3. C a C pacid i ade ou o Ca C pacit i ância i de um m Ca C pacit i or

Tamanho: px
Começar a partir da página:

Download "3. C a C pacid i ade ou o Ca C pacit i ância i de um m Ca C pacit i or"

Transcrição

1 Capacitores 1. Capacitores ou Condensadores Capacitores ou condensadores são elementos elétricos capazes de armazenar carga elétrica e, conseqüentemente, energia potencial elétrica. Podem ser esféricos, cilíndricos ou planos, constituindo-se se de dois condutores denominados armaduras que, ao serem eletrizados, armazenam cargas elétricas de mesmo valor absoluto, porém de sinais contrários.

2 2. Capacitor Plano É constituído por duas placas iguais, planas e paralelas que, ao serem conectadas a um gerador, adquirem cargas elétricas, como mostra a figura.

3 O símbolo do capacitor é constituído por duas barras iguais e planas que representam as armaduras do capacitor plano. Qualquer que seja o tipo de capacitor, sua representação será a mesma do capacitor plano. Quando as placas das armaduras estão eletricamente neutras, dizemos que o capacitor está descarregado. Ao conectarmos o capacitor a um gerador, ocorre um fluxo ordenado de elétrons nos fios de conexão, pois inicialmente há uma diferença de potencial entre a armadura e o terminal do gerador ao qual está ligada. Na figura do slide anterior, A armadura A tem, inicialmente, potencial elétrico nulo e está conectada ao terminal positivo da pilha; logo, os elétrons migram da armadura para a pilha, já a armadura B, que também tem potencial elétrico nulo, está conectada ao terminal negativo da pilha, e assim elétrons migram do terminal da pilha para a armadura B. Acontece que, enquanto a armadura A está perdendo elétrons, ela está se eletrizando positivamente e seu potencial elétrico está aumentando; o mesmo ocorre na armadura B, só que ao contrário, ou seja, B está ganhando elétrons, eletrizando-se negativamente, e seu potencial elétrico está diminuindo. Esse processo cessa ao equilibrarem-se os potenciais elétricos das armaduras com os potenciais elétricos dos terminais do gerador, ou seja, quando a diferença de potencial elétrico (ddp) entre as armaduras do capacitor for igual à ddp nos terminais do gerador, e nesse caso dizemos que o capacitor está carregado com carga elétrica máxima. Num circuito, só há corrente elétrica no ramo que contém o capacitor enquanto este estiver em carga ou em descarga.

4 3. Capacidade ou Capacitância de um Capacitor A carga elétrica armazenada em um capacitor é diretamente proporcional à diferença de potencial elétrico ao qual foi submetido. Assim sendo, definimos capacidade eletrostática C de um capacitor como a razão entre o valor absoluto da carga elétrica Q e a ddp U(ou V) nos seus terminais. Q = C.U ou Q=C.V C = Q V Essa carga elétrica corresponde à carga de sua armadura positiva. A capacidade eletrostática de um capacitor depende da forma e dimensões de suas armaduras e do dielétrico (material isolante) entre as mesmas. A unidade de capacidade eletrostática, no SI, é o farad (F). 1 F = 1 Coulomb/Volt.

5 4. Energia Armazenada O gráfico abaixo representa a carga elétrica Q de um capacitor em função da ddp U nos seus terminais. Q e U são grandezas diretamente proporcionais, o gráfico é uma função linear, pois a capacidade eletrostática C é constante. Considerando que o capacitor tenha adquirido a carga Q quando submetido à ddp U do gráfico, a energia elétrica W elétrica armazenada no capacitor corresponde à área do triângulo hachurado. e como Q = C.U, então

6 Exercícios Resolvidos 1. Carrega-se um capacitor de capacidade eletrostática 5 µf com carga elétrica de 20 µc. Calcule a energia potencial elétrica armazenada no capacitor. Resolução Calculando a ddp U nos terminais do capacitor: -6 Q Q 20µC C C = U U 4V -6 U = C = 5µF = 5.10 F = W elétrica -6 Q.U (20.10 C).(4V) = = = J

7 2. Um capacitor armazena J de energia quando submetido à ddp U. Dobrando-se a ddp nos seus terminais, a energia armazenada passa a ser: Resolução 2 CU' W' elétrica U' 2U = = Welétrica CU = U U = = W' 2 elétrica 4Welétrica J

8 5. Capacidade Eletrostática do Capacitor Plano O capacitor plano é constituído de duas placas planas, condutoras, paralelas entre as quais é colocado um material isolante denominado dielétrico. Esse material isolante pode ser: vácuo, ar, papel, cortiça, óleo etc. A capacidade eletrostática do capacitor plano depende das seguintes grandezas: área das placas: A distância entre as placas: d permitividade elétrica do meio:ε diretamente da constante dielétrica ica do meio entre as placas; Demonstra-se que a capacidade eletrotática, é dada C ε.a = d Esta expressão final permite concluir que a capacidade eletrostática de um capacitor plano depende: diretamente da A área das placas; inversamente da distância d entre as placas. Lembrando que no caso de o meio entre as placas ser o vácuo, o valor da constante dielétrica é: ε 0 = 8, F/m po r:

9 Exercícios Resolvidos 1-Um capacitor plano é conectado a uma pilha de força eletromotriz constante, como mostra a figura, adquirindo carga elétrica Q. Mantendo-o o conectado à pilha, afastam-se se as placas até que a distância entre as mesmas seja o triplo da inicial. Ao término do processo, sua carga elétrica será: Re solução : ε.a ε.a C 0 = e C = onde d = 3d0 C0 = 3C d d 0 A ddp nos terminais do capacitor não mudou. Q0 Q Q0 Q Q0 U0 = U = = Q = C C 3C C 3 0

10 6. Associação de Capacitores Da mesma forma que os resistores, geradores e receptores, os capacitores também podem ser associados em série, em paralelo ou em associações mistas. Associação em série Dois ou mais capacitores estarão associados em série quando entre eles não houver nó, ficando, dessa forma, a armadura negativa de um ligada diretamente à armadura positiva do outro. Ao estabelecermos uma diferença de potencial elétrico nos terminais da associação, haverá movimentação de elétrons nos fios que unem os capacitores até que estes estejam completamente carregados. Ao ser conectada ao terminal positivo da pilha, a armadura do capacitor C 1 fica eletrizada positivamente e induz uma separação de cargas no fio que o liga ao capacitor C 2, atraindo elétrons para sua outra armadura que fica eletrizada negativamente e, conseqüentemente, eletrizando a armadura positiva do capacitor C 2, que por sua vez induz uma separação de cargas no fio que une este ao capacitor C 3, e assim por diante. Esse fato nos permite concluir que: todos os capacitores ficam carregados com a mesma carga elétrica Q; a carga elétrica armazenada na associação é igual a Q, pois foi essa quantidade que a pilha movimentou da armadura positiva do capacitor C 1 para a armadura negativa do capacitor C 3.

11 Capacitor equivalente de uma associação em série Denominamos Capacitor Equivalente aquele capacitor que, submetido à mesma ddp U que a associação, adquire a mesma carga elétrica Q da associação. Para a associação em série temos: por ser uma associação em série, a ddp U nos terminais da associação é igual à soma Sendo a ddp em cada capacitor: 1 = 2 = 3 = C1 C2 C3 das ddps individuais em cada capacitor. U = U + U + U Q Q Q U ; U ; U. Q Para o capacitor equivalente, temos: U = e, como U = U1 + U2 + U3 CS Q Q = + Q Q + 1 = C C C C C C C C S S Regra para ser aplicada para dois capacitores em série de cada vez C + C C.C Produto = + = C = = C C C C C.C C C Soma S S 1 2 S

12 Associação em paralelo Dois ou mais capacitores estão associados em paralelo quando seus terminais estão ligados aos mesmos nós e, conseqüentemente, sujeitos à mesma diferença de potencial U. Na figura, os capacitores estão com seus terminais ligados aos mesmos nós A e B. Conectando os nós A e B aos terminais da pilha, os capacitores ficam sujeitos à mesma ddp U e, se suas capacidades eletrostáticas forem diferentes, adquirem cargas elétricas Q 1 e Q 2 diferentes entre si. As armaduras ligadas ao nó A cedem elétrons para a pilha e as ligadas ao nó B recebem elétrons da pilha, de modo que a carga elétrica total movimentada pela pilha, das armaduras positivas para as negativas, é igual à soma das cargas Q 1 e Q 2, até atingido o equilíbrio eletrostático. α Portanto, concluímos que: a carga elétrica Q armazenada na associação é igual à soma das cargas elétricas armazenadas em cada capacitor: Q=Q 1 +Q 2 essa carga elétrica é igual à quantidade de carga elétrica movimentada pela pilha das armaduras positiva para as negativas dos capacitores da associação; por ser uma associação em paralelo, a ddp U nos terminais A e B da associação é a mesma para todos os capacitores.

13 Capacitor equivalente de uma associação em paralelo A carga elétrica em cada capacitor é: Q 1 = C 1.U e Q 2 = C 2.U No capacitor equivalente temos: Q = C P.U Como Q = Q 1 + Q 2, então C P U = C 1 U + C 2 U a capacidade eletrostática do capacitor equivalente é dada por: C P = C 1 + C 2 Importante! Note Bem! Qualquer que seja o tipo de associação, série, paralelo ou mista, a energia elétrica armazenada na associação é igual à soma das energias elétricas de cada capacitor individualmente e que é igual à energia elétrica no gerador equivalente. W ASSOCIAÇÃO =W 1 +W 2 +W W n

14 7.Circuitos com Capacitores Existem circuitos constituídos de geradores, receptores e resistores. A esses circuitos podemos acrescentar capacitores que poderão estar em série ou em paralelo aos elementos do mesmo. A. Circuito com Capacitor em Série Circuito RC-série (resistor-capacitor em série). Com a chave Ch aberta(figura1) não há corrente. Ao fechar-se a chave Ch circulará no circuito uma corrente elétrica (figura 2) que diminui de intensidade com o decorrer do tempo até o instante em que se torna nula. Essa corrente é proveniente dos elétrons que abandonam a armadura positiva do capacitor, circulam pelo resistor e pelo gerador e alojam-se na armadura negativa do capacitor sem atravessá-lo, devido ao dielétrico (isolante) entre as placas. Quando o capacitor está carregado, a ddp U XZ nos terminais do capacitor é igual à ddp U XY nos terminais do gerador, pois, no resistor, não havendo corrente não há ddp (U YZ = 0), ou seja, os potenciais elétricos de Y e Z são iguais. Nesse caso então U XZ = U XY = E (fem) do gerador pois este se encontra em circuito aberto.

15 B. Circuito com Capacitor em Paralelo Na figura 1, a chave Ch está aberta e, assim, não há corrente no circuito, nem ddp entre os terminais A e B do resistor e do capacitor. B. Circuito com Capacitor circuito em RC-paralelo Paralelo (resistor-capacitor em paralelo). Ao fecharmos a chave Ch (figura 2), estabelece-se uma corrente no circuito e, conseqüentemente, haverá ddp entre A e B. Durante um intervalo de tempo muito curto, há uma corrente decrescente no ramo do capacitor, enquanto este está se carregando. Essa corrente não atravessa o capacitor por causa do dielétrico (isolante) entre as placas. Com o capacitor já carregado, não há mais passagem de corrente pelo ramo do capacitor. Pelo fato de o capacitor estar em paralelo com o resistor, ambos estão sujeitos à mesma ddp U, tal que: U AB =R.i onde i E = r + R A carga elétrica,q, armazenada no capacitor é dada por: Q = C.U AB eq

16 Exercícios Resolvidos 01. Dois capacitores de capacidades eletrostáticas C 1 = 2µF e C 2 = 6µF estão associados fonte que fornece uma ddp constante de 20 V. Determinar: a) a capacidade eletrostática do capacitor equivalente; b) a carga elétrica de cada capacitor; c) a ddp nas armaduras de cada capacitor. a) Calculo da capacidade equivalente: C S C.C 2.6 C + C = = = ,5µF b) A carga do capacitor equivalente é igual à carga de cada capacitor: Q = Q = Q Q = C.U Q = 1,5µF.20V Q = 30µC S estão associados em série e ligados a uma Q Q 30µC c) Como U =, temos:u = = U = 15V e C C 2µF Q 30µC U = = U = 5V 2 1 C2 6µF 1 1 1

17 02. Dois capacitores de capacidades eletrostáticas C 1 = 2µF e C 2 = 6µF estão associados em paralelo e ligados a uma 02. Dois capacitores de capacidades eletrostáticas uma ddp constante de 30 V. Determinar: a) a capacidade eletrostática da associação; b) a carga elétrica de cada capacitor; c) a energia elétrica armazenada na associação. e ligados a uma fonte que fornece R e s o lu ç ã o a ) C a lc u la n d o a c a p a c i d a d e e q u i v a le n te : C = C + C = 2µF + 6µF = 8µF p 1 2 b) Sendo Q = C U e como U é a mesma para todos, temos: Q = C.U = 2µF.30V Q = 60µC Q = C.U = 6µF.30V Q = 180µC Q.U c ) S e n d o a e n e r g i a e lé t r i c a d a d a p o r : W = 2 Q 1.U 6 0µC.3 0 V W 1 = = W 1 = 9 0 0µJ 2 2 Q 2.U 1 8 0µC.3 0 V W 2 = = W 1 = µJ 2 2

18 03. Dado o circuito, o valor da força eletromotriz E do gerador, estando o capacitor carregado com uma carga elétrica de 10µC,, vale: R esolução Sendo um circuito RC-série, a ddp nos terminais do capacitor é igual à força eletromotriz do gerador, assim: Q 10µC E = U = = E = 50V C 0,2µF

19 04. A carga e a energia elétrica armazenada no capacitor do circuito abaixo valem, respectivamente: Resolução Trata-se de um circuito RC-paralelo e, para calcular a ddp U nos terminais do resistor, devemos primeiro calcular a corrente no circuito. ε eq 120V Sendo i = i = i = 5A r+r 4Ω + 20Ω A ddp U nos terminais do capacitor e nos terminais do resistor são iguais: U=R.i U=20V.5A U=100V A carga elétrica no capacitor,é: Q=C.U Q = 0,2µF.100V Q = 20µC A energia armazenada pelo capacitor é dada por: W ELÉTRICA Q.U 2 20µC.100V = W = 1000µJ 2 = WELÉTRI CA ELÉTRICA

20 Questões da Apostila Questões de Treinamento(Página 148) 01-As armaduras de um capacitor plano a vácuo apresentam área A=0,10m 2 e estão situadas a uma distância d=2,0cm.. Esse capacitor é carregado sob ddp U=1000V. Determine: ( a) A capacitância do capacitor; b) A carga elétrica do capacitor. Determine: (Considerando ε 0 = F/m)

21 Resolução QT01 ε.a F 8,8.10.0,10m m a) C = 0 = = 4, F d 2, m b) Q = C.U = 4,4.10 F.1000V = 4,4.10 C

22 02- Um capacitor é constituído por duas placas planas e paralelas, cuja capacitância pode ser modificada variando a distância entre as placas. Com capacitância de F, foi carregado o capacitor com 100V e, a seguir, desligado do gerador. Em seguida afastam-se se as placas até a capacitância cair a F. Calcule a nova ddp entre as placas.

23 Resolução QT02 Q Q U' C F U U' U C' F C = e C' = = U' =.100V = 500V

24 03-Um capacitor de capacitância C= F é ligado a uma pilha de fem 3V e resistência interna r=0,1ω.. Calcule a carga e a energia potencial elétrica do capacitor.

25 QT03 Resolução O capacitor estará totalmente carregado quando a ddp entre suas armaduras for igual a fem do gerador Q = C.U = 2.10 F.3V = 6.10 C = 6µC C.U 2.10 F.(3V) E = = = 9.10 J = 9µJ

26 04-Três capacitores são associados conforme a figura. Fornecendo-se à associação a carga elétrica de 12µC,, determine: a) A carga elétrica e a ddp em cada capacitor; b) A ddp da associação; c) A capacitância do capacitor equivalente; d) A energia potencial elétrica da associação.

27 QT04 Resolução a) A carga elétrica é a mesma em todos os capacitores(12µc). Q 12µC Q 12µC Q 12µC V = = = 4V V = = = 3V V = = = 2V C 3µF C 4µF C 6µF b) V = V + V + V = 9V AB c) = + + = + + C eq = µf C C C C C 3µF 4µF 6µF 3 eq eq d) E = ASSOC C eq. (V ) µf.(4v) AB = 3 = µJ

28 05-Três capacitores são associados conforme a figura. Aplicando-se entre A e B a ddp de 10V,, determine: a) A ddp e carga elétrica em cada capacitor; b) A carga elétrica da associação; c) A capacitância do capacitor equivalente; d) A energia potencial elétrica da associação.

29 Resolução QT05 Determinação da capacitância do capacitor equivalente C = C + C + C = 2µF + 5µF + 10µF = 17µF ASSOC A ddp é a mesma em todos os capacitores V = V = V = V = 10V AB Q = C.V = 2µF.10V = 20µC Q = C.V = 5µF.10V = 50µC = 3 3 ASSOC Q = C.V = 10µF.10V = 100µC Q = Q + Q + Q = 170µC 2 2 C eq.(v AB) 17µF.(10V) EASSOC = = = 850µJ 2 2

30 06-Para o esquema dado, determine: a) A carga elétrica total armazenada pela associação; b) A energia potencial elétrica armazenada pela associação.

31 Resolução QT06 Determinação da capacitância do capacitor equivalente 1µF em série com 1µF 0,5µF 2µF em série com 2µF 1µF 0,5µF em paralelo com 1µF 1,5µF a) Q = C.U = 1,5µF.100V = 150µC b) E ASSOC ASSOC ASSOC 2 C.(V ) 1,5µF.(100V) = eq AB = = 3 7,5.10 J

32 07- A capacidade do condensador (capacitor) equivalente da associação mostrada na figura é:

33 Resolução QT07 (OpçãoB) C C i) em paralelo com equivalente igual a C 2 2 C ii) C em série com C equivalente igual a 2 C C iii) em paralelo com equivalente igual a C 2 2 iv) Três iguais a C em série equivalente igual a C 3

34 OBJETIVAS 01- O gerador do circuito a seguir é ideal. A ddp nos terminais do capacitor de 3µF é de : (A) 2V (B) 4V (C) 8V (D) 16V (E) 32V

35 Resolução QO01 (OpçãoD) A ddp nos terminais da associação é igual a ddp nos terminais do resistor de 8 Ω. A intensidade de corrente elétrca que atravessa o resistor de 8Ω é dada por :I 30V Seu valor é: I = = 3A 2 Ω + 8Ω A ddp nos terminais de R = 8 Ω é: U = R.I = 8 Ω.3A = 24V 8Ω ε = r + R A capacitância equivalente de (4µF em paralelo com 2µF) e em série com 3µF é igual a 20µF. A carga elétrica da associação é: Q = C xu = 48µ C. ASSOC ASSOC ASSOC A carga elétrica no capacitor é também de 48µC. Q 48µC 3 A ddp nos terminais do capacitor de 3µF é: U3 = = = 16V. C3 3µF

36 02- No circuito mostrado na figura a seguir, a força eletromotriz da bateria é ε = 10V e sua resistência interna é r = 1,0Ω. Sabendo que R = 4,0Ω e C = 2,0µF,, e que o capacitor já se encontra completamente carregado, considere as seguintes afirmações: I. A indicação do amperímetro é 0A; IV. II. A carga armazenado no capacitor é de 16µF; III. A tensão entre os pontos a e b é 2,0V; A intensidade de corrente na resistência R é de 2,5A. Das afirmativas mencionadas, é (são) correta(s): (A) Apenas I (B) I E II (C) I e IV (D) II e III (E) II e V

37 QO02(OpçaõB) Resolução Se o capacitor está completamente carregado, não circula corrente elétrica no ramo onde ele se encontra.(afirmação I verdadeira). A ddp nos terminais do capacitor é dada por: Q ε R.I e I é dado por ;Calculo dos valores citados : r + R ε 10V I = = = 2,0A.(Afirmação IV falsa). r + R 1,0Ω + 4,0Ω ab ab = C.U e U é U = R.I = 4,0 Ω.2, 0A U = 8, 0V.(Afirmação III falsa). Q = C.U = 2,0µF.8,0V Q= 16µC.(Afirmação II verdadeira). ab ab ab calculado pelo produto

38 11µF. 03- Na figura cada capacitor tem capacitância de C=11 Entre os pontos A e B existe uma ddp de 10V. Qual é a carga elétrica total armazenada no circuito? (A) 3, C (B) 4, C (C) 5, C (D) 6, C (E) 7, C

39 Resolução QO03(OpçaõB) 4 Q = C.U =.11µF.10V Q = 40µC. AB AB AB 11 A C A C A B C C C/3 4C/3 4C/11 B C B

40 05- No circuito a seguir, estando o capacitor com plena carga, levamos a chave k da posição I para II. A quantidade de energia térmica liberada pelo resistor de 5Ω após essa operação é: (A) 1 J (B) 3 J (C) 6 J (D) 12 J (E) 15 J

41 Resolução QO05(OpçaõC) A ddp nos terminais do capacitor é de 20V C.U F.(20V) A energia armazenada por ele é: E = = = 6J. 2 2 Essa energia será dissipada por Efeito Joule no resistor de 5 Ω.

42 Questões Discursivas 01- Um raio entre uma nuvem e o solo ocorre devido ao acúmulo de carga elétrica na base da nuvem, induzindo uma carga de sinal contrário na região do solo abaixo da nuvem. A base da nuvem está a uma altura de 2 km e sua área é de 200 km 2. Considere uma área idêntica no solo abaixo da nuvem. A descarga elétrica de um único raio ocorre em 10-3 s e apresenta uma corrente de 50 ka. Considerando ε 0 = F/m, responda: a) Qual a carga elétrica armazenada na base da nuvem no instante anterior ao raio? b) Qual é a capacitância do sistema nuvem-solo nesse instante? c) Qual a ddp entre a nuvem e o solo, imediatamente antes do raio?

43 Resolução QD01 a) Q = Ix t = Ax10-3 s Q = 50C F.200(10 m) ε0a m 7 b) C = = = 9.10 F. 3 d Q C 2.10 m 50C 9.10 F 7 c) Q = CU U = = = 5,0.10 V. -7

44 03- Para a segurança dos clientes, o supermercado utiliza lâmpadas de emergência e rádios transmissores que trabalham com corrente continua. Para carregar suas baterias, no entanto, esses dispositivos utilizam corrente alternada. Isso é possível graças a seus retificadores que possuem, cada um, dois capacitores de 1.400µF, associados em paralelo. Os capacitores, descarregados e ligados a uma rede elétrica de tensão máxima igual a 170V,, estarão com carga plena após um certo intervalo de tempo t. Considerando t, determine: a) a carga elétrica total armazenada; b) a energia potencial elétrica total armazenada.

45 Resolução QD03 a) C = C + C = 2800µF Q = CU = 2800µF.170V Q = 0,48C CU 2800µF.(170V) b) EP = = = 40,5J 2 2

Apostila de Física 36 Capacitores

Apostila de Física 36 Capacitores Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador

Leia mais

CIRCUITOS COM CAPACITORES

CIRCUITOS COM CAPACITORES CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre

Leia mais

CAPACITORES. Prof. Patricia Caldana

CAPACITORES. Prof. Patricia Caldana CAPACITORES Prof. Patricia Caldana Em vários aparelhos elétricos existem dispositivos cuja função é armazenar cargas elétricas. Um exemplo simples é o flash de uma máquina fotográfica. Na figura abaixo,

Leia mais

GERADORES E RECEPTORES:

GERADORES E RECEPTORES: COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar

Leia mais

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: 25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,

Leia mais

EXERCÍCIOS DE TREINAMENTO

EXERCÍCIOS DE TREINAMENTO 1. (G1) O que é um farad (F)? EXERCÍCIOS DE TREINAMENTO RSE 2. (Unesp) São dados um capacitor de capacitância (ou capacidade) C, uma bateria de f.e.m. e dois resistores cujas resistências são, respectivamente,

Leia mais

A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A.

A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A. 1. Seja o circuito elétrico apresentado, onde R = ohms. A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c),0 A. d) 4,0 A.. Um circuito de malha dupla

Leia mais

1ª LISTA DE FÍSICA 1º BIMESTRE

1ª LISTA DE FÍSICA 1º BIMESTRE Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece

Leia mais

Condensador equivalente de uma associação em série

Condensador equivalente de uma associação em série Eletricidade Condensadores São componente constituído por dois condutores separados por um isolador: os condutores são chamados armaduras (ou placas) do condensador e o isolante é o dielétrico do condensador.

Leia mais

CAPACITORES Profº João Escalari DP ESQ

CAPACITORES Profº João Escalari DP ESQ 1. Três esferas condutoras de raios R, 3R e 5R e eletrizadas, respectivamente, com quantidade de cargas iguais a - 15 C, - 30 C e + 13 C estão muito afastadas entre si. As esferas são então interligadas

Leia mais

Teo. 9 - Capacitância

Teo. 9 - Capacitância Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados

Leia mais

Circuitos elétricos. Prof. Fábio de Oliveira Borges

Circuitos elétricos. Prof. Fábio de Oliveira Borges Circuitos elétricos Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

a) 100 J. b) 150 J. c) 200 J. d) 300 J. e) 400 J.

a) 100 J. b) 150 J. c) 200 J. d) 300 J. e) 400 J. 1. Os capacitores planos C 1 e C mostrados na figura têm a mesma distância d e o mesmo dielétrico (ar) entre suas placas. Suas cargas iniciais eram Q 1 e Q, respectivamente, quando a chave CH1 foi fechada.

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

Física C Semiextensivo V. 4

Física C Semiextensivo V. 4 GRITO Física Semiextensivo V. 4 Exercícios 0) a) 0 ; b) 800 W; c) 4,0 Ω; d) 80 V. 0) a) P consumida 00 W V 0 V P V. i 00 0. i i 0 b) P útil? P consumida P útil + P dissipada 00 P útil + 400 P útil 800

Leia mais

Resumo e exercícios sobre capacitores Sex, 06 de Agosto de :26 - Última atualização Seg, 15 de Junho de :04

Resumo e exercícios sobre capacitores Sex, 06 de Agosto de :26 - Última atualização Seg, 15 de Junho de :04 CAPACITORES I) RESUMO DO ESTUDO DE CAPACITORES OU CONDENSADORES São dispositivos que tem a função de armazenar cargas elétricas. Nos circuitos os capacitores quando estão carregados não passam correntes.

Leia mais

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo. FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Resistores e Associação de Resistores Gabarito Parte I: O esquema a seguir ilustra a situação: Como mostrado, a resistência equivalente é Ω. Aplicando a lei de Ohm-Pouillet: = R eq i 60 = i i = 15 A. a)

Leia mais

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE 1925 *** COLÉGIO MALLET SOARES *** 2016 91 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º

Leia mais

3 Médio Disciplinas Professores Natureza Trimestre/Ano Data da entrega Valor

3 Médio Disciplinas Professores Natureza Trimestre/Ano Data da entrega Valor Nome Nº Ano/Série Ensino Turma 3 Médio Disciplinas Professores Natureza Trimestre/Ano Data da entrega Valor Física Carlos A8/TI 2º/201]6 02/08/2016 5,0 Introdução: Querido(a) aluno(a), Este material foi

Leia mais

Associações de componentes elétricos em série e em paralelo

Associações de componentes elétricos em série e em paralelo Componentes de um circuito elétrico Gerador Transforma qualquer tipo de energia em energia elétrica, fornecendo-a ao circuito elétrico. As pilhas são geradores de tensão contínua. Símbolo de gerador. Um

Leia mais

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1 Cap. 25 Capacitância Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Capacitância 1 Capacitor Capacitor é um dispositivo que serve para armazenar energia elétrica. Tem a função de armazenar cargas

Leia mais

Condensador equivalente de uma associação em série

Condensador equivalente de uma associação em série Eletricidade Condensador equivalente de uma associação em série por ser uma associação em série, a ddp U nos terminais da associação é igual à soma das ddps individuais em cada capacitor. U U U U 1 2 3

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

Física II - AV 1 (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /2014 valor: 10 pontos Aluno (a) Turma

Física II - AV 1 (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /2014 valor: 10 pontos Aluno (a) Turma Física II - AV (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /204 valor: 0 pontos Aluno (a)turma _. Considere que um determinado estudante, utilizando resistores disponíveis

Leia mais

Exercícios de Física Eletrodinâmica

Exercícios de Física Eletrodinâmica Exercícios de Física Eletrodinâmica Lista elaborada pelo Professor Fernando Valentim nandovalentim@yahoo.com.br 01. No circuito da figura, o gerador é ideal. A intensidade da corrente elétrica que passa

Leia mais

ELETRÔNICA X ELETROTÉCNICA

ELETRÔNICA X ELETROTÉCNICA ELETRÔNICA X ELETROTÉCNICA ELETRÔNICA É a ciência que estuda a forma de controlar a energia elétrica por meios elétricos nos quais os elétrons têm papel fundamental. Divide-se em analógica e em digital

Leia mais

Capacitância C = Q / V [F]

Capacitância C = Q / V [F] Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através

Leia mais

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V.

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V. COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 3º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais

Fundamentos do Eletromagnetismo - Aula IX

Fundamentos do Eletromagnetismo - Aula IX Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações

Leia mais

(A) 4 (B) 3 (C) 5 (D) 7 (E) 6

(A) 4 (B) 3 (C) 5 (D) 7 (E) 6 ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETRODINÂMICA DISCIPLINA: FÍSICA ASSUNTO: CAPACITORES Educando para a Modernidade

Leia mais

2 - Circuitos Basicos

2 - Circuitos Basicos 2 - Circuitos Basicos Carlos Marcelo Pedroso 18 de março de 2010 1 Introdução A matéria é constituída por átomos, que por sua vez são compostos por 3 partículas fundamentais. Estas partículas são os prótons,

Leia mais

Verificação Suplementar 1º. semestre de /07/2017 ALUNO ATENÇÃO LEIA ANTES DE FAZER A PROVA

Verificação Suplementar 1º. semestre de /07/2017 ALUNO ATENÇÃO LEIA ANTES DE FAZER A PROVA Física Teórica II Verificação Suplementar 1º. semestre de 2017 15/07/2017 ALUNO NOTA DA TURMA PROF. PROVA 1 Assine a prova antes de começar. ATENÇÃO LEIA ANTES DE FAZER A PROVA 2 Os professores não poderão

Leia mais

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura:

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica dos fios que fazem a ligação entre a bateria e as

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Eletricidade Aula 8. Componentes Reativos

Eletricidade Aula 8. Componentes Reativos Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância

Leia mais

Circuitos com Amperímetro e Voltímetro

Circuitos com Amperímetro e Voltímetro Circuitos com Amperímetro e Voltímetro 1. (Pucrs 2014) Considere o texto e a figura para analisar as afirmativas apresentadas na sequência. No circuito elétrico mostrado na figura a seguir, um resistor

Leia mais

Lista de Exercícios de Capacitores

Lista de Exercícios de Capacitores Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Capacitores 1) A unidade de capacitância é equivalente a: A. J/C B. V/C C. J 2 /C D. C/J E. C 2 /J 2) Um farad é o mesmo que: A. J/V

Leia mais

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à

Leia mais

O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica.

O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica. O que é capacitor? Capacitor é um dispositivo eletrônico capaz de armazenar energia elétrica. Sua construção básica consiste de duas placas ou armaduras metálicas, separadas por um material isolante também

Leia mais

3ª Ficha. Corrente, resistência e circuitos de corrente contínua

3ª Ficha. Corrente, resistência e circuitos de corrente contínua 3ª Ficha Corrente, resistência e circuitos de corrente contínua 1- Um condutor eléctrico projectado para transportar corrente elevadas possui um comprimento de 14.0 m e uma secção recta circular com diâmetro

Leia mais

Questão 4. Questão 5. Questão 6

Questão 4. Questão 5. Questão 6 Questão 1 Por uma bateria de f.e.m. (E) e resistência interna desprezível, quando ligada a um pedaço de fio de comprimento Ø e resistência R, passa a corrente i (figura 1). Quando o pedaço de fio é cortado

Leia mais

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância. apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais

Leia mais

Potencial elétrico e energia potencial elétrica Capítulo

Potencial elétrico e energia potencial elétrica Capítulo Potencial elétrico e energia potencial elétrica Capítulo Potencial elétrico e energia potencial elétrica Potencial elétrico Se uma carga de prova q for colocada em um campo elétrico, ficará sujeita a uma

Leia mais

U = U 1 + U 2 + U 3. I = i 1 = i 2 = i 3. R eq = R 1 + R 2 + R 3. R eq = resistência equivalente (Ω) U = ddp da associação (V)

U = U 1 + U 2 + U 3. I = i 1 = i 2 = i 3. R eq = R 1 + R 2 + R 3. R eq = resistência equivalente (Ω) U = ddp da associação (V) Acesse. www.professorarnon.com Eletricidade Básica. Associação de Resistências em Série Vários resistores estão associados em série quando são ligados um em seguida do outro, de modo a serem percorridos

Leia mais

Cap. 5. Capacitores e Dielétricos

Cap. 5. Capacitores e Dielétricos Cap. 5. Capacitores e Dielétricos 1 5.1. Definição de Capacitância Um capacitor consiste de dois condutores em oposição, separados por um meio isolante (dielétrico) e possuindo cargas de mesmo módulo mas

Leia mais

CAPACITORES ASSOCIAÇÃO - CARGA - TENSÃO DE TRABALHO

CAPACITORES ASSOCIAÇÃO - CARGA - TENSÃO DE TRABALHO APAITORES ASSOIAÇÃO - ARGA - TENSÃO DE TRABALHO A exemplo dos resistores, os capacitores podem ser associados para a obtenção de valores desejados. ASSOIAÇÃO SÉRIE: Na associação série de capacitores,

Leia mais

23/5/2010 CAPACITORES

23/5/2010 CAPACITORES CAPACITORES O capacitor é um componente, que tem como finalidade, armazenar energia elétrica. São formados por duas placas condutoras, também denominadas armaduras, separadas por um material isolante ou

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion CAPACITORES. Segmento temático: Turma: A ( ) / B ( )

2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion CAPACITORES. Segmento temático: Turma: A ( ) / B ( ) Professor(a): Jean Jaspion LISTA: 01 2ª série Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Segmento temático: QUESTÃO 01 (UEPG PR/2015) Capacitores são dispositivos elétricos amplamente utilizados em aparelhos

Leia mais

CONDUTORES E ISOLANTES

CONDUTORES E ISOLANTES ELETRICIDADE CONDUTORES E ISOLANTES O FÍSICO INGLÊS STEPHEN GRAY PERCEBEU QUE ALGUNS FIOS CONDUZIAM BEM A ELETRICIDADE E CHAMOU-OS DE CONDUTORES E, AOS QUE NÃO CONDUZIAM OU CONDUZIAM MAL A ELETRICIDADE,

Leia mais

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda,

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda, 25-1 Capacitância Capacitor é um dispositivo usado para armazenar energia elétrica. As pilhas de uma máquina fotográfica, por exemplo, armazenam a energia necessária para disparar um flash, carregando

Leia mais

COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.

COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: Valor: Temas: - Força elétrica - Resistores - Associação de resistores - Geradores elétricos

Leia mais

LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA

LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA LISTA DE EXERCÍCIOS 01 3º ANO PROF. FELIPE KELLER ELETROSTÁTICA 1 (UNIFESP) Um condutor é percorrido por uma corrente elétrica de intensidade i = 800 ma. Conhecida a carga 19 elétrica elementar, e = 1,6

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Professor: Vilson Mendes Lista de exercícios de Física I Lista 6 Associação de resistores ENSINO MÉDIO NOTA: Aluno (: Data SÉRIE/TURMA 3ª 1. Em cada um dos esquemas abaixo,

Leia mais

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)

Leia mais

Médio. Física. Exercícios de Revisão I

Médio. Física. Exercícios de Revisão I Nome: n o : Médio E nsino: S érie: T urma: Data: 3 a Prof(a): Ivo Física Exercícios de Revisão I Exercícios referentes aos capítulos 5 e 6 (livro 3). As resoluções dos exercícios (1 a 7) devem ser fundamentadas

Leia mais

Aquino, Josué Alexandre.

Aquino, Josué Alexandre. Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:

Leia mais

CAMPO ELÉTRICO. Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Criado por cargas elétricas.

CAMPO ELÉTRICO. Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Criado por cargas elétricas. CAMPO ELÉTRICO Uma carga elétrica Q produz ao seu redor uma região afetada por sua presença denominada campo elétrico. Campo Elétrico Criado por cargas elétricas. Representado por linhas de campo. Grandeza

Leia mais

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT FÍSIC GERL E EXPERIMENTL II PROF JOÃO RODRIGO ESCLRI - 2012 ESQ. - EXERCÍCIOS DE FÍSIC II GERDORES E LEI DE POULIETT 1. 4. figura representa um trecho de um circuito percorrido por uma corrente com intensidade

Leia mais

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO)

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO) Electromagnetismo e Óptica LEC Tagus 1ºSem 011/1 Prof. J. C. Fernandes Electromagnetismo e Óptica (EO Corrente contínua. Circuitos Formulário Lei das malhas: Lei dos nós: i i 0 0 1 Divisor de corrente

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,

Leia mais

1. Considere uma bateria de força eletromotriz ε e resistência interna desprezível. Qual dos gráficos a seguir melhor representa a bateria?

1. Considere uma bateria de força eletromotriz ε e resistência interna desprezível. Qual dos gráficos a seguir melhor representa a bateria? 1. Considere uma bateria de força eletromotriz ε e resistência interna desprezível. Qual dos gráficos a seguir melhor representa a bateria? a) b) c) d) e) 2. O desenho abaixo representa um circuito elétrico

Leia mais

LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE

LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE DENSIDADE DE CORRENTE E VELOCIDADE DE ARRASTE 1) A American Wire Gauge (AWG) é uma escala americana normalizada usada para padronização de fios e cabos elétricos.

Leia mais

k R microfarad F F nanofarad nf F picofarad pf F coulomb volt C V CONDUTOR EM EQUILÍBRIO ELETROSTÁTICO

k R microfarad F F nanofarad nf F picofarad pf F coulomb volt C V CONDUTOR EM EQUILÍBRIO ELETROSTÁTICO 215 CONDUTOR EM EUILÍBRIO ELETROSTÁTICO Um condutor, eletrizado ou não, encontrase em equilíbrio eletrostático, quando nele não ocorre movimento ordenado de cargas elétricas em relação a um referencial

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA ELETROMAGNETISMO AULA 06 - CAPACITÂNCIA Vamos supor que temos duas placas paralelas. Uma das placas está carregada positivamente enquanto que a outra está carregada negativamente. Essas placas estão isoladas

Leia mais

CAPACITOR. Capacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão.

CAPACITOR. Capacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão. APAITOR apacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão. O capacitor possui dois terminais para sua polarização (d.d.p.). Dentro do

Leia mais

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Conceitos Básicos Eletricidade Aplicada Função Na engenharia é usual que um fenômeno físico seja representado matematicamente através

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÃO 50 Se aumentarmos o valor da corrente através de um fio condutor, o que acontece com o campo magnético: a. Diminui a intensidade b. Aumenta a

Leia mais

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE 1925 *** COLÉGIO MALLET SOARES *** 2017 92 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º

Leia mais

ELETRODINÂMICA. Prof. Patricia Caldana

ELETRODINÂMICA. Prof. Patricia Caldana ELETRODINÂMICA Prof. Patricia Caldana Ao se estudarem situações onde as partículas eletricamente carregadas deixam de estar em equilíbrio eletrostático passamos à situação onde há deslocamento destas cargas

Leia mais

Física Eletrodinâmica Médio [20 Questões]

Física Eletrodinâmica Médio [20 Questões] Física Eletrodinâmica Médio [20 Questões] 01 - (FCM MG) A figura abaixo mostra uma resistência de imersão (ebulidor) mergulhada num recipiente com água, interligada num amperímetro ideal; os terminais

Leia mais

Física C Semiextensivo V. 3

Física C Semiextensivo V. 3 Semiextensivo V. 3 Exercícios 01) a) eq 4 + 1 16 Ω 06) 3 Ω 1 b) 48 16 i 3 A c) 1 1 4. 3 1 V V V 1. 3 36 V d) P 1 1 1 P 1 4. 3 36 w P P 1. 3 108 w e) P total P 1 + P 144 w f) gerador ideal P fornecida P

Leia mais

Física C Extensivo V. 5

Física C Extensivo V. 5 GABAITO Física C Extensivo V. 5 Exercícios 0) a) = 4 + = 6 Ω 06) = Ω b) V = 48 = 6 i = A c) = = 4. = V V = V =. = 6 V d) P = P = 4. = 6 w P = P =. = 08 w e) P total = P + P = 44 w f) gerador ideal P fornecida

Leia mais

LISTA ELETROSTÁTICA. Prof: Werlley toledo

LISTA ELETROSTÁTICA. Prof: Werlley toledo LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. FIS53 Projeto de Apoio Eletromagnetismo 23-Maio-2014. Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. QUESTÃO 1: Considere o circuito abaixo onde C é um capacitor de pf, L um indutor de μh,

Leia mais

b) átomos do dielétrico absorvem elétrons da placa negativa para completar suas camadas eletrônicas externas;

b) átomos do dielétrico absorvem elétrons da placa negativa para completar suas camadas eletrônicas externas; GOIÂNIA, _28 / 10 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016 No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente

Leia mais

ELETRODINÂMICA A) 4, B) 6, C) 2, D) 1,0.10-3

ELETRODINÂMICA A) 4, B) 6, C) 2, D) 1,0.10-3 QUESTÃO 01 No circuito mostrado no diagrama, todos os resistores são ôhmicos, o gerador e o amperímetro são ideais e os fios de ligação têm resistência elétrica desprezível. A intensidade da corrente elétrica

Leia mais

FÍSICA LISTA - TRABALHO DA FORÇA ELÉTRICA POTENCIAL ELÉTRICO E TRABALHO DA FORÇA ELÉTRICA

FÍSICA LISTA - TRABALHO DA FORÇA ELÉTRICA POTENCIAL ELÉTRICO E TRABALHO DA FORÇA ELÉTRICA FÍSICA Prof. Bruno LISTA - TRABALHO DA FORÇA ELÉTRICA POTENCIAL ELÉTRICO E TRABALHO DA FORÇA ELÉTRICA 1. (UNIFESP-2008) A figura representa a configuração de um campo elétrico gerado por duas partículas

Leia mais

Energia envolvida na passagem de corrente elétrica

Energia envolvida na passagem de corrente elétrica Eletricidade Supercondutividade Baixando-se a temperatura dos metais a sua resistividade vai diminuindo Em alguns a resistividade vai diminuindo com a temperatura, mas não se anula Noutros a resistividade

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

NOME: N RECUPERAÇÃO PARALELA DE FÍSICA I - TURMA 232 PROFº RODRIGO 1º BIMESTRE (VALENDO 2 PONTOS) FAZER EM PAPEL ALMAÇO COM LETRA LEGÍVEL)

NOME: N RECUPERAÇÃO PARALELA DE FÍSICA I - TURMA 232 PROFº RODRIGO 1º BIMESTRE (VALENDO 2 PONTOS) FAZER EM PAPEL ALMAÇO COM LETRA LEGÍVEL) 1925 *** COLÉGIO MALLET SOARES *** 2015 90 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N RECUPERAÇÃO PARALELA DE FÍSICA I - TURMA 232 PROFº RODRIGO 1º BIMESTRE

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P4 DE ELETROMAGNETISMO 28.06.13 sexta-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise

Leia mais

EXERCÍCIOS DE ELETRICIDADE

EXERCÍCIOS DE ELETRICIDADE EXERCÍCIOS DE ELETRICIDADE Revisão de Eletricidade (Física) do Ensino Médio A - Corrente e Tensão Elétrica 1. Numa seção reta de um condutor de eletricidade, passam 12 C a cada minuto. Nesse condutor,

Leia mais

Colégio Municipal Walter Francklin

Colégio Municipal Walter Francklin Colégio Municipal Walter Francklin Professor Fabiano P. de Oliveira Alunos: n.ºs 3ºAno Lista de Exercícios de Física 1) Uma sala é iluminada por uma lâmpada incandescente de 100w. Supondo que somente 10%

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação 2014 Última Aula Lei de Ohm Associação de Resistores

Leia mais

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada.

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada. Lista de exercícios Disciplina: Eletricidade Aplicada Curso: Engenharia da Computação Turma: N30 1 -) Assinale a alternativa correta. Descreva o que é tensão elétrica. a - A diferença de potencial elétrico

Leia mais

Q t. A corrente elétrica corresponde ao fluxo de elétrons. Os elétrons vão para o polo positivo de um gerador (pilha ou bateria)

Q t. A corrente elétrica corresponde ao fluxo de elétrons. Os elétrons vão para o polo positivo de um gerador (pilha ou bateria) Eletrodinâmica A eletrodinâmica está presente em praticamente todos os lugares da vida moderna. As instalações elétricas e suas lâmpadas, aquecedores fazem parte do cotidiano do homem moderno. Para exames

Leia mais

Potência e Energia Elétrica

Potência e Energia Elétrica Potência e Energia Elétrica Para qualquer máquina, em particular, para os aparelhos elétricos, definimos potência como a taxa de transformação ou conversão de energia na forma de calor outra forma de energia,

Leia mais

RESISTOR É O ELEMENTO DE CIRCUITO CUJA ÚNICA FUNÇÃO É CONVERTER A ENERGIA ELÉTRICA EM CALOR.

RESISTOR É O ELEMENTO DE CIRCUITO CUJA ÚNICA FUNÇÃO É CONVERTER A ENERGIA ELÉTRICA EM CALOR. Resistores A existência de uma estrutura cristalina nos condutores que a corrente elétrica percorre faz com que pelo menos uma parte da energia elétrica se transforme em energia na forma de calor, as partículas

Leia mais

2 Eletrodinâmica. Corrente Elétrica. Lei de Ohm. Resistores Associação de Resistores Geradores Receptores. 4 Instrumento de Medidas Elétricas

2 Eletrodinâmica. Corrente Elétrica. Lei de Ohm. Resistores Associação de Resistores Geradores Receptores. 4 Instrumento de Medidas Elétricas 2. Eletrodinâmica Conteúdo da Seção 2 1 Conceitos Básicos de Metrologia 4 Instrumento de Medidas Elétricas 2 Eletrodinâmica Corrente Elétrica Resistência Elétrica Lei de Ohm Potência Elétrica Resistores

Leia mais

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância

Leia mais

GERADOR ELÉTRICO TEORIA E EXERCÍCIOS BÁSICOS

GERADOR ELÉTRICO TEORIA E EXERCÍCIOS BÁSICOS GERADOR ELÉTRICO TEORIA E EXERCÍCIOS BÁSICOS GERADOR ELÉTRICO O gerador elétrico é um dispositivo que transforma qualquer tipo de energia em energia elétrica. É um dispositivo destinado a manter uma diferença

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Geradores, Receptores e Potência Elétrica 1. (Espcex (Aman) 2013) A pilha de uma lanterna possui

Leia mais

CIDADE DE CHARQUEADAS INSTRUÇÕES GERAIS

CIDADE DE CHARQUEADAS INSTRUÇÕES GERAIS SERVIÇO PÚBLICO FEDERAL MEC / SETEC CIDADE DE CHARQUEADAS INSTRUÇÕES GERAIS 1 - Este caderno de prova é constituído por 40 (quarenta) questões objetivas. 2 - A prova terá duração máxima de 04 (quatro)

Leia mais