em Telecomunicações PRT60806 Princípios de Telecomunicações Professor: Bruno Fontana da Silva 2015-1 Aula Prática: Filtros Analógicos Objetivos: em laboratório, montar um circuito
Eletricidade e Magnetismo II 2º Semestre/2014 Experimento 6: RLC Ressonância
Eletricidade e Magnetismo II º Semestre/014 Experimento 6: RLC Ressonância Nome: Nº USP: Nome: Nº USP: Nome: Nº USP: 1. Objetivo Observar o fenômeno de ressonância no circuito RLC, verificando as diferenças
Circuitos resistivos alimentados com onda senoidal. Indutância mútua.
Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução
Circuitos resistivos alimentados com onda senoidal
Experimento 5 Circuitos resistivos alimentados com onda senoidal 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores
Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem.
PRÉ-RELATÓRIO 6 Nome: turma: Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem. 1 Explique o significado de cada um dos termos da Equação 1,
Física Experimental III. SALAS 413 e 415
Física Experimental III SALAS 413 e 415 2017 1 Conteúdo I Experimentos Roteiros 7 1 Noções de circuitos elétricos 8 1.1 Material 8 1.2 Introdução 8 1.3 Voltagem 8 1.4 Corrente elétrica 9 1.5 Resistência
ROTEIRO OFICIAL 5 Circuito Retificador de Onda Completa
- UTFPR Departamento Acadêmico de Eletrotécnica DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO OFICIAL 5 Circuito
= 2πf é a freqüência angular (medida em rad/s) e f é a freqüência (medida
44 2. Roteiros da Segunda Sequência Experimento 1: Circuito RLC e Ressonância 2.1.1 Objetivos Fundamentar o conceito de impedância; Obter a frequência de ressonância em um circuito RLC; Obter a indutância
Circuitos resistivos alimentados com onda senoidal
Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos
Escola Politécnica - USP
Escola Politécnica - USP PSI 2327 Laboratório de Eletrônica III Exp 3: Geradores de Varredura Equipe:- - - Turma: Profs: - - Data de Realização do Experimento: Nota: Bancada: 2005 1. Introdução Esta experiência
ROTEIRO OFICIAL 14 Amplificador Operacional no Modo Com Realimentação Negativa
- UTFPR DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO OFICIAL 14 Amplificador Operacional no Modo Com Realimentação
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada
Experimento 7 ircuitos R e RL em corrente alternada Parte A: ircuito R em corrente alternada 1 OBJETIO O objetivo desta aula é estudar o comportamento de circuitos R em presença de uma fonte de alimentação
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: seleção dos parâmetros da forma de onda no gerador de funções e medida
EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC
EXPERIMENTO7: OSCILOSCÓPIO DIGITAL CIRCUITO RC Nesse experimento você utilizará o osciloscópio como uma ferramenta para observar os sinais de tensão elétrica em um circuito contendo um resistor e um capacitor
LABORATÓRIO CICUITOS ELÉTRICOS
LABORATÓRIO CICUITOS ELÉTRICOS NEURY BOARETTO JOINVILLE 2010 AULA PRÁTICA 1 Objetivos 1. Verificar o funcionamento do osciloscópio na medida de tensão e período Material Usado 1 Multímetro digital 1 Matriz
Carga e Descarga de Capacitores
Carga e Descarga de Capacitores Introdução O capacitor é um dispositivo capaz de armazenar energia elétrica sob a forma de um campo eletroestático. Quanto ligamos um capacitor a uma fonte de energia o
2. LABORATÓRIO 2 - CORRENTE ALTERNADA
2-1 2. LABORATÓRIO 2 - CORRENTE ALTERNADA 2.1 OBJETIVOS Após completar essas atividades de laboratório, você deverá ser capaz de: (a) (b) (c) (d) (e) Determinar o valor máximo da corrente a partir das
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de
AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES
EN 2603 ELETRÔNICA APLICADA LABORATÓRIO Nomes dos Integrantes do Grupo AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES 1. OBJETIVOS a. Verificar o funcionamento dos amplificadores operacionais em suas
Eletrônica de Potência I Prof. André Fortunato rev. 1-11/2011
Nome: Realizado em: / / Nome: Entregue em: / / Nome: EXPERIÊNCIA 3 Nome: NOTA: Recorte este cabeçalho e anexe ao seu relatório. Experiência 3 Retificador de Onda Completa Objetivo Nesta experiência ver
Escola Politécnica - USP
Escola Politécnica - USP PSI 2325 Laboratório de Eletrônica I Exp 4: Polarização de Transistores JFET Equipe: - Turma: - - Profs: - - Data de Realização do Experimento: Nota: Bancada: 2002 B 66 Laboratório
LABORATÓRIO DE DCE 1 EXPERIÊNCIA 4: RETIFICADORES MONOFÁSICOS COM FILTRO CAPACITIVO. Identificação dos alunos:
P U C LABORATÓRIO DE DCE 1 E N G E N H A R I A EXPERIÊNCIA 4: RETIFICADORES MONOFÁSICOS COM FILTRO CAPACITIVO Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: I. Objetivos Familiarização
Experimento 7. Circuitos RC e filtros de frequência. 7.1 Material. 7.2 Introdução. Gerador de funções; osciloscópio;
Experimento 7 Circuitos RC e filtros de frequência 7.1 Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de 1 kω; capacitor de 100 nf. 7.2 Introdução Vimos
ELETRÔNICA I. Apostila de Laboratório. Prof. Francisco Rubens M. Ribeiro
ELETRÔNICA I Apostila de Laboratório Prof. Francisco Rubens M. Ribeiro L E E UERJ 1996 Prática 01 - Diodo de Silício 1 - Objetivo: Levantamento da característica estática VxI do diodo de Si, com o auxílio
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação
P U C E N G E N H A R I A LABORATÓRIO DE ELETRÔNICA 2 EXPERIÊNCIA 5: Amplificador com Transistor de Efeito de Campo de Junção - JFET
P U C LABORATÓRIO DE ELETRÔNICA 2 E N G E N H A R I A EXPERIÊNCIA 5: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. 5. Conceito:
Introdução teórica Aula 10: Amplificador Operacional
Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações
Laboratório de Circuitos Elétricos I
Laboratório de Circuitos Elétricos I 14 a Aula Prática: Circuitos Lineares de 1ª Ordem 1- Objetivos: Verificar experimentalmente o comportamento dos circuitos de 1ª ordem. 2 Material utilizado: 01 Fonte
LABORATÓRIO DE DCE3 EXPERIÊNCIA 3: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: Turma: Professor:
P U C E N G E N H A R I A LABORATÓRIO DE DCE3 EXPERIÊNCIA 3: Amplificador com Transistor de Efeito de Campo de Junção - JFET Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: 1. Lista
ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático
Universidade do Minho Circuito RC - Guia de Montagem Escola de Engenharia Dep. Electrónica Industrial 1/8 ELECTRÓNICA I ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático
Noções básicas de circuitos elétricos: Lei de Ohm e Leis de Kirchhoff
Noções básicas de circuitos elétricos: Lei de Ohm e Leis de Kirchhoff Material 2 Resistores de 3.3kΩ; 2 Resistores de 10kΩ; Fonte de alimentação; Multímetro digital; Amperímetro; Introdução Existem duas
Circuitos RC e filtros de frequência. 7.1 Material
Circuitos RC e filtros de frequência 7 7. Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de kω; capacitor de 00 nf. 7.2 Introdução Vimos que a reatância
Abra o arquivo ExpCA05. Identifique o circuito da Fig12a. Ative-o. Anote o valor da corrente no circuito.
Curso CA Parte3 a) Primeiramente deveremos calcular a reatância X C = 1 / (..60.0,1.10-6 ) =6.55 Agora poderemos calcular a impedância. Z = 40 6,5 = 48K b) = U / Z = 10V / 48K =,5 ma c) V C = X C. = 6,5K.,5mA
