Microeletrônica. Prof. Fernando Massa Fernandes. Sala 5017 E
|
|
|
- Vergílio Almada Mascarenhas
- 8 Há anos
- Visualizações:
Transcrição
1 Microeletrônica Prof. Fernando Massa Fernandes Sala 5017 E [email protected] (Prof. Germano Maioli Penello) 1
2 2 Modelos para projetos digitais Após ver alguns detalhes da fabricação dos MOSFETs, agora veremos modelos que utilizaremos em designs digitais De uma forma simples, o MOSFET é analisado em projetos digitais como uma chave logicamente controlada.
3 3 Modelo de MOSFET digital Efeitos Capacitivos Adicionando efeitos das capacitâncias no modelo Modelo melhorado
4 4 Modelo de MOSFET digital Resumo
5 5 Tempo de transição e de atraso Tempo de subida - t r Tempo de descida- t f Tempo de subida da saída- t LH Tempo de descida da saída- t HL Tempo de atraso low to high - t PLH Tempo de atraso high to low - t PHL
6 6 Projeto digital Por que NMOS e PMOS têm tamanhos diferentes? Casamento da resistência de chaveamento efetiva
7 7 MOSFET pass gate NMOS é bom para passar sinal lógico 0 NMOS não é bom para passar sinal lógico 1
8 8 MOSFET pass gate NMOS é bom para passar sinal lógico 0, mas não é bom para passar sinal lógico 1
9 MOSFET pass gate 9
10 10 MOSFET pass gate Em uma análise complementar, observamos que PMOS não é bom para passar sinal lógico 0 PMOS é bom para passar sinal lógico 1 Lembre-se que o corpo do PMOS esta em VDD
11 11 Atraso num pass gate Quando ocorre transição de estado lógico na entrada (In), a carga deve fluir (corrente) por R n carregando ou descarregando os capacitores C ox /2 e C L na saída.
12 12 Atraso num pass gate Capacitância na entrada Capacitância na saída Podemos estimar o atraso pela capacitância de saída:
13 13 Atraso num pass gate Exemplo:
14 14 Atraso num pass gate Valor calculado diferente do medido (simulado)! Cálculo manual fornece resultados aproximados e ajuda a indicar o local da limitação de velocidade num circuito digital, mas não fornece um resultado exato!
15 15 Transmission gate Acoplar um NMOS e um PMOS Desvantagens: Aumento de área utilizada no leiaute Dois sinais de controle
16 16 Atraso em conexão de pass gates Equação de uma linha de transmissão (aula 7) 10x NMOS (50 nm) em série t ~ delay = 74ps
17 17 Atraso em conexão de pass gates O atraso total é a soma do atraso da conexão pass gate (linha de transmissão) com o atraso do carregamento da capacitância na saída. 10x NMOS (50 nm) em série + uma carga capacitiva de 50fF t delay ~ 1,2ns
18 Medidas Comentário sobre medidas com osciloscópios Por que usar a ponta de prova em vez de um fio simples? Ponta de prova Cabo coaxial Impedância do osciloscópio O cabo coaxial introduz uma capacitância significativa no circuito de medida. O cabo (1m) e o osciloscópio têm em conjunto uma capacitância de 110pF. Todo ponto medido sofrerá o efeito desta capacitância e da resistência do osciloscópio 18
19 19 Medidas Comentário sobre medidas com osciloscópios Por que usar a ponta de prova em vez de um fio simples? Ponta de prova Cabo coaxial Impedância do osciloscópio Para evitar isso, a ponta de prova tem um capacitor e um resistor acoplados em série (ponta de prova compensada). O RC da ponta de prova tem 9x a impedância do cabo em conjunto com o osciloscópio para que exista um divisor de tensão de 10:1 em toda frequência de interesse. Se, em vez de medir com a ponta de prova, tentarmos medir com um cabo ligado direto no osciloscópio, não teremos bons resultados para frequências altas
20 20 Medidas Comentário sobre medidas com osciloscópios Por que usar a ponta de prova em vez de um fio simples? Ponta de prova Cabo coaxial Impedância do osciloscópio Para evitar isso, a ponta de prova tem um capacitor e um resistor acoplados em série (ponta de prova compensada). Pontas ativas (Femtoprobes) Pontas especiais com dispositivos ativos na sua entrada (MOSFETs) para testar direto no wafer.
21 21 Inversor CMOS Bloco de construção fundamental para a circuitos digitais Porta NAND Inversor CMOS Analise o circuito quando a entrada está em estado lógico alto. Repita esta análise para a entrada em estado lógico baixo.
22 22 Inversor CMOS Bloco de construção fundamental para a circuitos digitais Analise o circuito quando a entrada está em estado lógico alto. Repita esta análise para a entrada em estado lógico baixo.
23 23 Inversor CMOS Bloco de construção fundamental para a circuitos digitais A dissipação de potência estática do inversor é praticamente zero! O NMOS e o PMOS podem ser projetados para ter as mesmas características O gatilho de chaveamento lógico pode ser alterado com o tamanho dos MOSFETs
24 24 Inversor CMOS Características DC Característica de transferência de tensão OH Output High OL Output Low IL Input Low IH Input High
25 Características DC Inversor CMOS Característica de transferência de tensão Pontos A e B definidos pela inclinação da reta igual a -1 V entrada < V IL estado lógico 0 na entrada V entrada > V IH estado lógico 1 na entrada V IL < V < V entrada IH não tem estado lógico definido Situação ideal V IH - V IL = 0 (transição abrupta) 25
26 26 Inversor CMOS Características DC VTC - Característica de transferência de tensão
27 Inversor CMOS Características DC VTC - Característica de transferência de tensão Importante Se o sinal não varre totalmente os limites inferiores e superiores da tensão uma corrente significativa passa pelo inversor! (potência dissipada!) O mesmo fenômeno é significativo se o transistor chaveia lentamente. 27
28 Inversor CMOS Ruído Os limites de ruído indicam quão bem o inversor opera em condições ruidosas. NM Noise margins Caso ideal: Se Caso ideal: 28
29 29 Inversor CMOS Ponto de chaveamento do inversor (V SP ) Vsp Vg Os dois transistores estão na região de saturação e a mesma corrente passa por eles
30 30 Inversor CMOS Limite de ruído e VTC ideais VTC Voltage Transfer Curves Nesta situação idealizada, os MOSFETs nunca estão ligados em um mesmo instante Limites de ruídos iguais garante melhor performance
31 Exemplos Se n / p = 1, temos VSP = VDD/2 Desenhando MOSFETs com mesmo L => Para obtermos Num MOSFET de canal longo 31
Microeletrônica. Prof. Fernando Massa Fernandes. Aula 21. Sala 5017 E.
Microeletrônica Aula 21 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php Revisão MOSFET pass gate NMOS é bom para passar sinal lógico 0
Microeletrônica. Aula 19. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula 19 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html
Microeletrônica. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microeletrônica.php. Sala 5017 E
Microeletrônica Prof. Fernando Massa Fernandes https://www.fermassa.com/microeletrônica.php Sala 5017 E [email protected] http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof. Germano
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 18 1 Pauta ÁQUILA ROSA FIGUEIREDO
Microeletrônica. Aula 22 - Revisão. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula 22 - Revisão Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html
Inversor CMOS: operação do circuito, características de transferência de tensão (p )
PSI3322 - ELETRÔNICA II Prof. João Antonio Martino AULA 2-27 Inversor CMOS: operação do circuito, características de transferência de tensão (p. 29-22) Transistor NMOS Fonte (S-Source) Porta (G-Gate) Dreno
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 04. Inversor CMOS. Prof. Sandro Vilela da Silva.
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 04 Inversor CMOS Prof. Sandro Vilela da Silva [email protected] Copyright Parte dos slides foram realizados
Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html
Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) Aula 19 1 Pauta ÁQUILA ROSA FIGUEIREDO
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 04 1 Revisão aula passada É comum ter situações temos um sinal de baixa intensidade
PCS 3115 (PCS2215) Sistemas Digitais I. Tecnologia CMOS. Prof. Dr. Marcos A. Simplicio Jr. versão: 3.0 (Jan/2016) Adaptado por Glauber De Bona (2018)
PCS 3115 (PCS2215) Sistemas Digitais I Tecnologia CMOS Prof. Dr. Marcos A. Simplicio Jr. versão: 3.0 (Jan/2016) Adaptado por Glauber De Bona (2018) Nota: as imagens de Pokémons que aparecem nesta aula
Trabalho 2: Projeto Elétrico e de Leiaute de um Inversor CMOS
Trabalho 2: Projeto Elétrico e de Leiaute de um Inversor CMOS 1. Introdução Dieison Soares Silveira Universidade Federal do Rio Grande do Sul UFRGS Instituto de Informática Programa de Pós-Graduação em
Trabalho 3: Projeto, Leiaute e Análise de um Buffer CMOS Multi-estágio
1. Introdução Trabalho 3: Projeto, Leiaute e Análise de um Buffer CMOS Multi-estágio Dieison Soares Silveira Universidade Federal do Rio Grande do Sul UFRGS Instituto de Informática Programa de Pós-Graduação
Microeletrônica. Aula - 8. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula - 8 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html
Microeletrônica. Prof. Fernando Massa Fernandes. Sala 5017 E
Microeletrônica Prof. Fernando Massa Fernandes Sala 5017 E [email protected] http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof. Germano Maioli Penello) Processos de poço-n e poço-p
Microeletrônica. Aula 8. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula 8 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof.
8.4) Características da Série TTL Existem diversas subfamílias com diferentes características de capacidade, velocidade e potência TTL PADRÃO, 74 Não são mais indicados, outros dispositivos têm desempenho
Trabalho 4: Projeto Elétrico e Leiaute de Porta XOR em Lógica Estática
Trabalho 4: Projeto Elétrico e Leiaute de Porta XOR em Lógica Estática 1. Introdução Dieison Soares Silveira Universidade Federal do Rio Grande do Sul UFRGS Instituto de Informática Programa de Pós-Graduação
Famílias Lógicas I Características Gerais
Famílias Lógicas I Características Gerais SISTEMAS DIGITAIS II Prof. Marcelo Wendling Nov/10 Texto base: Sistemas Digitais Tocci (7ª edição). Capítulo 8. 1 Introdução Com a vasta utilização dos Circuitos
8.7) Tecnologia MOS. MOS metal-óxido-semicondutor: um eletrodo de metal sobre um óxido isolante sobre um substrato de semicondutor
UFJF Fabrício FABRICIO Campos CAMPOS 8.7) Tecnologia MOS MOS metal-óxido-semicondutor: um eletrodo de metal sobre um óxido isolante sobre um substrato de semicondutor MOSFET - Metal Oxide Semiconductor
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 09 1 Configuração de amplificadores As três configurações básicas: Fonte comum
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 18 1 Vimos que: Amplificador cascode Base comum Bom por ter largura de banda
Circuitos Digitais MOS. Circuitos Digitais. Famílias lógicas. circuitos do mesmo tipo, mesma tecnologia, mesmas características
Circuitos Digitais MOS Circuitos Digitais Famílias lógicas NMOS ASICs, memórias MOS CMOS Componentes uso geral TTL ou Bipolar ECL ASICs ASIC Aplication Specification Integrated Circuit VLSI Very Large
CI's das família TTL e CMOS
Aula 04 CI's das família TTL e CMOS Prof. Tecgº Flávio Murilo 30/04/13 1 Famílias lógicas O que diferencia as famílias lógicas é o material no qual os circuitos integrados são construídos. RTL - Lógica
PCS3515 Sistemas Digitais. 04-Famílias Lógicas e Lógica CMOS
PCS3515 Sistemas Digitais 04-Famílias Lógicas e Lógica CMOS Capítulo 3 livro texto Com apoio do material dos Prof. Simplício, M Tulio e Cintia 2018 /1 Objetivos Parte 1 Representação física dos níveis
Famílias de Circuitos Lógicos
Famílias de Circuitos Lógicos Nikolas Libert Aula 3 Eletrônica Digital ET52C Tecnologia em Automação Industrial Famílias de Circuitos Lógicos Famílias de Circuitos Lógicos As características construtivas
Microeletrônica. Aula 12. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula 12 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html
13 CIRCUITOS DIGITAIS MOS
13 CIRCUITOS DIGITAIS MOS 13.1. CONCEITOS BÁSICOS 13.1.1. Tecnologias de CIs Digitais e Famílias de Circuitos Lógicos Cada família é fabricada com uma mesma tecnologia, possui a mesma estrutura e oferece
Inversor CMOS. Dois inversores PMOS NMOS. Digital Integrated Circuits 2nd (J. Rabaey et al.) Inversor. Partilhar alimentações.
Inversor CMOS N ell PMOS 2l PMOS Contacts In Out In Out Metal NMOS Polysilicon NMOS GND Dois inversores Partilhar alimentações Encostar células Ligação em metal Análise DC de primeira ordem V OL = 0 V
Inversores CMOS. Assuntos. João Canas Ferreira. Março de Comportamento estático. 2 Comportamento dinâmico. 3 Cadeias de inversores
Inversores CMOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia Março de 2012 Assuntos 1 Comportamento estático 2 Comportamento dinâmico 3 Cadeias de inversores João Canas Ferreira (FEUP
Aula 23. Transistor de Junção Bipolar I
Aula 23 Transistor de Junção Bipolar I Transistores Transistor é um dispositivo semicondutor de 3 regiões semicondutoras, duas do tipo P e uma do tipo N ou duas do tipo N e uma do tipo P. O termo transistor
Amplificador Operacional OTA Miller
Amplificador de 2 Estágios Amplificador Operacional OTA Miller O que é um Amplificador Operacional? O OPAMP é um amplificador de alto ganho, acoplado em DC projetado para operar em realimentação negativa
Caracterização de Portas Lógicas
Caracterização de Portas Lógicas Versão 2015 1. Caracterização Elétrica e Temporal 1.1. Portas Lógicas e Circuitos Integrados Digitais As funções lógicas podem ser implementadas de maneiras diversas, sendo
PROJETO 3: SOMADOR DE QUATRO BITS EM TECNOLOGIA CMOS Para implementacão de um Somador completo é necessário seguir a tabela-verdade abaixo:
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Escola de Engenharia Departamento de Engenharia Elétrica ENG 04061 Circuitos Eletrônicos Integrados Atividade de Ensino à Distância Prof. Hamilton Klimach PROJETO
Trabalho de Laboratório. Electrónica Geral LERCI. Circuitos com Transistores MOS
Trabalho de Laboratório Electrónica Geral LERCI Circuitos com Transistores MOS Número Nome Grupo: Professor: Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores Área
Professor João Luiz Cesarino Ferreira CURSO TÉCNICO DE ELETRÔNICA 4 MÓDULO
CURSO TÉCNICO DE ELETRÔNICA 4 MÓDULO 2016 1 Famílias lógicas Definição Entende - se por famílias de circuitos lógicos, os tipos de estruturas internas que nos permitem a confecção destes blocos em circuitos
Caracterização de Portas Lógicas
Caracterização de Portas Lógicas Versão 2015 RESUMO Esta experiência tem como objetivo um estudo dos elementos básicos do nosso universo de trabalho, ou seja, as portas lógicas. Para isto serão efetuados
Relatório - Prática 3 - MOSFET
Universidade Federal do ABC Relatório - Prática 3 - MOSFET Disciplina: EN2701 Fundamentos de Eletrônica Discentes: André Lucas de O. Duarte 11058710 Douglas Nishiyama 11074309 Felipe Jun Ichi Anzai 21033410
FAMÍLIAS DE CIRCUITOS LÓGICOS
FAMÍLIAS DE CIRCUITOS LÓGICOS Famílias lógicas consistem de um conjunto de circuitos integrados implementados para cobrir um determinado grupo de funções lógicas que possuem características de fabricação
Aula 2. Profa. Luiza Maria Romeiro Codá
Aula 2 Profa. Luiza Maria Romeiro Codá Departamento de Engenharia Elétrica e de Computação Sistemas digitais: as variáveis estão limitadas a um número finito de valores (variação discreta) Sistemas analógicos:
Microeletrônica. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microeletrônica.php. Sala 5017 E
Microeletrônica Prof. Fernando Massa Fernandes https://www.fermassa.com/microeletrônica.php Sala 5017 E [email protected] http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html (Prof. Germano
Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D
G V GS Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D S V DS Porta (G-Gate) Fonte Dreno (S-Source) Metal (D-Drain) Óxido N+ Sem. N+ P Substrato
Eletrônica II. Germano Maioli Penello. Aula 13
Eletrônica II Germano Maioli Penello [email protected] Aula 13 1 BJT como amplificador BJT tem que estar na região ativa (fonte de corrente controlada por tensão) Corrente i c em função de v BE Claramente
Microeletrônica. Aula 13. Prof. Fernando Massa Fernandes. Sala 5017 E.
Microeletrônica Aula 13 Prof. Fernando Massa Fernandes Sala 5017 E [email protected] https://www.fermassa.com/microeletronica.php http://www.lee.eng.uerj.br/~germano/microeletronica_2016-2.html
1. Famílias Lógicas NMOS e CMOS
1. Famílias Lógicas NMOS e CMOS Planeamento:,5 semanas de aulas teóricas (7,5 horas) #1 Revisão: Transistores NMOS e PMOS de reforço e de deplecção. Zonas de funcionamento de um transistor MOS: Corte,
CARACTERIZAÇÃO DE PORTAS LÓGICAS
CARACTERIZAÇÃO DE PORTAS LÓGICAS E.T.M./2001 (revisão) R.C.S./2002 (revisão) E.T.M./2003 (revisão da parte experimental) E.T.M./2004 (revisão) E.T.M. e R.C.S./2005 (reorganização) RESUMO Esta experiência
