Capacitores Prof. Dr. Gustavo Lanfranchi
|
|
|
- Gabriel Henrique Dinis Bayer
- 7 Há anos
- Visualizações:
Transcrição
1 Capacitores Prof. Dr. Gustavo Lanfranchi Física Geral e Experimental 2, Eng. Civil 2018
2 Capacitores Definição O que é um capacitor? Quais são suas propriedades? O que é capacitância, como é calculada? Como se associam capacitores? Como se calcula a capacitância equivalente? Qual é a energia armazenada? 14:33:13 2
3 Capacitores São dispositivos para armazenar cargas e energia. Constituídos, normalmente, de dois condutores próximos um do outro, mas separados por um meio isolante. Quando conectados a uma fonte de energia, os condutores são carregados com mesma quantidade de carga com sinais opostos (+Q e -Q). São caracterizados pela sua capacitância, que depende da geometria e do material (dielétrico) que separa os condutores. Capacitores podem ter diversas aplicações: os dispositivos de flash de máquinas fotográficas são conectados a um capacitor que armazena a energia necessária para emitir a luz; são usados em circuitos de rádios, televisores e celulares, permitindo que sejam usados em frequências específicas. 14:37:51 3
4 Capacitores Considere dois condutores carregando a mesma carga com sinais opostos. Entre os dois haverá uma diferença de potencial, normalmente chamada de voltagem. O que determina quanta carga há no capacitor a uma dada voltagem? Ou, qual é a capacidade do aparelho de armazenar carga a uma dada dv (diferença de potencial)? O potencial de um condutor isolado (diferença de potencial entre ele e um ponto no infinito), carregado com carga Q, é proporcional à sua carga e depende da sua geometria e do seu tamanho. O potencial de uma esfera condutora de raio R, carregada com carga Q, por exemplo, é: V =k. Q R 14:39:25 4
5 A razão entre a carga em um condutor isolado e o potencial a ele aplicado define a sua capacitância. C= Q V A capacitância C de um capacitor é a razão entre a quantidade de carga nos condutores e o valor da diferença de potencial entre eles. C= Q Δ V Capacitores Q=C Δ V Esse dependência entre Q e V varia com a forma dos condutores e a separação entre eles. Como o potencial é sempre proporcional à carga, a razão entre essas duas grandezas (capacitância) não depende nem de Q nem de V, apenas da geometria. Assim, a capacitância pode ser determinada supondo uma carga total Q e calculando o potencial. 14:44:32 5
6 Capacitores Para um condutor esférico isolado de carga Q e raio R (supondo o segundo condutor como uma casa esférica de raio infinito): C= Q Δ V C= Q k.q / R C= R k C=4. π.ε 0. R A capacitância é sempre positiva e a mesma para um dado capacitor. A unidade de capacitância é, portanto, C/V, ou seja, faraday (F). Os valores de capacitância são sempre aixos, da ordem de 10-6 a F. Exercício 1: calcule o raio de um condutor esférico de capacitância 1,00 F. Exercício 2: uma esfera de capacitância C 1 possui carga 20,00 C. Qual será o valor da capacitância C 2 se a carga for aumentada para 67,00 C? A capacitância será a mesma, pois não depende da carga. R=8, m 14:48:35 6
7 Capacitores de placas paralelas Para calcular a capacitância de um dispositivo, carrega-se cada um dos condutores com mesma carga, de sinais opostos, e mede-se o potencial entre eles através do cálculo de E. Por exemplo, considere duas placas paralelas de área A separadas por uma distância d, uma com carga Q e a outra com -Q. Conforme é carregado, os elétrons vão da placa positiva para a negativa. Quanto maior a área, maior a quantidade de carga que pode ser armazenada. E quanto menor a distância entre elas, maior a carga. ΔV =E. d Calculando C, tem-se primeiro que a densidade de carga em cada placa é: σ= Q A 14:50:39 7
8 Capacitores de placas paralelas Para placas muito próximas pode-se considerar o campo entre as placas uniforme e nulo fora delas. E= σ ε 0 = Q ε 0. A ΔV =E. d ΔV = Q. d ε 0. A C= Q Δ V C= Q Q. d/ε 0. A C= ε 0. A d Exercício 3: um capacitor de placas paralelas tem um área 2,00 x 10-4 m 2 e uma separação entre as placas de 1,00 mm. Qual é a sua capacitância? C=1, F (1,77 pf) Exercício 4: um capacitor tem placas paralelas quadradas de lado 10,00 cm separadas por uma distância de 1,00 mm. Qual é a sua capacitância? Qual será a carga armazenada nele se a ele for aplicada uma diferença de potencial de 12,00 V? C=88, F (88,5 pf) Q=1, C (1,96 nc) 19:56:52 8
9 Capacitor cilíndrico Exercício 5: calcule a capacitância de um capacitor constituído de um condutor cilíndrico sólido de comprimento l, raio a e carga Q coaxial com uma casca cilíndrica de espessura desprezível, raio > a e carga - Q. V V a = a V V a = a E d s E r = 2. k. λ dr r V V a = 2. k. λ a ΔV =2. k. λ. ln ( ) a 1 r dr 2.k.λ r λ= Q l ΔV =2. k. Q l.ln ( a ) C= Q Δ V C= C= l 2.k. ln (/a ) Q 2.k.Q/l. ln (/a ) 20:10:15 9
10 Capacitor esférico Exercício 6: calcule a capacitância de um capacitor composto de uma casca condutora esférica de raio e carga -Q concêntrica a um condutor sólido esférico de raio a e carga Q. V V a = a V V a = a ΔV =k.q. ( 1 ) r a E d s E r = k.q r 2 k.q r 2 dr V V a = k. Q. a ΔV =k.q. ( 1 a 1 ) ΔV =k.q. ( a a. ) 1 r 2 dr C= Q Δ V Q C= k.q.( a)/a. C= a. k.( a) 20:19:02 10
11 Energia armazenada em capacitores Imagine que a carga positiva colocada na placa ligada ao terminal negativo da ateria esteja sujeita a um força que a desloca para a placa positiva. Traalho será realizado sore essa carga e, como ela foi transferida, há uma diferença de potencial e energia potencial eletrostática é armazenada. A energia potencial é: du =dq. dv Como a variação do traalho e da energia são iguais: dw =dq.dv = q C dq Integrando a equação em amos os lados: dw = q Q C dq W = q 0 C dq W = 1 Q C. q dq W = q2 0 2C Ou seja, esse é o traalho realizado ao deslocar a carga. E a energia armazenada pode ser calculada utilizando a relação com o traalho: W =Δ U U = q2 U = 1 2C 2 Q. Δ V U = 1 2 C.Δ V 2 20:31:15 11
12 Energia armazenada em capacitores Exercício 7: um capacitor com capacitância 15,00 F é carregado até atingir 60,00 V. Qual é a energia eletrostática armazenada nele? U E =0,027 J Exercício 8: determine a energia potencial armazenada em um capacitor de placas paralelas em função do campo elétrico. U= 1 2 C. Δ V 2 Δ V =E. d C= ε 0. A d U= 1 2 ε 0. A d (E. d)2 U= 1 2 ε 0.( A. d) E 2 U= 1 2 ε 0. E 2 Energia por unidade de volume. Exercício 9: determine a energia potencial por unidade de volume armazenada em um capacitor de placas paralelas de 3,50 µf quando sujeito a um campo elétrico de 4,20 x 10 3 N/C? U E =7, J 20:41:52 12
13 Lista de exercícios 1) Um capacitor de placas paralelas tem um área 4,30 x 10-4 m 2 e uma separação entre as placas de 3,80 mm. Qual é a sua capacitância? R: C = 1,00 pf 2) Um capacitor de placas paralelas tem capacitância 5,60 x F e condutores de área 3,25 x 10-3 m 2 cada uma. Calcule a distância separando as placas. R: d = 5,14 mm 3) A distância entre as duas placas de uma capacitor de placa paralelas é 6,60 mm e a sua capacitância é 8,20 x F. Qual é o valor da área de cada placa? R: A = 6,12 x 10-3 m² 4) Um capacitor tem placas paralelas quadradas de lado 24,60 cm separadas por uma distância de 3,70 mm. Qual é a sua capacitância? Qual será a carga armazenada nele se a ele for aplicada uma diferença de potencial de 110,00 V? R: C = 1,45 x F; Q = 1,59 x 10-8 C 5) A distância entre as placas paralelas circulares de um capacitor é 6,80 mm e o raio de cada placa é 12,40 cm. Qual é a sua capacitância? Qual deve ser o valor da diferença de potencial aplicada a ele para que seja armazenada uma carga de 2,80 nc? R: C = 6,29 x F; V = 44,54 V 13
14 Lista de exercícios 6) Deduza a expressão para a capacitância de um capacitor cilíndrico de comprimento c, raios interno r 1 e externo r 2 e cargas Q e -Q. Qual será o valor da capacitância se o comprimento for 25,00 cm, o raio interno 13,20 cm e o externo 18,40 cm? R: C = c/ (2kln(r 2 /r 1 )); C = 4,18 x F 7) Deduza a expressão para capacitância de um capacitor esférico com raios interno r 1 e externo r 2 e cargas Q e -Q. Qual será o valor de C se o raio interno for 16,80 cm e o externo for 24,30 cm? R: C = r 1. r 2 / (k(r 2 -r 1 )); C = 6,05 x F 8) Um capacitor com capacitância 24,60 F é carregado até atingir 117,00 V. Qual é a energia eletrostática armazenada nele? R: U = 0,17 J 9) Um capacitor de placas paralelas armazena uma energia de 0,054 J quando sumetido a uma diferença de potencial de 60,00 V. Qual é a capacitância desse capacitor? R: C = 30,00 F 14
Cap. 4 - Capacitância e Dielétricos
Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de
Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1
Cap. 25 Capacitância Prof. Oscar Rodrigues dos Santos [email protected] Capacitância 1 Capacitor Capacitor é um dispositivo que serve para armazenar energia elétrica. Tem a função de armazenar cargas
Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4
Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância
Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.
apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais
25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda,
25-1 Capacitância Capacitor é um dispositivo usado para armazenar energia elétrica. As pilhas de uma máquina fotográfica, por exemplo, armazenam a energia necessária para disparar um flash, carregando
Halliday Fundamentos de Física Volume 3
Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Física. Resumo Eletromagnetismo
Física Resumo Eletromagnetismo Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv Força Elétrica Duas formas de calcular:
Dois condutores carregados com cargas +Q e Q e isolados, de formatos arbitrários, formam o que chamamos de um capacitor.
Aula-5 Capacitância Capacitores Dois condutores carregados com cargas Q e Q e isolados, de formatos arbitrários, formam o que chamamos de um capacitor. A sua utilidade é armazenar energia potencial no
Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker
14 de dezembro de 016 EXERCÍCIOS CAPACITORES Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker Capacitância 1 Os dois objetos
Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja
Capacitores - 1) Capacitores são dispositivos utilizados para armazenar cargas elétricas. Como a energia potencial é proporcional ao número de cargas elétricas, estes dispositivos também são reservatórios
Física 3. Resumo e Exercícios P1
Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv
Apostila de Física 36 Capacitores
Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador
Quarta Lista - Capacitores e Dielétricos
Quarta Lista - Capacitores e Dielétricos FGE211 - Física III Sumário Um capacitor é um dispositivo que armazena carga elétrica e, consequentemente, energia potencial eletrostática. A capacitância C de
Cap. 25. Capacitância. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Cap. 25 Capacitância Copyright 25-1 Capacitância Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação onde V é
Lista de Exercícios 2 Potencial Elétrico e Capacitância
Lista de Exercícios 2 Potencial Elétrico e Capacitância Exercícios Sugeridos (14 de março de 2007) A numeração corresponde ao Livros Textos A e B. B25.10 Considere dois pontos numa região onde há um campo
And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:
25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,
Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica
Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições
CAPACITORES. Prof. Patricia Caldana
CAPACITORES Prof. Patricia Caldana Em vários aparelhos elétricos existem dispositivos cuja função é armazenar cargas elétricas. Um exemplo simples é o flash de uma máquina fotográfica. Na figura abaixo,
Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação
CAPÍTULO 25 Capacitância 25-1 CAPACITÂNCIA Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 25.01 Desenhar um diagrama esquemático de um circuito com um capacitor de placas paralelas,
F-328 Física Geral III
F-8 Física Geral III Aula exploratória- 5 UNIAMP IFGW [email protected] F8 S4 apacitância apacitores O capacitor mais convencional é o de placas paralelas. Em geral, dá-se o nome de placas do capacitor
Energia potencial elétrica
Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre
Fundamentos do Eletromagnetismo - Aula IX
Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações
Capacitância. Prof. Fernando G. Pilotto UERGS
Capacitância Prof. Fernando G. Pilotto UERGS Capacitores O capacitor é um dispositivo prático para o armazenamento de energia elétrica. Os flashs de máuinas fotográficas e os desfibriladores médicos usam
Teo. 9 - Capacitância
Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados
Primeira Prova 2º. semestre de /09/2017 ATENÇÃO LEIA ANTES DE FAZER A PROVA
Física Teórica II Primeira Prova 2º. semestre de 2017 23/09/2017 ALUNO Gabarito NOTA DA TURMA PROF. PROVA 1 Assine a prova antes de começar. ATENÇÃO LEIA ANTES DE FAZER A PROVA 2 Os professores não poderão
Capacitância e Dielétricos
Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em
( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.
FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores
Fichas de electromagnetismo
Capítulo 3 Fichas de electromagnetismo básico Electrostática - Noções básicas 1. Enuncie as principais diferenças e semelhanças entre a lei da a atracção gravitacional e a lei da interacção eléctrica.
Capacitância Objetivos:
Capacitância Objetivos: A natureza dos capacitores e como determinar a quantidade que mede sua habilidade de armazenar carga? Com os capacitores de comportam em circuitos? Como determinar a quantidade
Segunda Lista - Lei de Gauss
Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =
Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.
Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa
(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f)
1 Universidade Federal do Rio de Janeiro Instituto de Física Física III 01/ Primeira Prova: 10/1/01 Versão: A F e = q E, E = V, E = k0 q r ˆr Seção 1 Múltipla escolha 10 0,5 = 5,0 pontos) Formulário onde
Lista de Exercícios 1 Forças e Campos Elétricos
Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo
Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss
Eletricidade e Magnetismo Fluxo Elétrico Lei De Gauss 1. A figura seguinte mostra uma seção de uma barra cilíndrica de plástico infinitamente longo, com uma densidade linear de carga positiva uniforme.
1ª LISTA DE FÍSICA 1º BIMESTRE
Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece
6.1 Exemplos - potencial eléctrico de um anel carregado
1/Out/212 Aula 6 6. Potencial eléctrico - distribuições contínuas de carga 6.1 Exemplos: Anel, Disco, Plano infinito, Linha infinita, Esfera 6.2 Condutores em equilíbrio 6.3 Contacto eléctrico 6.4 Energia
Capacitores. Prof. Carlos T. Matsumi
Circuitos Elétricos II Prof. Carlos T. Matsumi 1 Conhecidos também como condensadores; São componentes que acumulam carga elétricas; Podem ser: Circuitos Elétricos II Polarizados (ex. capacitor eletrolítico)
Eletricidade Aula 8. Componentes Reativos
Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada
Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como
Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar
1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa
1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa região próxima ao centro do fio, a uma distância r
Elementos de Circuitos Elétricos
Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A
Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Cap. 24 Potencial Elétrico Copyright 24-1 Potencial Elétrico O potencial elétrico V em um ponto P devido ao campo elétrico produzido por um objeto carregado é dado por Carga de prova q 0 no ponto P onde
ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores
ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores Data para entrega: 19 de abril 1. Distribuições não uniformes de carga Considere o problema da figura abaixo,
FÍSICA. Capacitância
FÍSICA Capacitância Definição de capacitância Sejam dois condutores a e b com cargas +Q e Q, respectivamente, conforme figura ao lado. Assumiremos que ambos tratamse de condutores perfeitos (ideais) e,
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC
GERADORES E RECEPTORES:
COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar
Instituto Montessori - Ponte Nova
Instituto Montessori - Ponte Nova Estudos Orientados para a Avaliação II 1) No campo elétrico criado por uma carga Q puntiforme de 4x10-6 C, determine: a) o potencial elétrico situado a 1m da carga Q.
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
Capacitores Módulo FE.04 (página 66 à 68) Apostila 1. Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores
Aula 04 Capacitores Módulo FE.04 (página 66 à 68) Apostila 1 Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores 1 Capacitância Muitas são as pesquisas relacionadas
F-328 Física Geral III
F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW [email protected] F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.
Lista de Exercícios 1: Eletrostática
Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
CAPACITOR. Capacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão.
APAITOR apacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão. O capacitor possui dois terminais para sua polarização (d.d.p.). Dentro do
FIS1053 Projeto de Apoio Eletromagnetismo 09-Setembro Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria.
FIS153 Projeto de Apoio Eletromagnetismo 9-Setembro-11. Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria. 1ª Questão (,): A superfície fechada mostrada na figura é constituída por uma casca esférica
Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana
Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018
Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico
( ) r. (b) (c) (d) ( ) 2a. (f) Gabarito Pág. 1
Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 017/ Data: 11/09/017 do campo elétrico externo. Assinale a alternativa que melhor descreve
Cap. 5. Capacitores e Dielétricos
Cap. 5. Capacitores e Dielétricos 1 5.1. Definição de Capacitância Um capacitor consiste de dois condutores em oposição, separados por um meio isolante (dielétrico) e possuindo cargas de mesmo módulo mas
Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011
Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,
Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A /2 Data: 28/11/2018
Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A - 2018/2 Data: 28/11/2018 Múltipla Escolha (12 0,7 + 2 0,8 = 10,0 pontos) 1. (0,7 ponto) Duas partículas
Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /1 Data: 24/04/2019
Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2019/1 Data: 24/04/2019 Seção 1: Múltipla Escolha (6 0,8 = 4,8 pontos) 1. Um grão de poeira
ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto
ELETROMAGNETISMO SEL 0309 LISTA ADICIONAL DE EXERCÍCIOS SOBRE CAMPOS ELÉTRICOS E MAGNÉTICOS EM MATERIAIS Professor: Luís Fernando Costa Alberto Campo elétrico 1) O campo elétrico na passagem de um meio
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:
Física III Escola Politécnica GABARITO DA P1 31 de março de 2016
Física III - 43303 Escola olitécnica - 06 GABARITO DA 3 de março de 06 Questão Quatro cargas puntiformes são colocadas nos vértices,, 3 e 4 de um retângulo, de acordo com a figura abaio. O retângulo tem
PUC-RIO CB-CTC. Não é permitido destacar folhas da prova
PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P DE ELETROMAGNETISMO 3.10.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da prova
Primeira Prova 2. semestre de /10/2013 TURMA PROF.
D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET7F Profª Elisabete N Moraes LEI DE GAUSS Lei de Gauss - apresentação Método alternativo
Terceira Lista - Potencial Elétrico
Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial
Fluxo do campo elétrico
Fluxo do campo elétrico Definição: - É uma grandeza escalar que caracteriza uma medida do número de linhas de campo que atravessam uma determinada superfície. a) Linhas de um campo uniforme em magnitude
4ª LISTA DE EXERCÍCIOS POTENCIAL ELÉTRICO
4ª LISTA DE EXERCÍCIOS POTENCIAL ELÉTRICO 1. As condições típicas relativas a um relâmpago são aproximadamente as seguintes: (a) Diferença de potencial entre os pontos de descarga igual a 10 9 V; (b) Carga
Física Teórica II. Prova 2 1º. semestre de /05/2018
Física Teórica II Prova 2 1º. semestre de 2018 26/05/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar
Lista 02 Parte II Capítulo 32
Lista 02 Parte II Capítulo 32 01) Dada uma bateria de fem ε e resistência interna r, que valor deve ter a resistência de um resistor, R, ligado em série com a bateria para que o efeito joule no resistor
Capacitância C = Q / V [F]
Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através
Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico
Física III-A - 2018/1 Lista 1: Carga Elétrica e Campo Elétrico Prof. Marcos Menezes 1. Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma
superfície que envolve a distribuição de cargas superfície gaussiana
Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em
Lista de Exercícios de Capacitores
Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Capacitores 1) A unidade de capacitância é equivalente a: A. J/C B. V/C C. J 2 /C D. C/J E. C 2 /J 2) Um farad é o mesmo que: A. J/V
1 a PROVA Gabarito. Solução:
INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL III FIS 123) TURMA: T02 SEMESTRE: 2 o /2012 1 a PROVA Gabarito 1. Três partículas carregadas
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC
7. Potencial eletrostático
7. Potencial eletrostático Em 1989 Wolfgang Paul recebeu o prémio Nobel da física pela sua invenção da armadilha de iões que permite isolar um ião. Com essa invenção tornou-se possível estudar um átomo
Prof. Fábio de Oliveira Borges
O Potencial Elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.
Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de
Eletricidade (EL63A) CAPACITORES E INDUTORES
Eletricidade (EL63A) CAPACITORES E INDUTORES Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Capacitores e Indutores: Elementos Passivos
CAPACITORES. Noções Fundamentais.
CAPACITORES Noções Fundamentais. CAPACITORES É um componente que armazena carga elétrica. O Capacitor básico tem duas placas planas isoladas por um dielétrico. Aplicações mais comuns: desfbrilador, fash
Cronograma de 2017/1 de Física III-A
Cronograma de 2017/1 de Física III-A Mês Seg Ter Qua Qui Sex Sab 6 7 8 9 10 11 1 - Cap 21 2 - Cap 21 13 14 15 16 17 18 Março 20 21 22 3 - Cap 21 23 24 4 - Cap 22 25 Atividade 1 5 - Cap 22 6 - Cap 23 27
Lista 01 Parte II. Capítulo 28
Lista 01 Parte II Capítulo 28 01) Qual é o fluxo elétrico através de cada uma das superfícies (a), (b), (c) e (d) presentes na figura abaixo? 02) Uma carga positiva Q está localizada no centro de um cilindro
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo
Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss.
Lei de Gauss Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros:
