CAPACITORES Profº João Escalari DP ESQ
|
|
|
- Therezinha Silveira Chaplin
- 9 Há anos
- Visualizações:
Transcrição
1 1. Três esferas condutoras de raios R, 3R e 5R e eletrizadas, respectivamente, com quantidade de cargas iguais a - 15 C, - 30 C e + 13 C estão muito afastadas entre si. As esferas são então interligadas por fios metálicos de capacitância desprezível até que o sistema atinge completo equilíbrio. Nessa situação, determinee o valor da quantidade de carga, em microcoulombs, da esfera de raio 3R. 2. Um capacitor é feito de duas placas condutoras, planas e paralelas, separadas pela distância de 0,5 mm e com ar entre elas. A diferença de potencial entre as placas é de 200 V. a) Substituindo-se o ar contido entre as placas por uma placa de vidro, de constante dielétrica cinco vezes maior do que a do ar, e permanecendo constante a carga das placas, qual será a diferença de potencial nessa nova situação? b) Sabendo-se que o máximo campo elétrico que pode existir no ar seco sem produzir descarga é de 0,8 10 volt/metro, determine a diferença de potencial máximo que o capacitor pode suportar, quando há ar seco entre as placas. 3. O que é um farad (F)? 4. Um capacitor de placas paralelas está carregado com + 1 Coulomb, havendo entre as placas uma distância de d metros. Em certo instante, uma das placas é afastada da outra, em movimento uniforme, e, mantendo-a paralela e em projeção ortogonal à placa fixa, faz-se a distância entre elas variar conforme o gráfico a seguir, sendo d o máximo afastamento. Esboce os gráficos da tensão v(t) e da carga q(t) no capacitor, entre 0 e 2T segundos. Dados: capacitância em t = 0: 1 F área de cada placa: A m 5. A figura mostra um capacitor de placas paralelas de área A separadas pela distância d. Inicialmente o dielétrico entre as placas é o ar e a carga máxima suportada é Q(i). Para que esse capacitor suporte urna carga máxima Q(f) foi introduzida uma placa de vidro de constante dielétrica k e espessura d/2. Sendo mantida a diferença de potencial entre as placas, calcule a razão entre as cargas Q(f) e Q(i). 6. As figuras a seguir representam dois capacitores de placas planas e paralelas. A capacitância do Capacitor 1 vale C e suas placas, de área A cada uma, estão separadas por uma distância d. A capacitância do Capacitor 2 vale C = xc e suas placas, de área A = 3A cada uma, estão separadas por uma distância d = d /2. Observando que o volume compreendidoo entre as placas do Capacitor 2 está totalmente preenchido com um material isolante, de constante dielétrica k = 4, determine o valor de x. pag.1
2 7. Para tirar fotos na festa de aniversário da filha, o pai precisou usar o flash da máquina fotográfica. Este dispositivo utiliza duas pilhas de 1,5 V, ligadas em série, que carregam completamente um capacitor de 15 F. No momento da fotografia, quando o flash é disparado, o capacitor, completamente carregado, se descarrega sobre sua lâmpada, cuja resistência elétrica e igual a 6 ². Calcule o valor máximo: a) da energia armazenada no capacitor; b) da corrente que passa pela lâmpada quando o flash é disparado. 8. Para a segurança dos clientes, o supermercado utiliza lâmpadas de emergência e rádios transmissores que trabalham com corrente contínua. Para carregar suas baterias, no entanto, esses dispositivos utilizam corrente alternada. Isso é possível graças a seus retificadores que possuem, cada um, dois capacitores de F, associados em paralelo. Os capacitores, descarregados e ligados a uma redee elétrica de tensão máxima igual a 170 V, estarão com carga plena após um certo intervalo de tempo t. Considerando t, determine: a) a carga elétrica total acumulada; b) a energia potencial elétrica total armazenada. 9. Um transformador ideal, que possui 300 espiras no enrolamento primário e 750 no secundário, é utilizado para carregar quatro capacitores iguais, cada um com capacitância C igual a 8,0 10 F. Observe a ilustração. Quando a tensão no enrolamento primário alcança o valor de 100 V, a chave K, inicialmente na posição A, é deslocada para a posição B, interrompendo a conexão dos capacitores com o transformador. Determine a energia elétrica armazenada em cada capacitor Um desfibrilador externo, usado para reversão de paradas cardíacas, provoca a descarga rápida de um capacitor através do coração, por meio de eletrodos aplicados ao tórax do paciente. Na figura a seguir, vê-se o gráfico de descarga de um capacitor de capacidade C, inicialmente 100% carregado, através de um resistor de resistência R, em função do tempo, o qual é dado em termos da constante de tempo = RC. Observe que, a cada constante de tempo, a carga no capacitor reduz- se à metade. Supondo que o capacitor perca 87,5% de sua carga em 3 ms e que a resistência entre os eletrodos seja de 50 ², determine, para uma d.d.p. inicial entre as placas de 5 kv: a) a corrente média entre os eletrodos, nesse intervalo de 3 ms; b) a energia inicial armazenada no capacitor. pag.2
3 11. Duas placas metálicas paralelas Q e P, isoladas, são eletrizadas com uma carga de 1,0 10 C, uma negativamente, e a outra, positivamente. A diferença de potencial entre elas vale 100 V. a) DETERMINE a energia elétrica armazenada nas placas. b) Considere que um resistor de 50 ² é usado para ligar uma placa à outra. À medida que as placas se descarregam, a intensidade da corrente elétrica no resistor aumenta, diminui, ou não se altera? JUSTIFIQUE sua resposta. c) DETERMINE a quantidade total de calor liberado no resistor durante o processo de descarga das placas. 12. O capacitor de 15 F do circuito está inicialmente descarregado. Depois que a chave Ch for fechada, determine a carga total que passará pela chave, em C. 14. Um raio entre uma nuvem e o solo ocorre devido ao acúmulo de cargaa elétrica na base da nuvem, induzindo uma carga de sinal contrário na região do solo abaixo da nuvem. A base da nuvem está a uma altura de 2 km e sua área é de 200 km. Considere uma área idêntica no solo abaixo da nuvem. A descarga elétrica de um único raio ocorre em 10 s e apresenta uma corrente de 50 ka. Considerando ³ = 9 x 10 F/ /m, responda: a) Qual é a carga armazenada na base da nuvem no instante anterior ao raio? b) Qual é a capacitância do sistema nuvem-solo nesse instante? c) Qual é a diferença de potencial entre a nuvem e o solo imediatamente antes do raio? 15. Três capacitores C = C = 1,0 F e Cƒ = 3,0 F estão associados como mostra a figura. A associação de capacitores está submetida a uma diferença de potencial de 120 V fornecida por uma bateria. Calcule o módulo da diferença de potencial entre os pontos B e C, em volts. 13. São dados um capacitor de capacitância (ou capacidade) C, uma bateria de f.e.m. e dois resistores cujas resistências são, respectivamente, R e R. Se esses elementos forem arranjados como na figura adiante, a carga armazenada no capacitor será nula. Justifique esta afirmação. 16. No circuito a seguir os três capacitores têm a mesma capacitância C = C = Cƒ = 1 F. Qual a diferença de potencial nos terminais do capacitor C, em volts? pag.3
4 TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. Um capacitor plano é formado de duas armaduras planas, iguais, cada uma de área A e colocadas paralelamente a uma distância d. A capacidade eletrostática C de um capacitor plano é dada por: C=EA/d, na qual E varia com a natureza do dielétrico colocado entre as armaduras. Quando o meio é o vácuo ou o ar E=8,85.10 F/m, sendo F (farad) a unidade da capacidade eletrostática no Sistema Internacional. Ligando as armaduras do capacitor aos terminais de uma bateria, as armaduras ficam eletrizadas com cargas +Q e -Q conforme está indicado no esquema. 17. A carga do capacitor é a carga Q da sua armadura positiva. A relação entre a carga Q e a ddp U é constante e igual à capacidade eletrostática do capacitor: Q/U=C. Quando uma ddp de 100V é aplicada nas armaduras de um capacitor de capacidade C=8,85.10 F, a carga do capacitor, em coulombs, vale a) 8,85 10 b) 8,85 10 ª c) 8,85 10 d) 8,85 10 e) 8,85 10 No início do século XX (1910), o cientista norteamericano ROBERT MILLIKAN conseguiu determinar o valor da carga elétrica do ELÉTRON como q = -1,6 10 ªC. Para isso i colocou gotículas de óleo eletrizadas dentro de um campo elétrico vertical, formado por duas placas eletricamente carregadas, semelhantes a um capacitor de placas planas e paralelas, ligadas a uma fonte de tensão conforme ilustração a seguir. g = 10 m/s 18. Considere que a distância entre as placas seja d = 1,0 mm e que o campo elétrico entre elas seja uniforme. A diferença de potencial entre as placas, fornecida pela fonte de tensão, é em volts: a) 100 b) 220 c) 12 d) Uma esfera condutora de raio 9,0 cm que se encontra no vácuo (K³=9.10ª N.m / C ) é eletrizada e adquire um potencial de 100V. Com a mesma carga elétrica desta esfera, um condensador plano de 1,0 nf criaria entre suas placas, distanciadas de 1,0mm, um campo elétrico uniforme de intensidade: a) 1.10 V/m b) 1.10 V/m c) 1.10 V/m d) 1.10 V/m e) 1.10 V/m 20. Uma carga positiva Q em movimento retilíneo uniforme, com energia cinética W, penetra em uma região entre as placas de um capacitor de placas paralelas, como ilustrado na figura. TEXTO PARA A PRÓXIMA QUESTÃO pag.4
5 Mantendo o movimento retilíneo, em direção perpendicular às placas, ela sai por outro orifício na placa oposta com velocidade constante e energia cinética reduzida para W/4 devido à ação do campo elétrico entre as placas. Se as placas estão separadas por uma distância L, pode-se concluir que o campo elétrico entre as placas tem módulo a) 3W/(4QL) e aponta no sentido do eixo x. b) 3W/(4QL) e aponta no sentido contrário a x. c) W/(2QL) e aponta no sentido do eixo x. d) W/(2QL) e aponta no sentido contrário a x. e) W/(4QL) e aponta no sentido do eixo x. 21. Um capacitor é formado por duas placas paralelas, separadas 10mm entre sí. Considere as placas do capacitor perpendiculares ao plano do papel. Na figura são mostradas as intersecções das placas P e P e de algumas superfícies equipotenciais com o plano do papel. Ao longo do eixo médio AA', o campo elétrico é uniforme entre as placas e seu valor é E=10 V/m. As superfícies equipotenciais indicadas estão igualmente espaçadas de 1mm ao longo do eixo. Uma carga q=10 C é levada do ponto O ao ponto P, indicados na figura. a) a energia que foi despendida pela fonte de força eletromotriz é (C )/2. b) a energia que foi dissipada no resistor independe do valor de R. c) a energia que foi dissipada no resistor é proporcional a R. d) a energia que foi armazenada no capacitor seria maior se R fosse menor. e) Nenhuma energia foi dissipada no resistor. 23. Você tem três capacitores iguais, inicialmente carregados com a mesma carga, e um resistor. O objetivo é aquecer o resistor através da descarga dos três capacitores. Considere então as seguintes possibilidades: IV. descarregando cada capacitor individualmente, um após o outro, através do resistor. O trabalho realizado é: a) 0 J b) 5 10 J c) 1 10 J d) 4 10 J e) 1 10 J 22. No circuito representado na figura adiante, o capacitor está inicialmente descarregado. Quando a chave é ligada, uma corrente flui pelo circuito até carregar totalmente o capacitor. Podemos afirmar que: Assim, se toda energia dissipada for transformada em calor, ignorando as perdas para o ambiente, pode-se afirmar que: a) o circuito I é o que corresponde à maior geração de calor no resistor. b) o circuito II é o que gera menos calor no resistor c) o circuito III é o que gera mais calor no resistor. d) a experiência IV é a que gera mais calor no resistor e) todas elas geram a mesma quantidade de calor no resistor. pag.5
6 24. Duas baterias, de f.e.m. de 10V e 20V respectivamente, estão ligadas a duas resistências de 200² e 300² e com um capacitor de 2 F, como mostra a figura. Sendo QÝ a carga de capacitor e P½ a potência total dissipada depois de estabelecido o regime estacionário, conclui-se que: a) 0,1 mm b) 0,2mm d) 0,4 mm e) 0,5 mm c) 0,3 mm 26. A figura 1 mostra um capacitor de placas paralelas com vácuo entre as placas, cuja capacitância é C³. Num determinado instante, uma placa dielétrica de espessura d/4 e constante dielétrica K é colocada entre as placas do capacitor, conforme a figura 2. Tal modificação altera a capacitância do capacitor para um valor C. Determine a razão C³/C. a) QÝ = 14 C; P½ = 0,1 W. b) QÝ = 28 C; P½ = 0,2 W. c) QÝ = 28 C; P½ = 10 W. d) QÝ = 32 C; P½ = 0,1 W. e) QÝ = 32 C; P½ = 0,2 W. 25. Considere o vão existente entre cada tecla de um computador e a base do seu teclado. Em cada vão existem duas placas metálicas, uma delas presa na base do teclado e a outra, na tecla. Em conjunto, elas funcionam como um capacitor de placas planas paralelas imersas no ar. Quando se aciona a tecla, diminui a distância entree as placas e a capacitância aumenta. Um circuito elétrico detecta a variação da capacitância, indicativa do movimento da tecla. Considere então um dado teclado, cujas placas metálicas têm 40 mm de área e 0,7 mm de distância inicial entre si. Considere ainda que a permissividade do ar seja ³=9.10 F/m. Se o circuito eletrônico é capaz de detectar uma variação da capacitância a partir de 0,2 pf, então, qualquer tecla deve ser deslocada de pelo menos a) (3K + 1)/4K b) 4K/(3K + 1) c) (4 + 12K)/3 d) 3/(4 + 12K) e) 1/(4 + 12K) 27. No circuito a seguir, estando o capacitor com plena carga, levamos a chave k da posição 1 para a 2. A quantidade de energia térmica liberada pelo resistor de 5 ², após essa operação, é: a) 1 J b) 3 J c) 6 J d) 12 J e) 15 J 28. No circuito representado a seguir, o gerador de força eletromotriz 10 V é ideal e todos os capacitores estão inicialmente descarregados. Giramos inicialmente a chave CH para a posição (1) e esperamos até que C adquira carga máxima. A chave Ch é então girada para a posição (2). A pag.6
7 nova diferença de potencial entre as armaduras de C será igual a: 31. a) 8 V b) 6 V c) 5 V d) 4 V e) zero 29. A energia armazenada pela associação de 3 capacitores de mesmo valor nominal, mostrada a seguir, é 0,1J. A capacitância de cada capacitor é: a) 10 F b) 15 F c) 20 F d) 25 F e) 30 F A figura 1 ilustra um capacitor plano, cujas armaduras, idênticas, distam entre si de 2,0mm. Associamos três capacitores iguais a esse, conforme a ilustração da figura 2, e estabelecemos entre os pontos A e B uma d.d.p. de 240V. A intensidade do vetor campo elétrico num ponto entre as armaduras de um desses capacitores, eqüidistante delas e longe de suas bordas, é: a) zero b) 4,0. 10 V/m c) 8,0. 10 V/m d) 1,2. 10 V/m e) impossível de ser determinada sem conhecermos a capacitância de cada capacitor. 32. O circuito a seguir representa uma bateria de 12V e três capacitores de capacitâncias C =40 F e C =Cƒ=20 F. 30. A carga elétrica que a associação de capacitores abaixo armazena, quando estabelecemos entre A e B a d.d.p. de 22V, é a) 22 C b) 33 C c) 44 C d) 66 C e) 88 C A carga elétrica armazenada no capacitor de 40 F e a diferença de potencial nos terminais de um dos capacitores de 20 F são, respectivamente, a) 4,8. 10 C e 6,0 V b) 4,8. 10 C e 3,0 V c) 2,4. 10 C e 6,0 V d) 2,4. 10 C e 3,0 V e) 1,2. 10 C e 12 V pag.7
8 33. O esquema representa duas placas condutoras, P e P, ligadas a uma bateria que fornece uma tensão constante U. descarga de um capacitor como função do tempo. No tempo t = 0, a diferença de potencial entre as placas do capacitor era V³=12 volts. No instante de tempo t, assinalado no gráfico, a diferença de potencial, em volts, entre as placas do capacitor é: a) 1,5 b) 3,0 c) 4,5 d) 6,0 e) 7,5 Considerando a situação apresentada no esquema, ( ) As placas P e P estão eletrizadas. ( ) O campo elétrico na região entre as placas na parte central vale U/d. ( ) Enquanto as placas estiverem se aproximando, uma da outra, a bateria fornece corrente elétrica. ( ) Quando as placas são afastadas, uma da outra, a carga elétrica delas aumenta. ( ) As placas dissipam muita energia da bateria e, por isso, se aquecem muito. 34. Três capacitores idênticos, quando devidamente associados, podem apresentar uma capacitância equivalente máxima de 18 F. A menor capacitância equivalente que podemos obter com esses mesmos três capacitores é, em F: a) 8 b) 6 c) 4 d) 2 e) No circuito mostrado na figura, o capacitor C, de capacitância C, está inicialmente carregado com uma carga Q, e os outros dois capacitores C e Cƒ cada um de capacitância 2C, estão descarregados. Após a chave S ser fechada e transcorrido um longo intervalo de tempo, a carga final no capacitor C é a) 2Q b) Q/2 c) 4Q d) Q/4 e) Q 35. A figura adiante representa o processo de pag.8
9 GABARITO 1. 32/3 C. 2. a) 40 V.; b) 400 V. 3. Unidade sistema internacional para capacidade elétrica. 4. Observe os gráficos a seguir: 14. Os terminais do capacitor estão ligados por fio condutor de resistência nula, logo a diferença de potencial (ddp) entre seus suportes será zero. Já que Q = C.U, a carga no capacitor será nula. 15. a) 50 C; b) 9.10 F c) 5,6.10 V V. 38. [A] 41. [E] 43. [B] 55. V V V F F 56. [D] 57. [C] 58. [B] 17. Os capacitores C e Cƒ estão ligados em paralelo. A capacitância equivalente é C(eq) = 2C. Portanto a diferença de potencial no capacitor C será o dobro. Ficamos então com 60 V no capacitor C. 19. [A] 5. Q(f)/Q(i) = 2k/(1 + k) a) 6,75 10 J; b) 0,5 A 9. a) Carga elétrica acumulada 0,48 C b) Energia potencial elétrica acumulada 40,5 J 10. EÝ = 6,25 10 J 11. a) 29,2 A; b) 250 J 12. a) 5 10 J.; b) Diminui. c) 5 10 J C. 21. [A] 24. [D] 25. [B] 26. [D] 27. [B] 28. Não existe uma alternativa correta! 29. [B] 34. [B] 36. [A] 37. [C] pag.9
EXERCÍCIOS DE TREINAMENTO
1. (G1) O que é um farad (F)? EXERCÍCIOS DE TREINAMENTO RSE 2. (Unesp) São dados um capacitor de capacitância (ou capacidade) C, uma bateria de f.e.m. e dois resistores cujas resistências são, respectivamente,
CIRCUITOS COM CAPACITORES
CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre
1ª LISTA DE FÍSICA 1º BIMESTRE
Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece
Instituto Montessori - Ponte Nova
Instituto Montessori - Ponte Nova Estudos Orientados para a Avaliação II 1) No campo elétrico criado por uma carga Q puntiforme de 4x10-6 C, determine: a) o potencial elétrico situado a 1m da carga Q.
Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V.
COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 3º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica
CAPACITORES. Prof. Patricia Caldana
CAPACITORES Prof. Patricia Caldana Em vários aparelhos elétricos existem dispositivos cuja função é armazenar cargas elétricas. Um exemplo simples é o flash de uma máquina fotográfica. Na figura abaixo,
Apostila de Física 36 Capacitores
Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador
(A) 4 (B) 3 (C) 5 (D) 7 (E) 6
ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETRODINÂMICA DISCIPLINA: FÍSICA ASSUNTO: CAPACITORES Educando para a Modernidade
LISTA ELETROSTÁTICA. Prof: Werlley toledo
LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.
Física Teórica II. Prova 2 1º. semestre de /05/2018
Física Teórica II Prova 2 1º. semestre de 2018 26/05/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar
GERADORES E RECEPTORES:
COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar
LISTA DE EXERCÍCIOS 3 TRIM
LISTA DE EXERCÍCIOS Recuperação 3 TRIM 2018 1.Na figura a seguir, Q=20μC e q =1,5μC são cargas puntiformes no vácuo. O trabalho realizado pela forca elétrica em levar à carga q do ponto A ao o ponto B
PROJETO ESPECÍFICAS - UERJ
1) O gráfico mostra como varia a força de repulsão entre duas cargas elétricas, idênticas e puntiformes, em função da distância entre elas. 9 Considerando a constante eletrostática do meio como k 910 Nm
Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A /2 Data: 28/11/2018
Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A - 2018/2 Data: 28/11/2018 Múltipla Escolha (12 0,7 + 2 0,8 = 10,0 pontos) 1. (0,7 ponto) Duas partículas
3. C a C pacid i ade ou o Ca C pacit i ância i de um m Ca C pacit i or
Capacitores 1. Capacitores ou Condensadores Capacitores ou condensadores são elementos elétricos capazes de armazenar carga elétrica e, conseqüentemente, energia potencial elétrica. Podem ser esféricos,
And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:
25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 5 INDUÇÃO ELETROMAGNÉTICA... 8 Fluxo Magnético de um Carro... 8 Interpretação Física... 8 Lei de Lenz... 8 Lei de Faraday Neumann... 9 CAPÍTULO
Lista 02 Parte II Capítulo 32
Lista 02 Parte II Capítulo 32 01) Dada uma bateria de fem ε e resistência interna r, que valor deve ter a resistência de um resistor, R, ligado em série com a bateria para que o efeito joule no resistor
Capacitores. Prof. Carlos T. Matsumi
Circuitos Elétricos II Prof. Carlos T. Matsumi 1 Conhecidos também como condensadores; São componentes que acumulam carga elétricas; Podem ser: Circuitos Elétricos II Polarizados (ex. capacitor eletrolítico)
FAÇA DE ACORDO COM O QUE SE PEDE EM CADA QUESTÃO
FAÇA DE ACORDO COM O QUE SE PEDE EM CADA QUESTÃO 01) Um cano horizontal possui um diâmetro interno de 20 mm e a diferença de pressão entre suas extremidades é 1,0 atm. Por ele deverá passar 1,5 m 3 de
Eletrostática e Eletromagnetismo. Lista de Orientação Valendo 1 ponto.
Eletrostática e Eletromagnetismo Lista de Orientação Valendo 1 ponto. 1) Uma das aplicações tecnológicas modernas da eletrostática foi a invenção da impressora a jato de tinta. Esse tipo de impressora
Resumo e exercícios sobre capacitores Sex, 06 de Agosto de :26 - Última atualização Seg, 15 de Junho de :04
CAPACITORES I) RESUMO DO ESTUDO DE CAPACITORES OU CONDENSADORES São dispositivos que tem a função de armazenar cargas elétricas. Nos circuitos os capacitores quando estão carregados não passam correntes.
- Carga elétrica - Força elétrica -Campo elétrico - Potencial elétrico - Corrente elétrica - Campo magnético -Força magnetica
GOIÂNIA, / / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): Trabalho Recuperação 1º semestre No Anhanguera você é + Enem RELAÇÃO DE CONTEÚDOS PARA RECUPERAÇÃO - Carga elétrica - Força
As figuras acima mostram as linhas de indução de um campo magnético uniforme B r
1) No sistema mostrado abaixo, as roldanas e os fios são ideais e o atrito é considerado desprezível. As roldanas A, B, e C são fixas e as demais são móveis sendo que o raio da roldana F é o dobro do raio
1. Considere a figura abaixo, que representa uma carga elétrica pontual, Q, e um ponto P, onde é colocada uma carga de prova, q.
ESCOLA SECUNDÁRIA DE CASQUILHOS Ficha Formativa de FÍSICA 20 março 2018 12.º Ano Turmas A e B Professora: Maria do Anjo Albuquerque Duração do teste: 90 minutos. Este teste é constituída por 4 páginas
Exercício 3) A formação de cargas elétrica em objetos quotidianos é mais comum em dias secos ou úmidos? Justifique a sua resposta.
Exercícios Parte teórica Exercício 1) Uma esfera carregada, chamada A, com uma carga 1q, toca sequencialmente em outras 4 esferas (B, C, D e E) carregadas conforme a figura abaixo. Qual será a carga final
FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME
FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME ++ + ++++++++ + + + + + +++ - - - - - - - - - - - - - - - - - - - + + + + + A F B E - - - - - V A V B d P 2 { 1,0 cm + 10 cm P 1 { 1,0
Eletrostática. (Ufmg 2005) Em uma aula, o Prof. Antônio apresenta uma montagem com dois anéis dependurados, como representado na figura.
Eletrostática Prof: Diler Lanza TEXTO PARA A PRÓXIMA QUESTÃO (Ufmg 2005) Em uma aula, o Prof. Antônio apresenta uma montagem com dois anéis dependurados, como representado na figura. Um dos anéis é de
EXERCÍCIOS TERMODINÂMICA
RSE LISTA DE EXERCÍCIOS RECUPERAÇÃO FINAL Nome: Objetivo: Preparar-se para a prova de recuperação final 27/Novembro/2010 3º ANO Nº ENSINO MÉDIO EXERCÍCIOS TERMODINÂMICA 1. Um corpo recebe 40 Joules de
Trabalho e Potencial Elétrico
Parte I Trabalho e Potencial Elétrico 1 (Ufrj 011) Um íon de massa m e carga elétrica q incide sobre um segundo íon, de mesma massa m e mesma carga q De início, enquanto a separação entre eles é grande
2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion CAPACITORES. Segmento temático: Turma: A ( ) / B ( )
Professor(a): Jean Jaspion LISTA: 01 2ª série Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Segmento temático: QUESTÃO 01 (UEPG PR/2015) Capacitores são dispositivos elétricos amplamente utilizados em aparelhos
COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.
COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: Valor: Temas: - Força elétrica - Resistores - Associação de resistores - Geradores elétricos
a) diminui 1 x J. b) aumenta 1 x J. c) diminui 2 x J. d) aumenta 2 x J. e) não se altera.
1. A energia potencial elétrica U de duas partículas em função da distância r que as separa está representada no gráfico da figura abaixo. Uma das partículas está fixa em uma posição, enquanto a outra
a) 100 J. b) 150 J. c) 200 J. d) 300 J. e) 400 J.
1. Os capacitores planos C 1 e C mostrados na figura têm a mesma distância d e o mesmo dielétrico (ar) entre suas placas. Suas cargas iniciais eram Q 1 e Q, respectivamente, quando a chave CH1 foi fechada.
Física III-A /2 Lista 8: Indução Eletromagnética
Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de
30 o RASCUNHO. 1 a Questão: Valor : 1,0
RASCUNHO 12 1 a Questão: Valor : 1,0 Na figura a seguir os objetos A e B pesam, respectivamente, 40 N e 30 N e estão apoiados sobre planos lisos, ligados entre si por uma corda inextensível, sem peso,
Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 7 Geradores, Receptores e Capacitores
Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 7 Geradores, Receptores e Capacitores N2 Nota 1. Um gerador elétrico mantém entre seus terminais
COLÉGIO SHALOM Ensino Médio 3º Ano Profº: Wesley da Silva Mota Disciplina: Física. Estudante:. N o. "Foco, Força e Fé
65 COLÉGIO SHALOM Ensino Médio 3º Ano Profº: Wesley da Silva Mota Disciplina: Física Estudante:. N o. Trabalho de recuperação semestral Data: /08/2019 Valor: Nota: "Foco, Força e Fé 1 - (Unifesp) Duas
Capacitores Módulo FE.04 (página 66 à 68) Apostila 1. Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores
Aula 04 Capacitores Módulo FE.04 (página 66 à 68) Apostila 1 Capacitância Energia armazenada em um capacitor Capacitor Plano Associação de Capacitores 1 Capacitância Muitas são as pesquisas relacionadas
Estudo do Capacitor em Corrente Contínua
Unidade 4 Estudo do Capacitor em Corrente Contínua Nesta quarta unidade, você estudará alguns conceitos, características e comportamento do componente eletrônico, chamado capacitor. Objetivos da Unidade
Lista 02 Parte I. Capacitores (capítulos 29 e 30)
Lista 02 Parte I Capacitores (capítulos 29 e 30) 01) Em um capacitor de placas planas e paralelas, a área de cada placa é 2,0m 2 e a distância de separação entre elas é de 1,0mm. O capacitor é carregado
FÍSICA LISTA - TRABALHO DA FORÇA ELÉTRICA POTENCIAL ELÉTRICO E TRABALHO DA FORÇA ELÉTRICA
FÍSICA Prof. Bruno LISTA - TRABALHO DA FORÇA ELÉTRICA POTENCIAL ELÉTRICO E TRABALHO DA FORÇA ELÉTRICA 1. (UNIFESP-2008) A figura representa a configuração de um campo elétrico gerado por duas partículas
Capacitância C = Q / V [F]
Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através
Primeira Prova 2. semestre de /10/2013 TURMA PROF.
D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores
COLÉGIO SHALOM Ensino Médio 3º Série Profº: Wesley da Silva Mota Disciplina: Física. Estudante:. N o.
65 COLÉGIO SHALOM Ensino Médio 3º Série Profº: Wesley da Silva Mota Disciplina: Física Estudante:. N o. Trabalho de recuperação semestral. Data: 01/08/2018 Valor: Nota: 1 - (PUC) Os corpos eletrizados
( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.
FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores
a) carga elétrica. b) campo elétrico. c) corrente elétrica. d) capacitância elétrica. e) condutividade elétrica.
fluorescente, por estar próxima a uma descarga elétrica, é o(a) Questão 01 - (ENEM) Em museus de ciências, é comum encontrar-se máquinas que eletrizam materiais e geram intensas descargas elétricas. O
O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica.
O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica. Sua construção básica consiste de duas placas ou armaduras metálicas, separadas por um material isolante também
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A.
1. Seja o circuito elétrico apresentado, onde R = ohms. A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c),0 A. d) 4,0 A.. Um circuito de malha dupla
NOME: N RECUPERAÇÃO PARALELA DE FÍSICA I - TURMA 232 PROFº RODRIGO 1º BIMESTRE (VALENDO 2 PONTOS) FAZER EM PAPEL ALMAÇO COM LETRA LEGÍVEL)
1925 *** COLÉGIO MALLET SOARES *** 2015 90 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N RECUPERAÇÃO PARALELA DE FÍSICA I - TURMA 232 PROFº RODRIGO 1º BIMESTRE
Lei de Coulomb. Interação entre Duas Cargas Elétricas Puntiformes
Lei de Coulomb Interação entre Duas Cargas Elétricas Puntiformes A intensidade F da força de interação eletrostática entre duas cargas elétricas puntiformes q 1 e q 2, é diretamente proporcional ao produto
Capacitância e Dielétricos
Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em
CAMPO ELÉTRICO. Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Criado por cargas elétricas.
CAMPO ELÉTRICO Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Campo Elétrico Criado por cargas elétricas. Representado por linhas de campo. Grandeza
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor
Lista de Exercícios 4
Lista de Exercícios 4 Leis da Indução Exercícios Sugeridos A numeração corresponde ao Livros Textos A e B. A23.1 Uma espira plana com 8,00 cm 2 de área consistindo de uma única volta de fio é perpendicular
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÃO 50 Se aumentarmos o valor da corrente através de um fio condutor, o que acontece com o campo magnético: a. Diminui a intensidade b. Aumenta a
q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome:
MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 208/209 EC004 FÍSCA 2º ANO, º SEMESTRE 23 de janeiro de 209 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode
CURSO E COLÉGIO OBJETIVO
1. (Ufpe 96) Duas cargas elétricas - Q e + q são mantidas nos pontos A e B, que distam 82 cm um do outro (ver figura). Ao se medir o potencial elétrico no ponto C, à direta de B e situado sobre a reta
Nome do Aluno: Nº Ensino Médio 2º ano.
Valor do trabalho: 10 pontos NOTA: Nome do Aluno: Nº Ensino Médio 2º ano. Trabalho de recuperação paralela de Física Setor A Prof. Douglas Rizzi Data: / / INSTRUÇÕES GERAIS: Responda os testes com atenção
Potencial elétrico e energia potencial elétrica Capítulo
Potencial elétrico e energia potencial elétrica Capítulo Potencial elétrico e energia potencial elétrica Potencial elétrico Se uma carga de prova q for colocada em um campo elétrico, ficará sujeita a uma
Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker
14 de dezembro de 016 EXERCÍCIOS CAPACITORES Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker Capacitância 1 Os dois objetos
Questão 1. Questão 3. Questão 2
Questão 1 A autoindutância (ou simplesmente indutância) de uma bobina é igual a 0,02 H. A corrente que flui no indutor é dada por:, onde T = 0,04 s e t é dado em segundos. Obtenha a expressão da f.e.m.
Roteiro de Recuperação 1 Semestre 1, 2, 3 e 4 Momento INSTRUÇÕES PARA A PARTICIPAÇÃO NA RECUPERAÇÃO
Roteiro de Recuperação 1 Semestre 1, 2, 3 e 4 Momento Nome: nº 3ª Série: Disciplina: Física Professor: Caio, João, Kobax Período de recuperação: de / a / INSTRUÇÕES PARA A PARTICIPAÇÃO NA RECUPERAÇÃO 1.
APROFUNDAMENTO DO PRIMEIRO CAPÍTULO Extensivo Prof. Adson Filizzola
APROFUNDAMENTO DO PRIMEIRO CAPÍTULO Extensivo 2016 - Prof. Adson Filizzola 01. A figura ilustra dois pêndulos elétricos feitos com esferas condutoras de mesmo raio. Elas foram eletrizadas por contato com
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:
25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda,
25-1 Capacitância Capacitor é um dispositivo usado para armazenar energia elétrica. As pilhas de uma máquina fotográfica, por exemplo, armazenam a energia necessária para disparar um flash, carregando
ENERGIA POTENCIAL. Prof. Márcio Marinho
ENERGIA POTENCIAL Prof. Márcio Marinho Energia potencial gravitacional (Energia armazenada) Energia potencial elástica (Energia armazenada) Energia potencial elétrica (Energia armazenada) q E p = K Q q
Teo. 9 - Capacitância
Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados
Eletricidade lista de exercícios
Eletricidade lista de exercícios Requisito: leitura da seção 9.6 do livro B. Alvarenga (além do conhecimento da última lição: linhas de força e superfícies equipotenciais.) 1. (BA) Uma carga positiva Q
Colégio Planeta. Prof.: Pedrão FÍSICA Data: 06 / 06 / Aluno(a): 2ª Série Turma: Turno:
Colégio Planeta Prof.: Pedrão FÍSICA Data: 06 / 06 / 018 04 Aluno(a): ª Série Turma: Turno: 01 - (UEG GO/015) Uma carga Q está fixa no espaço, a uma distância d dela existe um ponto P, no qual é colocada
INDUÇÃO ELETROMAGNÉTICA
INDUÇÃO ELETROMAGNÉTICA 1. (ITA 2009) Uma haste metálica com 5,0 kg de massa e resistência de 2,0 Ω desliza sem atrito sobre duas barras paralelas separadas de 1,0 m, interligadas por um condutor de resistência
PROVA DE FÍSICA II. 04. Dois satélites artificiais A e B, de massas diferentes, são colocados em uma mesma órbita de raio r em torno da Terra.
PROVA DE FÍSCA Esta prova tem por finalidade verificar seus conhecimentos das leis que regem a natureza. nterprete as questões do modo mais simples e usual. Não considere complicações adicionais por fatores
Lista de Exercícios de Corrente
Disciplina: Física F Professor: Joniel Alves Lista de Exercícios de Corrente 1) Um capacitor de placas paralelos, preenchido com ar, tem uma capacitância de 1 pf. A separação de placa é então duplicada
ATENÇÃO LEIA ANTES DE FAZER A PROVA
Física Teórica II Segunda Prova A 2º. semestre de 2015 ALUNO TURMA PROF. NOTA DA _ PROVA ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine a prova antes de começar. 2 - Os professores não poderão responder
PROCESSO SELETIVO TURMA DE 2018 FASE 1 PROVA DE FÍSICA E SEU ENSINO
1 PROCESSO SELETIVO TURMA DE 218 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora: Esta prova tem 2 partes. A primeira parte é objetiva, constituída por 14 questões de múltipla escolha,
CONDUTORES E ISOLANTES
ELETRICIDADE CONDUTORES E ISOLANTES O FÍSICO INGLÊS STEPHEN GRAY PERCEBEU QUE ALGUNS FIOS CONDUZIAM BEM A ELETRICIDADE E CHAMOU-OS DE CONDUTORES E, AOS QUE NÃO CONDUZIAM OU CONDUZIAM MAL A ELETRICIDADE,
ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!
ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,
DISCIPLINA: Física II - PDF PROFESSOR(A): Eduardo R Emmerick Curso: E.M. TURMA: 2101 / 2102 DATA:
Lista de exercícios 1º Bimestre DISCIPLINA: Física II - PDF PROFESSOR(A): Eduardo R Emmerick Curso: E.M. TURMA: 2101 / 2102 DATA: NOME: Nº.: 01) (UFF) Três esferas condutoras idênticas I, II e II têm,
Exercícios sobre Força de Coulomb
Exercícios sobre Força de Coulomb 1-Duas cargas elétricas iguais de 2 10 6 C se repelem no vácuo com uma força de 0,1 N. Sabendo que a constante elétrica do vácuo é de 9 10 9 N m 2 /C 2, qual a distância
Figura 14 Capacitor.
11 2. CAPACITORES Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em
1. (Ufrj) Um satélite geoestacionário, portanto com período igual a um dia, descreve ao redor da Terra uma
1. (Ufrj) Um satélite geoestacionário, portanto com período igual a um dia, descreve ao redor da Terra uma trajetória circular de raio R. Um outro satélite, também em órbita da Terra, descreve trajetória
INSCREVA-SE: CANAL FISICA DIVERTIDA. ELETRIZAÇÃO, LEI DE COULOMB e CAMPO ELÉTRICO
ELETRIZAÇÃO, LEI DE COULOMB e CAMPO ELÉTRICO 1. (FUVEST) Três esferas metálicas, M 1, M 2 e M 3, de mesmo diâmetro e montadas em suportes isolantes, estão bem afastadas entre si e longe de outros objetos.
Corrente e resistência
Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos [email protected] Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua
Calorimetria (Unesp 92) Considere as seguintes afirmações incompletas:
1. (Fuvest 93) Um recipiente de vidro de 500 g e calor específico 0,20 cal/g C contém 500 g de água cujo calor específico é 1,0 cal/g C. O sistema encontra-se isolado e em equilíbrio térmico. Quando recebe
Campo Elétrico. a) Q < 0 e q < 0. b) Q > 0 e q < 0. c) Q < 0 e q neutra. d) Q > 0 e q > 0. e) Q < 0 e q > 0.
QUESTÃO 1 Uma partícula carregada positivamente é abandonada do ponto A da figura, presa a um fio isolante, em uma região de campo elétrico uniforme, como mostra a figura. Desprezando a ação gravitacional,
Física. 28)Para exemplificar pares de forças, segundo o princípio da ação-reação, são apresentadas as seguintes situações:
Física 26) De um determinado local da superfície da Terra um objeto é lançado verticalmente para cima Considerando as seguintes grandezas físicas envolvidas nesse experimento: 1 velocidade inicial de lançamento,
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Disciplina:
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Disciplina: Professor: Física Eduardo LISTA DE EXERCÍCIOS PROVA FINAL Data: 28/10 /2011 Série/Turma: 3 Ano EF TÓPICO 01: ELETROSTÁTICA 01 (Unicamp) Cada uma das figuras
Lista de Exercícios de Potencial Elétrico
Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Potencial Elétrico 1) Um elétron se move de um ponto i para um ponto f, na direção de um campo elétrico uniforme. Durante este deslocamento
Lista de Exercícios 2 Potencial Elétrico e Capacitância
Lista de Exercícios 2 Potencial Elétrico e Capacitância Exercícios Sugeridos (14 de março de 2007) A numeração corresponde ao Livros Textos A e B. B25.10 Considere dois pontos numa região onde há um campo
ELETROSTÁTICA. 20 C) toca a esfera B (Q B. 2 C); após alguns instantes, afasta-se e toca na esfera C (Q C. 6 C), retornando à posição inicial.
EETROSTÁTIC 01 Dizer que a carga elétrica é quantizada significa que ela: a) só pode ser positiva b) não pode ser criada nem destruída c) pode ser isolada em qualquer quantidade d) só pode existir como
Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1
Cap. 25 Capacitância Prof. Oscar Rodrigues dos Santos [email protected] Capacitância 1 Capacitor Capacitor é um dispositivo que serve para armazenar energia elétrica. Tem a função de armazenar cargas
UNIVERSIDADE FEDERAL FLUMINENSE
2018 UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA FACULTATIVA FÍSICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação, dois
Podemos afirmar que a carga final da esfera A vale: a) zero b) + Q/2 c) - Q/4 d) + Q/6 e) - Q/8
1. A uma distância d uma da outra, encontram-se duas esferinhas metálicas idênticas, de dimensões desprezíveis, com cargas - Q e + 9 Q. Elas são postas em contacto e, em seguida, colocadas à distância
Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.
apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais
CAPACITOR. Capacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão.
APAITOR apacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão. O capacitor possui dois terminais para sua polarização (d.d.p.). Dentro do
Ensino Médio. Lista. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 10 Indução Eletromagnética
Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 10 Indução Eletromagnética Lista 1. A espira circular de área A = 60 cm 2 passa da posição
Curso: E.M. TURMA: 2101 e 2102 DATA:
EXERCÍCIOS ON LINE 2º Bimestre DISCIPLINA: Física II PROFESSOR(A): Eduardo R Emmerick Curso: E.M. TURMA: 2101 e 2102 DATA: NOME: Nº.: 01) Vamos supor que temos uma partícula carregada com carga q = 4 μc
