ONDAS E LINHAS DE TRANSMISSÃO
|
|
|
- Diana Farias Palmeira
- 7 Há anos
- Visualizações:
Transcrição
1 ONDAS E LINHAS DE TRANSMISSÃO Prof. Pierre Vilar Dantas Turma: 0092-A Horário: 5N ENCONTRO DE 26/04/2018 1
2 Linhas de Transmissão 2
3 Circuito de telecomunicações Na sua forma mais elementar, um circuito de telecomunicações é constituído por 3 partes: emissor (ou transmissor), receptor e canal de comunicação. 3
4 Campos vetoriais B e H A expressão campo magnético é usada para dois campos vetoriais diferentes, simbolizados por B e H. B é a densidade de fluxo magnético, número de linhas de campo por unidade de área. Unidade é Tesla (T). Um Tesla é igual a 1 Weber por metro quadrado de área. H é o campo magnético. Unidade é Ampère por metro (A/m).! = # $ % # $ = 4'. 10 +, %/. 4
5 Impedância do meio A relação entre E (V/m) e H (A/m) tem o nome de impedância do meio que, no vácuo e no ar, tem o valor de Z=377Ω. B = DC E A intensidade de sinal (ou melhor dito, a intensidade de campo) e, com ela, a energia radiada, diminui à medida que nos afastamos da antena. Exemplo: A 20 Km de uma antena, o valor eficaz da intensidade do campo elétrico é de 100 mv/m. Calcule o valor eficaz da intensidade do campo elétrico a uma distância de 80 Km. 5
6 Linhas de transmissão A principal finalidade da linha de transmissão é transferir energia da fonte para a carga. Nas baixas frequências de transmissão, as linhas comportam-se como curto-circuito. Contudo, a altas frequências, as linhas de transmissão têm características muito específicas e que não podem ser ignoradas. 6
7 Tipos de linhas de transmissão Simétrica (ou balanceada) Ambos os condutores são iguais (mesmas características). Ambos transportam o sinal de RF de tal modo que a corrente em cada fio está desfasada de 180º em relação ao outro. A linha é balanceada porque nenhum dos dois condutores está diretamente ligado à terra. O isolamento entre condutores é normalmente feito com materiais do tipo plástico mas pode ser também um isolamento a ar. 7
8 Tipos de linhas de transmissão Assimétrica (ou desbalanceada) Os dois condutores são desiguais e concêntricos. O condutor exterior (malha) está ao potencial da terra e serve de blindagem, enquanto o condutor central (vivo) transporta a corrente de RF. Também aqui o isolamento entre condutores (dielétrico) é normalmente feito com materiais do tipo plástico (polietileno) mas existem cabos coaxiais com isolamento a ar. 8
9 Guia de ondas Normalmente, para frequências acima de 4GHz, a linha de transmissão mais indicada é o guia de ondas, que se enquadra nas linhas assimétricas. 9
10 Características das linhas de transmissão Linha curta: linha cujo comprimento físico é inferior ao comprimento de onda da corrente que a percorre; Linha longa: linha mais comprida que esse comprimento de onda. Suporemos, também, por princípio, que as linhas são uniformes quanto ao material, dimensões, isolamento, etc., em toda a sua extensão. 10
11 Resistência elétrica da linha Uma linha de transmissão, é constituída por fios condutores e portanto a sua resistência, por mais pequena que seja, nunca será nula. Da mesma forma, os dois condutores nunca estarão totalmente isolados um do outro, porque como têm um dielétrico entre eles, haverá sempre uma resistência de fugas. 11
12 Resistência elétrica da linha Suponhamos então uma linha simétrica de 1 Km de comprimento e constituída por dois cabos de cobre de 2mm de diâmetro, separados por um isolante de polietileno. Fazendo os cálculos a partir da resistividade do cobre e da permitividade do polietileno, a resistência da linha em DC é de 5,6!/km por cada condutor e a resistência de fugas (resistência do isolamento entre condutores) é de 1,85M!/Km. 12
13 Resistência elétrica da linha Represente a linha, de acordo com as características apresentadas para o primeiro 1 Km. Suponha agora a linha de comprimento infinito. Calcula sua resistência elétrica para a transmissão de uma corrente DC. Esse valor é denominado resistência própria da linha. 13
14 Impedância Característica da linha (Z 0 ) O exemplo anterior aplicava-se apenas a uma linha de transmissão percorrida por corrente contínua. Mas o que se passará se a linha for percorrida por uma corrente alternada? Haverá agora não somente as resistências próprias dos condutores e do isolamento (RS e RP referidos no exemplo anterior), mas também: Capacitância entre os condutores. Duas indutâncias, visto que o campo magnético variável criado pela corrente alterna cria uma tensão induzida que se opõe à passagem dessa corrente pela linha. 14
15 Impedância Característica da linha (Z 0 ) 15
16 Impedância Característica da linha (Z 0 ) Na prática, para frequências elevadas, o valor das resistências ôhmicas, é muito pequeno quando comparado com os valores das reatâncias. Podemos então considerar a impedância da linha como resultante apenas das reatâncias e desprezar os valores das resistências. Assim, temos a impedância características da linha. Deduza este resultado. A linha de transmissão tem uma impedância característica que depende exclusivamente da sua construção física (material utilizado, distância entre condutores, tipo de dielétrico, etc.). 16
17 Atenuação Numa linha de transmissão, se compararmos a tensão de sinal medida à entrada da linha com a tensão medida em outro ponto qualquer, verificaremos que o valor medido é sempre menor do que o inicial. Diz-se então que o sinal sofreu uma atenuação. 17
18 Atenuação E quais são as causas para esta atenuação? Em DC ou nas frequências baixas, a principal causa da atenuação é a resistência série (RS) do cabo. Como esta resistência é muito pequena (entre 4 e 30! por Km), a atenuação da linha é sempre muito baixa. Por outro lado, como a impedância característica é independente da frequência, tudo levaria a crer que a atenuação na linha também deveria ser independente da frequência, mas não é. Veja efeito peculiar. 18
19 Atenuação Efeito caracterizado pela repulsão entre linhas de corrente eletromagnética, criando a tendência desta fluir na superfície do condutor elétrico. Este efeito é proporcional à intensidade de corrente e aumenta com a raiz quadrada da frequência, com a permeabilidade magnética e com a condutividade elétrica do condutor. É somente encontrado em condutores submetidos à corrente alternada. A corrente elétrica transita principalmente pela pele (skin effect) do condutor, entre sua superfície e uma distância denominada profundidade de penetração. A 60 Hz no cobre, a profundidade de penetração é aproximadamente 8.5 mm 19
20 Atenuação Em virtude do efeito pelicular, a atenuação de um cabo percorrido por uma corrente de alta frequência é significativa. A resistência em alta frequência (R RF ), aumenta com a frequência (f) segundo a seguinte relação, válida para condutores de cobre, de diâmetro d: 20
21 Atenuação Exemplo: Um fio de cobre de 2mm de diâmetro, e que tem uma resistência em corrente contínua de 5,6!/Km, terá já uma resistência de quanto em 225MHz e 900MHz? Respostas: 62,4!/Km e 124,8!/Km A atenuação mede-se em db e refere-se, salvo indicação em contrário, a 100m de linha e a uma determinada frequência que terá sempre que ser especificada. 21
22 Exemplos Numa linha de 200m e com um sinal à frequência de 30MHz mediram-se 20V à entrada da linha e 10V ao fim dos 200m. Qual foi a atenuação do cabo a esta frequência? Na mesma linha mas com um sinal à frequência de 300MHz mediram-se 20V à entrada da linha e 1V ao fim dos 200m. Qual foi a atenuação do cabo a esta frequência? 22
23 Fator de velocidade A velocidade de propagação dos sinais de RF nas linhas de transmissão que apresentam um isolante entre os seus fios, é sempre consideravelmente menor do que no ar. Designa-se como fator ou coeficiente de velocidade, a relação entre a velocidade na linha e a velocidade no ar. Numa linha simétrica, o fator de velocidade é de 0,82 para a fita de Z 0 =300!. Num cabo coaxial de 75!, o fator de velocidade é de 0,66. Repare que num cabo coaxial a velocidade de propagação dos sinais é cerca de 30% menor que no ar. 23
24 Exercícios Determinar a impedância característica de uma linha de transmissão que possui capacitância de 35 pf/cm e indutância de 0,25 uh/cm. Resp: 84,5! 24
Aula-6 Corrente e resistência. Curso de Física Geral F o semestre, 2008
Aula-6 Corrente e resistência Curso de Física Geral F-328 1 o semestre, 2008 Corrente elétrica e resistência a) A condição para que exista uma corrente elétrica através de um condutor é que se estabeleça
INSTITUTO DE FÍSICA DA UNIVERSIDADE
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência
Parâmetros das linhas de transmissão
Parâmetros das linhas de transmissão Parâmetros das linhas de transmissão Resistencia (R) Dissipação de potência ativa devido à passagem de corrente Condutância (G) Representação de correntes de fuga através
Capítulo 2 Leis essenciais de eletromagnetismo Equações de Maxwell Lei de Faraday Lei de Biot Savart
Eletrotecnia Aplicada 10 013 Capítulo Leis essenciais de eletromagnetismo Equações de Maxwell Lei de Faraday Lei de Biot Savart Lei de Ampére. Nomenclatura Vetor campo elétrico (V/m) volts/metro ou (N/C),
CAPÍTULO 1 INTRODUÇÃO
CAPÍTULO 1 INTRODUÇÃO 1 1.1 OBJETIVOS DO CURSO Objetivo principal: Fornecer ao estudante fundamentos teóricos e aspectos práticos necessários ao projeto de circuitos analógicos que operam em freqüências
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÃO 50 Se aumentarmos o valor da corrente através de um fio condutor, o que acontece com o campo magnético: a. Diminui a intensidade b. Aumenta a
Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)
º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas
Camada Física. Camada Física
Camada Física Camada Física lida com a transmissão pura de bits definição do meio físico, níveis de tensão, duração de um bit, taxa de transmissão,comprimento máximo, construção dos conectores Camada Física
EEC4262 Radiação e Propagação. Lista de Problemas
Lista de Problemas Parâmetros fundamentais das antenas 1) Uma antena isotrópica no espaço livre produz um campo eléctrico distante, a 100 m da antena, de 5 V/m. a) Calcule a densidade de potência radiada
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Objetivo O Objetivo deste capítulo é discutir conceitos básicos de cabos e antenas dentro do contexto de Propagação de Sinais
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
E DE E NERGIA ENERGIA LTE
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Efeitos Ambientais na Transmissão de Energia Elétrica Aula 3: Efeitos Ambientais na Transmissão Prof. Fabiano F. Andrade 2010 Roteiro da Aula 5.1 Efeito Pelicular da
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor
Linha de transmissão
Linha de transmissão Um troço elementar de uma linha de transmissão (par simétrico ou cabo coaxial) com comprimento dz pode ser modelado por um circuito: I(z) Ldz Rdz I(z+dz) Parâmetros primários: R [Ω
Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética
Eletromagnetismo Motor Eletroimã Eletroimã Fechadura eletromagnética Motor elétrico Ressonância Magnética Representação de um vetor perpendicular a um plano 1 Campo Eletromagnético Regra da mão direita:
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução. 2. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda.
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução.. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda. 5. Antena em anel pequeno. 6. Características das antenas. 7. Conjunto
CET em Telecomunicações e Redes Telecomunicações. Lab 13 Antenas
CET em e Redes Objectivos Familiarização com o conceito de atenuação em espaço livre entre o transmissor e o receptor; variação do campo radiado com a distância; razão entre a directividade e ganho de
Universidade Católica de Petrópolis Centro de Engenharia e Computação Introdução as Telecomunicações. Professor:
Universidade Católica de Petrópolis Centro de Engenharia e Computação Introdução as Telecomunicações Professor: ATIVIDADE 4: Pesquise a respeito de antenas, o que são, quais os princípios básicos de funcionamento
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 2 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Explique
Prof. Fábio de Oliveira Borges
Corrente Elétrica Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-0116/ Corrente elétrica
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS Sabemos, do estudo da física, que uma relação entre causa e efeito não ocorre sem um oposição, ou seja, a relação entre causa
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética
Módulo II Linhas de Transmissão
Módulo II Linhas de Transmissão Linhas de Transmissão Introdução Equações do Telegrafista Modelos por Parâmetros Distribuídos Ondas harmônicas no tempo em LTs Impedância Característica Teorema de Poynting
Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado. Prof. Alexandre Beletti Ferreira. Cabo Coaxial
Mídias Físicas Utilizadas Cabo Coaxial e Par Trançado Prof. Alexandre Beletti Ferreira COMPOSTO POR: Cabo Coaxial Fio de cobre rígido que forma o núcleo Envolto por um material isolante, O isolante, por
Lista 02 Parte I. Capacitores (capítulos 29 e 30)
Lista 02 Parte I Capacitores (capítulos 29 e 30) 01) Em um capacitor de placas planas e paralelas, a área de cada placa é 2,0m 2 e a distância de separação entre elas é de 1,0mm. O capacitor é carregado
FÍSICA 3 FCI0105/2016
FÍSICA 3 FCI0105/2016 SUMÁRIO DO PROGRAMA 1. Cargas, força & campo elétrico 1.1. Carga elétrica, tipos de força e eletrização 1.2. Cargas da matéria: o átomo, quantização e conservação 1.3. Condutores,
CORRENTE E RESISTÊNCIA
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CORRENTE E RESISTÊNCIA Prof. Bruno Farias Corrente Elétrica Eletrodinâmica: estudo das
Teoria Experiência de Linhas de Transmissão
Teoria Experiência de Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância
Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.
Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado
SEL413 Telecomunicações. 1. Notação fasorial
LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os
Experiência 1. Linhas de Transmissão
Experiência 1. Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância de
Problema 1 [5.0 valores] I. Uma linha de transmissão com
Propagação e Radiação de Ondas Electromagnéticas Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2016/2017, 2º Semestre Exame, 23 de Junho de 2017 Notas 1) O teste tem a duração de
PROBLEMAS PROPOSTOS DE CIRCUITOS ELÉTRICOS I. Universidade de Mogi das Cruzes - Engenharia Elétrica. Professor José Roberto Marques
PROBLEMAS PROPOSTOS DE CIRCUITOS ELÉTRICOS I Universidade de Mogi das Cruzes - Engenharia Elétrica Professor José Roberto Marques 1-a Um agricultor precisa levar energia elétrica da estrada vicinal na
Prof. Fábio de Oliveira Borges
Corrente Elétrica Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Aula 1
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 1 1 Introdução Programa 1. Introdução 2. Conceitos fundamentais do eletromagnetismo 3. Teoria
Corrente e Resistência
Cap. 26 Corrente e Resistência Prof. Oscar Rodrigues dos Santos [email protected] Corrente e resistência 1 Corrente Elétrica Corrente Elétrica (i) é o movimento ordenado de elétrons provocados por
Lista de Exercícios de Corrente
Disciplina: Física F Professor: Joniel Alves Lista de Exercícios de Corrente 1) Um capacitor de placas paralelos, preenchido com ar, tem uma capacitância de 1 pf. A separação de placa é então duplicada
Capacitância C = Q / V [F]
Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO I Ondas eletromagnéticas planas 1) Uma onda de Hz percorre
Cronograma de 2017/1 de Física III-A
Cronograma de 2017/1 de Física III-A Mês Seg Ter Qua Qui Sex Sab 6 7 8 9 10 11 1 - Cap 21 2 - Cap 21 13 14 15 16 17 18 Março 20 21 22 3 - Cap 21 23 24 4 - Cap 22 25 Atividade 1 5 - Cap 22 6 - Cap 23 27
PLANO DE ENSINO. Disciplina: Física Eletricidade Ótica Carga Horária: 80h Período: 3º. Ementa
Disciplina: Física Eletricidade Ótica Carga Horária: 80h Período: 3º Ementa PLANO DE ENSINO Processos de eletrização, carga elétricas, força elétrica, campo elétrico, Lei de Gauss, potencial elétrico,
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Revisão de Eletromagnetismo Prof. Clóvis Antônio Petry. Florianópolis,
Fundamentos de Eletrônica
6872 - Fundamentos de Eletrônica Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação 2014 Última Aula Lei de Ohm Associação de Resistores
1 Introdução às linhas de transmissão
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Ondas e Linhas Prof. Dr. Helder Alves Pereira Lista de exercícios 1 Introdução às linhas de transmissão 1.1 Notas de Aula
FATORES DE INFLUÊNCIA PARA OTIMIZAÇÃO DO NIVEL DE EMISSÃO IRRADIADA DO SISTEMA DE IGNIÇÃO
Blucher Engineering Proceedings Setembro de 2015, Número 1, Volume 2 FATORES DE INFLUÊNCIA PARA OTIMIZAÇÃO DO NIVEL DE EMISSÃO IRRADIADA DO SISTEMA DE IGNIÇÃO Marcelo Sartori Campi Robert Bosch Ltda. E-mail:
Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62
Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo
CÁLCULO DAS CARACTERÍSTICAS DE CABOS
CÁLCULO DAS CARACTERÍSTICAS DE CABOS Relatório Intercalar PARA CONSTRUÇÃO DE MODELOS DE LINHA 1 2010 BOLSA DE INTEGRAÇÃO À INVESTIGAÇÃO MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES
Capítulo 1: Componentes discretos e modelos equivalentes para RF
Componentes discretos e modelos equivalentes para RF Radiofrequências Cir. Eletrônica Aplica. espectro eletromagnético de9 khz a 300 GHz utilizada na radiocomunicação 2 3 Efeito pelicular Cir. Eletrônica
Transmissão e Distribuição de Energia Elétrica
Transmissão e Distribuição de Energia Elétrica Aula 7 Parâmetros Elétricos de uma Linha de Transmissão Prof. Asley S. Steindorff Cálculo dos Parâmetros de uma Linha de Transmissão Os Parâmetros de uma
ENGENHARIA ELÉTRICA PROJETO DE INSTALAÇÕES ELÉTRICAS II
ENGENHARIA ELÉTRICA PROJETO DE INSTALAÇÕES ELÉTRICAS II Prof.: Luís M. Nodari [email protected] http://www.joinville.ifsc.edu.br/~luis.nodari/ 1 Dimensionamento de Condutores Norma Técnica ABNT NBR-
Um circuito DC é aquele cuja alimentação parte de uma fonte DC (do inglês Direct Current), ou em português, CC (corrente contínua).
Um circuito DC é aquele cuja alimentação parte de uma fonte DC (do inglês Direct Current), ou em português, CC (corrente contínua). Como vimo anteriormente, para que haja fluxo de corrente pelo circuito,
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 1 Comportamento de Dispositivos Passivos e Semicondutores em Micro-Ondas Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Resistores operando em Micro-Ondas Capacitores
Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas
Definição de corrente Controle do movimento de cargas corrente elétrica{ GANDE revolução tecnológica fi eletrotécnica, eletrônica e microeletrônica (diversidade de aplicações!!) Ex. motores elétricos,
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Meios físicos. Par Trançado (TP) dois fios de cobre isolados
Meios físicos bit: propaga entre pares de transmissor/receptor enlace físico: o que fica entre transmissor e receptor meio guiado: sinais se propagam em meio sólido: cobre, fibra, coaxial meio não guiado:
LINHAS DE TRANSMISSÃO. Introdução - 1
Introdução - 1 A baixas frequências mesmo o circuito mais complicado pode ser descrito em termos de conceitos simples como resistência, capacidade e inductância. A estas frequências o comprimento de onda
Propagação Radioelétrica 2017/II Profa. Cristina
Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Introdução ao link budget Propagação no espaço livre Equação de Friis Introdução ao link budget O desempenho de um link de comunicações depende
2 - Circuitos Basicos
2 - Circuitos Basicos Carlos Marcelo Pedroso 18 de março de 2010 1 Introdução A matéria é constituída por átomos, que por sua vez são compostos por 3 partículas fundamentais. Estas partículas são os prótons,
Corrente contínua e Campo de Indução Magnética: CCB
CCB 01 Corrente contínua e Campo de Indução Magnética: CCB Um condutor elétrico cilíndrico encontra-se disposto verticalmente em uma região do espaço, percorrido por uma intensidade de corrente Oersted
q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome:
MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 208/209 EC004 FÍSCA 2º ANO, º SEMESTRE 23 de janeiro de 209 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode
ANTENAS E PROPAGAÇÃO MEAero 2010/2011
ANTENAS E PROPAGAÇÃO MEAero 2010/2011 1º Teste, 07-Abr-2011 (com resolução) Duração: 1H30 DEEC Resp: Prof. Carlos Fernandes Problema 1 Considere um satélite de órbita baixa (450 km) usado para prospecção
Electromagnetismo. Campo Magnético:
Campo Magnético: http://www.cartoonstock.com/lowres/hkh0154l.jpg Campo Magnético: Existência de ímans Corrente eléctrica A bússola é desviada http://bugman123.com/physics/oppositepoles large.jpg Observação
Lei da indução de Faraday
Lei da indução de Faraday Em 1831 Faraday descobriu que se um condutor forma um circuito fechado e se existe um fluxo magnético dependente do tempo que atravessa esse circuito, então neste condutor será
Projeto de Elementos Magnéticos Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Eletrônica de Potência! Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Prof. Clovis
Pontas de prova para instrumentos
Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de
Fundamentos de Eletrônica
6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise
d) calcule o potencial elétrico em qualquer ponto da superfície e do interior da esfera.
Na solução da prova, use quando necessário: 8 Velocidade da luz no vácuo c = 3, 1 m/s 7 Permeabilidade magnética do vácuo µ =4π 1 T m / A 9 2 2 Constante eletrostática no vácuo K=9 1 N m / C Questão 1
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD PISM III- TRIÊNIO PROVA DE FÍSICA
PISM III- TRIÊNIO 008-00 Na solução da prova, use quando necessário: Aceleração da gravidade g = 0 m / s 8 ;Velocidade da luz no vácuo c = 3,0 0 m/s Permeabilidade magnética do vácuo = 7 µ T m A 0 4π 0
Tecnologia para Armários Elétricos e Conjuntos com Gavetas Extraíveis. Fabricio Gonçalves
Tecnologia para Armários Elétricos e Conjuntos com Gavetas Extraíveis Fabricio Gonçalves QUEM SOMOS A KitFrame é referência no desenvolvimento e fabricação de Armários Elétricos, Gabinetes de Telecomunicações,
10/05/17. Ondas e Linhas
10/05/17 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 10/05/17 Guias de Onda Guias de onda são estruturas
Indutores. Prof. Fábio de Oliveira Borges
Indutores Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Indutância
Aula 3 Corrente alternada circuitos básicos
Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 4 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 *1) Mostre
Capítulo 1: Componentes discretos e modelos equivalentes para RF
Componentes discretos e modelos equivalentes para RF Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica [email protected] Radiofrequências Cir. Eletrônica
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas
UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 3 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Resolver
Eletricidade Aula 8. Componentes Reativos
Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada
Lista de Exercícios. Campo Magnético e Força Magnética
Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
