Capacitância C = Q / V [F]

Tamanho: px
Começar a partir da página:

Download "Capacitância C = Q / V [F]"

Transcrição

1 Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através de uma resistência e uma chave. Se as placas estão inicialmente descarregadas, e chave permanecer aberta, elas permanecerão descarregadas. No momento em que a chave é fechada, cargas positivas começam a se acumular na placa superior, enquanto cargas negativas se acumulam na placa inferior, devido à diferença de potencial fornecida pela bateria. O deslocamento das cargas da bateria para as placas gera uma corrente inicialmente elevada, limitada somente pela resistência. Com o tempo, porém, a corrente diminui. Essa transferência de cargas continua até que a tensão entre as placas seja igual a da fonte. O resultado final é um acúmulo de cargas positivas em um placa e de cargas negativas na outra. Esse elemento constituído pelas placas paralelas isoladas, é chamado capacitor. A quantidade de carga que um capacitor pode armazenar (acumular), a partir de uma tensão aplicada entre as duas placas, é chamada de capacitância. Por definição, o acúmulo de 1 coulomb de carga para 1 volt de tensão aplicada, corresponde a 1 faraday de capacitância, em homenagem ao físico inglês do século XIX Michael Faraday. Assim, a definição matemática de capacitância é: C = Q / V [F]

2 Como a aplicação de tensão entre as placas faz com que haja um acúmulo de cargas nelas, haverá entre elas, um campo elétrico. Sendo as placas paralelas, esse campo elétrico no interior do capacitor é uniforme. A partir da definição matemática de campo elétrico e potencial elétrico, se uma tensão V é aplicada entre duas placas paralelas separadas por uma distância d, temos: E = V / d onde d é a distância entre as placas paralelas e E é o módulo do campo elétrico. Por esse motivo, o campo elétrico também pode ser expresso na unidade [V/m], também aceito no SI. Diferentes valores de capacitância podem ser obtidos para o mesmo par de placas paralelas submetidas à mesma tensão. Isso é feito inserindo materiais isolantes entre as placas. Esses materiais possuem uma maior rigidez dielétrica, tensão elétrica necessária para romper a característica isolante do meio. Esses meios isolantes são geralmente chamados de dielétricos. A quantificação dessa capacidade isolante de cada material é chamada permissividade elétrica, e tem como definição a razão entre a densidade de fluxo (D = Φ/A) pelo campo elétrico (E), logo: ε = D / E Aplicando a Lei de Gauss na equação acima: ε= D E = Φ/ A V /d = Q/ A V /d = CA d ou seja:

3 C=ε A d A permissividade elétrica do vácuo (representada por ε 0 ) é 8,85x10-12 F/m. Para outros materiais, é comum expressar a permissividade relativa ε r = ε/ε 0. Alguns valores típicos de permissividade e de rigidez dielétrica para materiais conhecidos é: onde Mil = 0,001 polegada. Exemplo: para o capacitor da figura abaixo, calcule (a) a capacitância, (b) a intensidade do campo elétrico quando submetido a uma tensão de 450 V e (c) a carga resultante acumulada nas placas. Por ser um componente típico de circuitos elétricos, os capacitores possuem um símbolo para representá-los em diagramas de circuitos:

4 Quando o capacitor está carregado, uma corrente causada por elétrons livres, flui de uma placa para outra. Normalmente essa corrente é tão pequena que pode ser ignorada em aplicações práticas. Há alguns capacitores, entretanto, que permitem a passagem de correntes de fuga consideravelmente altas, como os capacitores eletrolíticos, que se descarregam em poucos segundos, mesmo desconectados de um circuito elétrico. Circuitos capacitivos Examinando de perto o processo de carregamento do capacitor, é interessante saber como a carga q do capacitor, a tensão em seus terminais e a corrente enquanto ele está sendo carregado variam com o tempo. Examinando o circuito acima, quando posicionamos a chave na posição 1, pode-se a aplicar a LTK no sentido horário: E Ri V C =0 E Ri q C =0 Sabendo-se que i = dq/dt: R dq dt + q C =E dq dt + q = E R que resulta em uma equação diferencial de primeira ordem que descreve a variação da carga no capacitor com relação ao tempo. Para resolvê-la, é preciso achar q(t) que satisfaz a equação, considerando que o capacitor estava inicialmente descarregado (q = 0 para t = 0).

5 A solução geral dessa equação (a ser demonstrada na disciplina Equações Diferenciais e Ordinárias) é da forma: q=q p +K e at onde q p é uma solução particular da equação diferencial, K é uma constante a ser determinada a partir das condições iniciais e a = 1/ é o coeficiente de q na EDO anterior. Fazendo dq/dt = 0 na EDO (solução final de equilíbrio), tem-se q p = CE. Para obter K, usa-se a condição inicial do problema q = 0 para t = 0 na equação anterior: 0 = CE + K logo K = -CE Substituindo os valores de q p, K e a: q=ce CE e t q=ce(1 e t ) que satisfaz as condições inicial (t = 0) e final (t ). Derivando a equação acima com relação ao tempo: dq dt =CE d(1 e t ) dt t e i= CE i= E R e t O fator é chamado de constante de tempo do sistema: = ( V I )( Q V ) = ( 1 Q/t )( Q 1 ) =t

6 Para circuitos, essa constante é geralmente simbolizada com a letra grega τ (τ = ) com unidade em segundos. Analisando a expressão para a corrente em termos práticos, a corrente contínua no capacitor é praticamente zero (menos de 1% do valor inicial) para 5 constantes de tempo (5τ). Manipulando a solução da EDO para se obter a expressão da tensão, temos: q=ce(1 e t ) CV C =CE(1 e t ) V C =E (1 e t ) Comparando com a expressão da corrente, percebe-se que essa função é crescente, com valor inicial zero e valor final E. Traçando os gráficos da corrente e tensão em função da constante de tempo: Exemplo: Encontre as expressões matemáticas para os valores de V C, i C e V R em função do tempo no circuito da figura abaixo quando a chave é colocada na posição 1. Quanto tempo deve-se passar para que a corrente possa ser considerada nula (5τ)?

7 Para o primeiro circuito apresentado, depois da fase de carga do capacitor (i = 0), quando posicionamos a chave na posição 2 temos um circuito formado apenas pelo capacitor e o resistor. Nesse instante, o capacitor irá se descarregar com a mesma constante de tempo τ =. A tensão nos terminais do capacitor, aplicadas ao resistor, dará origem a uma corrente elétrica. Se a tensão armazenada no capacitor for igual a da bateria, a expressão para a tensão no capacitor para a chave na posição 2 será: V C =E e t Essa função tem uma curva semelhante à da corrente na fase de carga. Durante a fase de descarga, a corrente i C também diminui com o tempo, de acordo com a seguinte equação: i C = E R e t Como as equações acima possuem a mesma constante de tempo, o capacitor pode, em termos prático, ser considerado descarregado depois de 5τ segundos. Se a chave do circuitos for colocada nas posições 1 e 2 sucessivamente a cada 5τ segundos, temos as curvas:

8 Exemplo: Para o circuito da figura abaixo, (a) encontre a expressão matemática para a tensão nos terminais do capacitor se a chave for colocada na posição 1 em t = 0s. (b) Repita o item para i C. (c) Encontre as expressões matemáticas para v C e i C se a chave for colocada na posição 2 depois de 30 ms (suponha que não há corrente de fuga). (d) Encontre as expressões matemáticas para a tensão v C e a corrente i C se a chave for colocada na posição 3 em t = 48 ms. (e) Represente graficamente as expressões obtidas nos itens anteriores em função do tempo. (a) τ = R 1 C = 5 ms

9 V C =E (1 e t τ )=10(1 e 5 x10 3 ) [V] t (b) i C = E R e t τ =10 4 e t 5 x10 3 [A] (c) v C = 10 V e i C = 0 A (d) τ = R 2 C = 10 ms V C =E e t τ =10 e 10 x 10 3 [V] i C = E R 2 e t τ = (0,05 x 10 3 )e t t 10 x10 3 [A] (e) i Se um capacitor já possui uma tensão inicial (ou uma carga inicial) no momento em que ele é ligado a uma fonte de tensão, essa tensão deve ser levada em consideração na expressão da tensão durante o carregamento do capacitor. V C =V i +(V f V i )(1 e t τ )=V f +(V i V f )e t τ

10 Para esse caso mais genérico, cada uma das fases da tensão do capacitor recebe um nome: A corrente i C. A partir da expressão da capacitância com relação à tensão e carga no capacitor: C=Q/V Q=CV Derivando ambos os lados da equação em relação ao tempo: dq dt = d dt (CV ) i C =C dv dt A equação acima mostra que a corrente no capacitor é proporcional à variação da tensão em seus terminais. Quando a tensão é constante (regime permanente para tensão contínua) a corrente é nula. Essa expressão é de grande importância quando os circuitos forem alimentados por tensões alternadas. A energia armazenada por um capacitor é dada por: W C = P dt= Vi dt= 1 2 CV 2 [J] Que pode ser escrita em termos da carga acumulada em suas placas:

11 W C = 1 2 CV 2 = 1 2 C (Q/C)2 = Q2 2 C [J] Que é a energia acumulada pelo capacitor em seu campo elétrico. Associação de capacitores Através de uma análise simples das expressões da capacitância, envolvendo as tensões e cargas dos capacitores, além de usar as leis de Kirchhoff, é possível determinar o valor de uma capacitância equivalente para uma associação em série e paralelo de capacitores. Para capacitâncias em série, a associação equivale a uma única capacitância cujo inverso do valor é a soma dos inversos das capacitâncias individuais: 1 C T = 1 C C C n Para capacitores em paralelo, a capacitância equivalente será a soma das capacitâncias: C T =C 1 +C 2 + +C n Tipos de capacitores Alguns dos tipos mais comuns de capacitores são os de mica, cerâmica, eletrolítico, de tântalo e de filme de poliéster. Mica É constituído basicamente por placas de mica separadas por folhas de metal (placas metálicas paralelas). A área total do capacitor é a área de uma das lâminas metálicas multiplicada pelo número de lâminas. Sua rigidez dielétrica é da ordem de V/mil e uma corrente de fuga extremamente baixa. Seus valores típicos variam de alguns pf a 0,2 μf e tensões de trabalho de 100 V ou mais. Devido a sua estabilidade, mesmo quando submetidos a grande variação de temperatura e altas tensões, esse

12 tipo de capacitor é geralmente utilizado em aplicações de altas frequências, tais como instrumentação e transmissão. Cerâmica Existem várias formas e tamanhos diferentes de capacitor de cerâmica, porém, sua estrutura básica é praticamente a mesma para todos eles: camadas metálicas de cobre ou prata são depositadas nos dois lados de uma base de cerâmica. Eles também possuem uma corrente de fuga muito baixa e podem ser usados em circuitos de corrente alternada ou contínua. Eles podem ser encontrados com valores que vão de alguns poucos picofarads até cerca de 2 μf, e com tensões de trabalho extremamente altas, como V ou mais. Monolíticos Com a miniaturização dos circuitos eletrônicos, surgiu a necessidade de capacitores muito pequenos, os capacitores monolíticos. Eles têm sempre o mesmo tamanho e têm a capacitância controlada pelo tipo de cerâmica utilizada como dielétrico. Seus valores são geralmente muito pequenos, não passando de alguns nanofarads. Eletrolíticos São frequentemente usados em situações que exigem alta capacitância, na ordem de milifarads. Esse capacitor é normalmente empregado em circuitos de corrente contínua, porque apresenta boas características de isolamento quando a tensão é aplicada com uma certa polaridade, mas se comporta como um curto quando a tensão é aplicada com a polaridade invertida. A estrutura básica de um capacitor eletrolítico consistem em um rolo de folha de alumínio com uma face coberta por óxido de alumínio. O alumínio é a placa positiva e o óxido é o dielétrico. Outra folha de alumínio, sem a cobertura de óxido, é colocada sobre a camada para formar a placa negativa. Devido a necessidade de se conhecer a polaridade do capacitor eletrolítico, o símbolo desse capacitor é diferenciado (como mostrado anteriormente).

13 Esses capacitores costumam apresentar baixa tensão de ruptura e correntes de fuga relativamente altas. Tântalo Formado por pó de tântalo (Ta) de alta pureza compactado. Devido ao processo de fabricação e das características do tântalo, o resultado é um capacitor com polaridade, com baixa corrente de fuga baixa tensão de ruptura. Suas principais aplicações envolvem sinais elétricos com alta frequência, sendo usado em filtros de alta frequência.

CAPITULO 1 0 CAPACITORES Campo Elétrico:

CAPITULO 1 0 CAPACITORES Campo Elétrico: CAPITULO 10 CAPACITORES O capacitor, assim como o indutor, são componentes que exibem seu comportamento característico quando ocorrem variações de tensão ou corrente no circuito em que se encontram. Alem

Leia mais

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:

Leia mais

Eletrotécnica geral. - é a permissividade do meio capacidade de conduzir o campo elétrico. A intensidade do campo elétrico é dada por:

Eletrotécnica geral. - é a permissividade do meio capacidade de conduzir o campo elétrico. A intensidade do campo elétrico é dada por: apacitância É a propriedade de um componente que determina a capacidade de armazenar energia, ou também a oposição à variação da tensão. A energia é armazenada em forma de campo elétrico. O capacitor é

Leia mais

23/5/2010 CAPACITORES

23/5/2010 CAPACITORES CAPACITORES O capacitor é um componente, que tem como finalidade, armazenar energia elétrica. São formados por duas placas condutoras, também denominadas armaduras, separadas por um material isolante ou

Leia mais

Aula 17. Capacitor Introdução

Aula 17. Capacitor Introdução Aula 17 Capacitor Introdução Conceito Resistores: Elemento linear passivo que exclusivamente dissipa energia Capacitor Capacitores e indutores: Elementos lineares passivos que armazenam energia que posteriormente

Leia mais

Capacitores. Prof. Carlos T. Matsumi

Capacitores. Prof. Carlos T. Matsumi Circuitos Elétricos II Prof. Carlos T. Matsumi 1 Conhecidos também como condensadores; São componentes que acumulam carga elétricas; Podem ser: Circuitos Elétricos II Polarizados (ex. capacitor eletrolítico)

Leia mais

Estudo do Capacitor em Corrente Contínua

Estudo do Capacitor em Corrente Contínua Unidade 4 Estudo do Capacitor em Corrente Contínua Nesta quarta unidade, você estudará alguns conceitos, características e comportamento do componente eletrônico, chamado capacitor. Objetivos da Unidade

Leia mais

O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica.

O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica. O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica. Sua construção básica consiste de duas placas ou armaduras metálicas, separadas por um material isolante também

Leia mais

Corrente e resistência

Corrente e resistência Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua

Leia mais

CAPACITORES. Prof. Patricia Caldana

CAPACITORES. Prof. Patricia Caldana CAPACITORES Prof. Patricia Caldana Em vários aparelhos elétricos existem dispositivos cuja função é armazenar cargas elétricas. Um exemplo simples é o flash de uma máquina fotográfica. Na figura abaixo,

Leia mais

CIRCUITOS ELÉTRICOS. Aula 05 CAPACITORES EM CORRENTE ALTERNADA

CIRCUITOS ELÉTRICOS. Aula 05 CAPACITORES EM CORRENTE ALTERNADA CIRCUITOS ELÉTRICOS Aula 05 CAPACITORES EM CORRENTE ALTERNADA Introdução Conceito: Duas placas paralelas chamadas de armaduras (geralmente alumínio); As placas são separadas por um material isolante chamado

Leia mais

Figura 14 Capacitor.

Figura 14 Capacitor. 11 2. CAPACITORES Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em

Leia mais

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor

Leia mais

Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m

Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m Eletricidade Unidades I = Coulomb segundo = Ampere I = q /t R = Volt Ampere = Ohm r = Ohm m 2 m [ r ] = ohm.m Grandeza Corrente Resistência Resistividade Condutividade SI (kg, m, s) Ampere Ohm Ohm.metro

Leia mais

Teo. 9 - Capacitância

Teo. 9 - Capacitância Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados

Leia mais

Experiência 05: TRANSITÓRIO DE SISTEMAS RC

Experiência 05: TRANSITÓRIO DE SISTEMAS RC ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação 2014 Última Aula Lei de Ohm Associação de Resistores

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância

Leia mais

Halliday Fundamentos de Física Volume 3

Halliday Fundamentos de Física Volume 3 Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Eletricidade (EL63A) CAPACITORES E INDUTORES

Eletricidade (EL63A) CAPACITORES E INDUTORES Eletricidade (EL63A) CAPACITORES E INDUTORES Prof. Luis C. Vieira vieira@utfpr.edu.br http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Capacitores e Indutores: Elementos Passivos

Leia mais

Aula 3 Capacitores /Soldagem (Prática) Dois condutores + diferença de carga elétrica campo elétrico

Aula 3 Capacitores /Soldagem (Prática) Dois condutores + diferença de carga elétrica campo elétrico Aula 3 Capacitores /Soldagem (Prática) 1 O Capacitor Dois condutores + diferença de carga elétrica campo elétrico Se forem duas placas paralelas que quando carregadas com uma carga Q apresentam uma diferença

Leia mais

CAPACITOR EM REGIME DC

CAPACITOR EM REGIME DC CAPACITOR EM REGIME DC Objetivo - Verificar experimentalmente as situações de carga e descarga de um capacitor. Teoria O capacitor é um componente que tem como finalidade armazenar energia elétrica. É

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise

Leia mais

Cap. 25. Capacitância. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 25. Capacitância. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 25 Capacitância Copyright 25-1 Capacitância Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação onde V é

Leia mais

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Disciplina Eletrotécnica Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Capacitor São dispositivos cuja finalidade é armazenar cargas elétricas em suas

Leia mais

Capacitância Neste capítulo serão abordados os seguintes tópicos:

Capacitância Neste capítulo serão abordados os seguintes tópicos: Capacitância Neste capítulo serão abordados os seguintes tópicos: - Capacitância C de um sistema de dois condutores isolados. - Cálculo da capacitância para algumas geometrias simples. - Métodos para conectar

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Conceitos Básicos Eletricidade Aplicada Função Na engenharia é usual que um fenômeno físico seja representado matematicamente através

Leia mais

Experimento - Estudo de um circuito RC

Experimento - Estudo de um circuito RC Experimento - Estudo de um circuito RC. Objetivos Verificar graficamente a validade da equação desenvolvida para carga e descarga de um capacitor. Determinar a constante de tempo de um circuito RC nas

Leia mais

LABORATÓRIO ATIVIDADES 2013/1

LABORATÓRIO ATIVIDADES 2013/1 LABORATÓRIO ATIVIDADES 2013/1 RELATÓRIO DAS ATIVIDADES DESENVOLVIDAS NO LABORATÓRIO MÓDULO I ELETRICIDADE BÁSICA TURNO NOITE CURSO TÉCNICO EM AUTOMAÇÃO INDUSTRIAL CARGA HORÁRIA EIXO TECNOLÓGICO CONTROLE

Leia mais

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1 Cap. 25 Capacitância Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Capacitância 1 Capacitor Capacitor é um dispositivo que serve para armazenar energia elétrica. Tem a função de armazenar cargas

Leia mais

CAPACITORES TIPOS DE CAPACITORES. Página 1 ELETRÔNICA ANALÓGICA

CAPACITORES TIPOS DE CAPACITORES.   Página 1 ELETRÔNICA ANALÓGICA Também chamado de condensador, ele é um dispositivo de circuito elétrico que tem como função armazenar cargas elétricas e consequente energia eletrostática, ou elétrica. Ele é constituído de duas peças

Leia mais

Capacitores. Conteúdo 30/06/ O que são Capacitores? 5.2. Unidades de Capacitância Tipos e Códigos de Valores

Capacitores. Conteúdo 30/06/ O que são Capacitores? 5.2. Unidades de Capacitância Tipos e Códigos de Valores Capacitores jauberth@gmail.com Conteúdo 5.1. O que são Capacitores? 5.2. Unidades de Capacitância 5.3. Tipos e Códigos de Valores 5.4. Associação 5.5. Capacitores Especiais 5.6. Circuitos de tempo RC 5.7.

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Capacitores e Indutores Associação e Regime Permanente DC. Raffael Costa de Figueiredo Pinto

Capacitores e Indutores Associação e Regime Permanente DC. Raffael Costa de Figueiredo Pinto Capacitores e Indutores Associação e Regime Permanente DC Raffael Costa de Figueiredo Pinto Fundamentals of Electric Circuits Chapter 6 Copyright The McGraw-Hill Companies, Inc. Permission required for

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

FÍSICA III PROFESSORA MAUREN POMALIS

FÍSICA III PROFESSORA MAUREN POMALIS FÍSICA III PROFESSORA MAUREN POMALIS mauren.pomalis@unir.br ENG. ELÉTRICA - 3 PERÍODO UNIR/Porto Velho 2017/1 SUMÁRIO Revisão Faraday Dielétricos Dielétricos em capacitores Aplicação da Lei de Gauss Exemplos

Leia mais

Aula 4 Circuitos básicos em corrente alternada continuação

Aula 4 Circuitos básicos em corrente alternada continuação Aula 4 Circuitos básicos em corrente alternada continuação Objetivos Continuar o estudo sobre circuitos básicos iniciado na aula anterior. Conhecer o capacitor e o conceito de capacitância e reatância

Leia mais

Circuitos. ε= dw dq ( volt= J C ) Definição de fem:

Circuitos. ε= dw dq ( volt= J C ) Definição de fem: Aula-7 Circuitos Circuitos Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário

Leia mais

Eletricidade Aula 8. Componentes Reativos

Eletricidade Aula 8. Componentes Reativos Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC ELETROMAGNETISMO AULA 09 CIRCUITO RC A PONTE DE WHITESTONE Antes de inserirmos um novo elemento em nosso circuito vamos estudar um caso especial de montagem (de circuito) que nos auxilia na determinação

Leia mais

Identifique, no circuito, o sinal da carga em cada uma das placas do capacitor

Identifique, no circuito, o sinal da carga em cada uma das placas do capacitor CIRCUITO RC INTRODUÇÃO Considere o circuito mostrado na Fig. 1 com a chave S na posição intermediária entre A e B e o capacitor C inicialmente descarregado. Se a chave S for fechada em A, a fonte ε alimentará

Leia mais

Aula 05 - Capacitores

Aula 05 - Capacitores Introdução Aula 05 - Capacitores Eletrotécnica É um componente constituído por dois condutores separados por um isolante: os condutores são chamados armaduras (ou placas) do capacitor e o isolante é o

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

Cap. 5. Capacitores e Dielétricos

Cap. 5. Capacitores e Dielétricos Cap. 5. Capacitores e Dielétricos 1 5.1. Definição de Capacitância Um capacitor consiste de dois condutores em oposição, separados por um meio isolante (dielétrico) e possuindo cargas de mesmo módulo mas

Leia mais

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: 25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,

Leia mais

2 - Circuitos Basicos

2 - Circuitos Basicos 2 - Circuitos Basicos Carlos Marcelo Pedroso 18 de março de 2010 1 Introdução A matéria é constituída por átomos, que por sua vez são compostos por 3 partículas fundamentais. Estas partículas são os prótons,

Leia mais

Apostila de Física 36 Capacitores

Apostila de Física 36 Capacitores Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador

Leia mais

Independentemente do formato destes condutores, os chamamos de placas.

Independentemente do formato destes condutores, os chamamos de placas. Após a introdução dos conceitos básicos de Força Eletrostática, Campo Elétrico e Potencial Elétrico, damos início ao estudo das aplicações elétricas e eletrônicas, começando com as mais simples. Qualquer

Leia mais

GrandezasElétricase Principais Dispositivos

GrandezasElétricase Principais Dispositivos GrandezasElétricase Principais Dispositivos Vasos comunicantes podem ser uma analogia. Site Condutores, Isolantes e Semicondutores Lei de Ohm Resistor Resistor Um resistor é um componente que fornece

Leia mais

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/46 Teoria de Eletricidade Aplicada Conceitos Básicos Prof. Jorge Cormane Engenharia de Energia 2/46 SUMÁRIO 1. Introdução 2. Sistemas 3. Circuitos Elétricos 4. Componentes Ativos 5. Componentes Passivos

Leia mais

Capacitância. Prof. Fernando G. Pilotto UERGS

Capacitância. Prof. Fernando G. Pilotto UERGS Capacitância Prof. Fernando G. Pilotto UERGS Capacitores O capacitor é um dispositivo prático para o armazenamento de energia elétrica. Os flashs de máuinas fotográficas e os desfibriladores médicos usam

Leia mais

A energia total do circuito é a soma da potencial elétrica e magnética

A energia total do circuito é a soma da potencial elétrica e magnética Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos

Leia mais

GERADORES E RECEPTORES:

GERADORES E RECEPTORES: COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar

Leia mais

Física C Extensivo V. 8

Física C Extensivo V. 8 Física C Extensivo V 8 Exercícios 0) E Como C Q, então a carga armazenada no capacitor V é dada por Q C V 0) E I Verdadeira C ε o A d II Falsa A capacitância se reduz à metade III Falsa Não depende da

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Lista de Exercícios de Capacitores

Lista de Exercícios de Capacitores Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Capacitores 1) A unidade de capacitância é equivalente a: A. J/C B. V/C C. J 2 /C D. C/J E. C 2 /J 2) Um farad é o mesmo que: A. J/V

Leia mais

Capacitância Objetivos:

Capacitância Objetivos: Capacitância Objetivos: A natureza dos capacitores e como determinar a quantidade que mede sua habilidade de armazenar carga? Com os capacitores de comportam em circuitos? Como determinar a quantidade

Leia mais

Capacitores Módulo FE.04 (página 66 à 68) Apostila 1. Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores

Capacitores Módulo FE.04 (página 66 à 68) Apostila 1. Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores Aula 04 Capacitores Módulo FE.04 (página 66 à 68) Apostila 1 Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores 1 Capacitância Muitas são as pesquisas relacionadas

Leia mais

CONDUTORES E ISOLANTES

CONDUTORES E ISOLANTES ELETRICIDADE CONDUTORES E ISOLANTES O FÍSICO INGLÊS STEPHEN GRAY PERCEBEU QUE ALGUNS FIOS CONDUZIAM BEM A ELETRICIDADE E CHAMOU-OS DE CONDUTORES E, AOS QUE NÃO CONDUZIAM OU CONDUZIAM MAL A ELETRICIDADE,

Leia mais

Aula II Lei de Ohm, ddp, corrente elétrica e força eletromotriz. Prof. Paulo Vitor de Morais

Aula II Lei de Ohm, ddp, corrente elétrica e força eletromotriz. Prof. Paulo Vitor de Morais Aula II Lei de Ohm, ddp, corrente elétrica e força eletromotriz Prof. Paulo Vitor de Morais E-mail: paulovitordmorais91@gmail.com 1 Potencial elétrico Energia potencial elétrica Quando temos uma força

Leia mais

Estudo do Indutor em Corrente Contínua

Estudo do Indutor em Corrente Contínua Unidade 5 Estudo do Indutor em Corrente Contínua Nesta unidade, você estudará os conceitos, características e comportamento do componente eletrônico chamado indutor. Objetivos da Unidade Enumerar as principais

Leia mais

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS Sabemos, do estudo da física, que uma relação entre causa e efeito não ocorre sem um oposição, ou seja, a relação entre causa

Leia mais

Capacitores Prof. Dr. Gustavo Lanfranchi

Capacitores Prof. Dr. Gustavo Lanfranchi Capacitores Prof. Dr. Gustavo Lanfranchi Física Geral e Experimental 2, Eng. Civil 2018 Capacitores Definição O que é um capacitor? Quais são suas propriedades? O que é capacitância, como é calculada?

Leia mais

Lei de Ohm e Resistores reais Cap. 2: Elementos de circuito

Lei de Ohm e Resistores reais Cap. 2: Elementos de circuito 2. Análise de Circuitos Elétricos Simples REDES e CIRCUITOS: A interconexão de dois ou mais elementos de circuitos simples forma uma rede elétrica. Se a rede tiver pelo menos um caminho fechado, ela é

Leia mais

Eletrostática: Capacitância e Dielétricos

Eletrostática: Capacitância e Dielétricos Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-2 Eletrostática:

Leia mais

CIRCUITOS COM CAPACITORES

CIRCUITOS COM CAPACITORES CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre

Leia mais

Física III-A /2 Lista 8: Indução Eletromagnética

Física III-A /2 Lista 8: Indução Eletromagnética Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de

Leia mais

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância. apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais

Leia mais

Experimento II Lei de Ohm e circuito RC

Experimento II Lei de Ohm e circuito RC Experimento II Lei de Ohm e circuito RC Objetivos específicos da Semana III O objetivo principal da experiência da Semana III é estudar o fenômeno de descarga de um capacitor, usando para isso um tipo

Leia mais

Tempo de Carga e Descarga de um Capacitor

Tempo de Carga e Descarga de um Capacitor Capacitores Capacitor É um componente constituído por dois condutores separados por um isolante: os condutores são chamados armaduras (ou placas) do capacitor e o isolante é o dielétrico do capacitor.

Leia mais

1ª LISTA DE FÍSICA 1º BIMESTRE

1ª LISTA DE FÍSICA 1º BIMESTRE Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece

Leia mais

5. ISOLANTES OU DIELÉTRICOS

5. ISOLANTES OU DIELÉTRICOS 5. ISOLANTES OU DIELÉTRICOS 5.1 Definição Material Isolante (Dielétricos): materiais isolantes são substâncias em que os elétrons e íons não podem se mover em distâncias macroscópicas como os condutores

Leia mais

CAMPO ELÉTRICO. Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Criado por cargas elétricas.

CAMPO ELÉTRICO. Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Criado por cargas elétricas. CAMPO ELÉTRICO Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Campo Elétrico Criado por cargas elétricas. Representado por linhas de campo. Grandeza

Leia mais

Instituto Montessori - Ponte Nova

Instituto Montessori - Ponte Nova Instituto Montessori - Ponte Nova Estudos Orientados para a Avaliação II 1) No campo elétrico criado por uma carga Q puntiforme de 4x10-6 C, determine: a) o potencial elétrico situado a 1m da carga Q.

Leia mais

FÍSICA. Capacitância

FÍSICA. Capacitância FÍSICA Capacitância Definição de capacitância Sejam dois condutores a e b com cargas +Q e Q, respectivamente, conforme figura ao lado. Assumiremos que ambos tratamse de condutores perfeitos (ideais) e,

Leia mais

Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação

Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação CAPÍTULO 25 Capacitância 25-1 CAPACITÂNCIA Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 25.01 Desenhar um diagrama esquemático de um circuito com um capacitor de placas paralelas,

Leia mais

Transientes em circuitos RC: Tempo de carga de um capacitor

Transientes em circuitos RC: Tempo de carga de um capacitor Transientes em circuitos RC: Tempo de carga de um capacitor 4 4.1 Material capacitores de 100 nf e 1 µf; resistores de 56 Ω e 10 kω. 4.2 Introdução O objetivo desta aula é estudar o comportamento de capacitores

Leia mais

CAPACITORES Profº João Escalari DP ESQ

CAPACITORES Profº João Escalari DP ESQ 1. Três esferas condutoras de raios R, 3R e 5R e eletrizadas, respectivamente, com quantidade de cargas iguais a - 15 C, - 30 C e + 13 C estão muito afastadas entre si. As esferas são então interligadas

Leia mais

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo. FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Capacitância Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Garrafa

Leia mais

A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A.

A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A. 1. Seja o circuito elétrico apresentado, onde R = ohms. A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c),0 A. d) 4,0 A.. Um circuito de malha dupla

Leia mais

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro Revisão de conceitos Aula 2 Introdução à eletrónica médica João Fermeiro Objetivos Rever as grandezas elétricas e elementos de circuito passivos. Considerações sobre resistência/indutância/capacitância

Leia mais

LISTA ELETROSTÁTICA. Prof: Werlley toledo

LISTA ELETROSTÁTICA. Prof: Werlley toledo LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.

Leia mais

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome:

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome: MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 208/209 EC004 FÍSCA 2º ANO, º SEMESTRE 23 de janeiro de 209 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode

Leia mais

Corrente elétricas. i= Δ Q Δ t [ A ]

Corrente elétricas. i= Δ Q Δ t [ A ] Corrente elétricas A partir do modelo atômico de Bohr, que o define pela junção de prótons, nêutrons e elétrons, é possível explicar a alta condutividade dos metais, devida à presença dos elétrons livres.

Leia mais

Fundamentos do Eletromagnetismo - Aula IX

Fundamentos do Eletromagnetismo - Aula IX Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

a) carga elétrica. b) campo elétrico. c) corrente elétrica. d) capacitância elétrica. e) condutividade elétrica.

a) carga elétrica. b) campo elétrico. c) corrente elétrica. d) capacitância elétrica. e) condutividade elétrica. fluorescente, por estar próxima a uma descarga elétrica, é o(a) Questão 01 - (ENEM) Em museus de ciências, é comum encontrar-se máquinas que eletrizam materiais e geram intensas descargas elétricas. O

Leia mais

Cap. 5 - Corrente, Resistência e Força Eletromotriz

Cap. 5 - Corrente, Resistência e Força Eletromotriz Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 5 - Corrente, Resistência e Força Eletromotriz Prof. Elvis Soares Nesse capítulo, estudaremos a definição de corrente,

Leia mais

ELETROTÉCNICA ENGENHARIA

ELETROTÉCNICA ENGENHARIA Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.

Leia mais

Aula VII Circuito puramente capacitivo. Prof. Paulo Vitor de Morais

Aula VII Circuito puramente capacitivo. Prof. Paulo Vitor de Morais Aula VII Circuito puramente capacitivo Prof. Paulo Vitor de Morais 1. Capacitância Um capacitor é utilizado, principalmente, para o armazenamento de cargas; Essa capacidade de armazenamento de cargas é

Leia mais

Análise da composição de capacitores comerciais

Análise da composição de capacitores comerciais Roteiro Experimental n 3 COMPONENTES DA EQUIPE: NOTA: Data: / / 1. OBJETIVOS: Conhecer diversos tipos de capacitores comerciais; Analisar a influência dos materiais na fabricação de capacitores; Comparar

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem

Leia mais

Análise de Circuitos Elétricos

Análise de Circuitos Elétricos e Circuitos RC Análise de Circuitos Elétricos Um dispositivo resistivo, como por exemplo o resistor, é aquele que resiste a passagem de corrente, mantendo o seu valor ôhmico constante tanto para a corrente

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth

Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth Eletromagnetismo Corrente Elétrica, Resistores, Capacitores, Fontes e

Leia mais