Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E
|
|
|
- Elza de Almada Santos
- 8 Há anos
- Visualizações:
Transcrição
1 Prof. Fernando Massa Fernandes Sala 507 E [email protected]
2 Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados e exemplos) Dia 07/0 (Quarta)
3 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Vg Impedância série do gerador Voltagem na linha Da corrente na linha Iin Vg V in = Z g + Z in Z in V in = V ( l)
4 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Vg Impedância série do gerador Da corrente na linha Iin Vg V in = Z g +V in Z in V in = V ( l) Substituindo Γl pela expressão em Zl e Z0 Obtemos Amplitude da onda progressiva na posição da carga.
5 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Duas reflexões (Γ e Γl) Vg Impedância série do gerador Sendo Na linha o coeficiente de reflexão olhando na direção do gerador.
6 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Potência entregue na carga * P = ℜ(V in I in ) V in I in V in = Z in P = V in ℜ( ) Z in Z in = V ( l) =.V g Z in + Z g ** Como Zg é fixa (gerador), devemos encontrar o valor de Zin que maximiza a potencia transferida. Z in P = V g ℜ( ) Z in + Z g Z in
7 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: Potência entregue na carga ** Como Zg é fixa (gerador), devemos encontrar o valor de Zin que maximiza a potencia transferida. Z in P = V g ℜ( ) Z in + Z g Z in Z in = R in + jx in Z g = R g + jx g R in P = V g ( R in + R g ) +( X in + X g )
8 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: R in P = V g ( R in + R g ) +( X in + X g ) Casos especiais: Carga acoplada a linha (ZL = Z0) R in = Z 0 (Zin = Z0) X in = 0 Gerador acoplado a linha carregada (Zg = Zin) R in = R g X in = X g P = Z0 V g ( Z 0 + R g ) + X g Rg P = V g 4 ( R g + X g )
9 .6 Descasamento entre gerador e carga * Modelo geral (sem perdas) Casos frequentes, em que pode ocorrer reflexão no próprio gerador: R in P = V g ( R in + R g ) +( X in + X g ) Casos especiais: Acoplamento conjugado ( Zin = Zg* ) R in = R g X in = X g V g Potência máxima (ideal) P = 8 Rg Quanto menor o valor de Rg do gerador melhor será a eficiência
10 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Comprimento incremental da linha: R, resistência em série por comprimento (Ω/m) L, Indutância em série por comprimento (H/m) G, condutância de derivação por comprimento (S/m) C, capacitância de derivação por comprimento (F/m)
11 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Com perdas: β γ = α+β = ( R + j ω L)+(G+ j ω C) R+ j ω L Z0 = = γ γ = ( j ω L)( j ω C )(+ R+ j ω L G+ j ω C R G RG R G + ) )(+ ) = j ω LC j ( ω L ω C ω ² LC jωl jωc
12 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Com perdas: R G RG γ = j ω LC j( + ) ω L ω C ω ² LC Em alta frequência, quando e Expandindo em série de Taylor em torno de j ω LC ( sem perdas) RG ~0 ω ² LC R G ( + )<< ω L ωc Podemos incluir as perdas como uma correção de primeira ordem: = α + jβ
13 .7 Linha de transmissão com perdas * Quando o comprimento não é muito longo, frequentemente podemos desprezar as perdas em alta frequência: Com perdas (alta frequência): = α + jβ
14 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda.
15 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda.
16 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda. Impedância intrínseca do material Resistência de superfície do material
17 .7 Linha de transmissão com perdas Exemplo: Determine a constante de atenuação de uma linha coaxial na aproximação de baixa perda.
18 .7 Linha sem distorções Distorção β (geral) não é linear com a frequência (ω) como em β = ω LC (sem perdas) Geral Velocidade de fase v f = ω /β β = a ω (linear em' ω ' ) v p (constante ) β, Não linear v p, varia com ω = α + iβ Linha sem distorção R G = L C Componentes do sinal com freq diferentes chegam em momentos diferentes no receptor (Distorção do sinal) β = ω LC
19 .7 Linha com perdas carregada Baixa perda Z 0 L C Na distância l da carga ZL,
20 .7 Potência entregue na linha (z = -l) P IN = * ℜ[V ( l) I ( l) ] γ = α+iβ Potência entregue na carga (ZL) Perda de potência na linha
21 .7 Método da perturbação para calcular α Técnica Padrão! Potência sendo transmitida no ponto z P ( z) = P 0 e α z P 0 (fluxo de potência na linha sem perdas) Perda de potência por comprimento. (W/m) Para o campo que não se modifica ao longo da linha
22 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coax pelo método da perturbação. P0 = Campos TEM x H * ). d ℜ[( E S ] Fluxo de potência = Vetor de Poynting
23 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coax pelo método da perturbação. Perda no condutor (Pc) Lei de Joule no metal (bom condutor) Rs Rs (W/m) Pc = J ds = H t ds J S = n x H d S = dl ρ d θ RS = ωμ σ
24 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coax pelo método da perturbação. Perda no dielétrico (Pd) Do teorema de Poynting,, dv + ω (,, ) dv P d = σ V E E + μ H V (W/m)
25 .7 Método da perturbação para calcular α Exemplo.7: Constante de atenuação de uma linha coax pelo método da perturbação. P0 = V 0 Z0 R S V 0 P lc = + b 4 π Z0 a ( ) P ld,, π ωε = V 0 ln b/ a (m-)
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.11 / 2.20 / 2.29 Prova P.I Capts. 1 e
* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão
.4 Carta de Smith * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão * 939 Laboratórios Bell (Philip Smith) Durante o desenvolvimento de tecnologia radar. Estabelece graficamente
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão aspectos básicos (Páginas 48 a 56 no Livro texto) Objetivos: Discutir comportamento de L.T. Em altas frequências. Introduzir
Física Experimental Aula10 Propagação de sinais em cabos coaxiais
Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n
Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas
Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas (Revisão) Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS Ondas Eletromagnéticas são uma forma de transportar energia
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão Coef. de Reflexão e impedância de entrada (Páginas 56 a 60 no Livro texto) Objetivos: Campos eletromagnéticos em Linhas de Transmissão.
Linha de transmissão
Linha de transmissão Um troço elementar de uma linha de transmissão (par simétrico ou cabo coaxial) com comprimento dz pode ser modelado por um circuito: I(z) Ldz Rdz I(z+dz) Parâmetros primários: R [Ω
26/06/17. Ondas e Linhas
26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Desenvolvimento do conceito de transmissão de potência em alta frequência e baixa perda. 1893 Heaviside
CAPÍTULO 1 INTRODUÇÃO
CAPÍTULO 1 INTRODUÇÃO 1 1.1 OBJETIVOS DO CURSO Objetivo principal: Fornecer ao estudante fundamentos teóricos e aspectos práticos necessários ao projeto de circuitos analógicos que operam em freqüências
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO I Ondas eletromagnéticas planas 1) Uma onda de Hz percorre
Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão
Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento
UFSM-CTISM. Projeto de Redes sem Fio Aula-04
UFSM-CTISM Projeto de Redes sem Fio Aula-04 Professor: Andrei Piccinini Legg Santa Maria, 2012 Ocorre quando uma onda eletromagnética em colide com um objeto que possui dimensões muito grandes em comparação
10/05/17. Ondas e Linhas
10/05/17 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 10/05/17 Guias de Onda Guias de onda são estruturas
31/05/17. Ondas e Linhas
31/05/17 1 Guias de Onda (pags 102 a 109 do Pozar) Linhas de Transmissão de placas paralelas. Modos TEM Modos TE e TM 31/05/17 2 Linha de Transmissão de Placas Paralelas Vamos considerar os campos de uma
EN3624 Sistemas de Micro-ondas
EN3624 Sistemas de Micro-ondas Linhas de Transmissão em Micro-ondas Tipos de Linhas de Transmissão em Micro-ondas 2 ou mais condutores: Cabos coaxiais modo TEM (transversal eletromagnético) Microlinha
Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza de Carvalho 1 Linha Fendida e Transformador de Quarto de Onda (Páginas 68 a 75 no Livro texto) Tópicos: Linha fendida (slotted line) Casamento de impedância: transformador de quarto
Exercícios de Eletromagnetismo II
Exercícios de Eletromagnetismo II Antonio Carlos Siqueira de Lima 2014/2 Resumo Nesse documento são apresentados alguns exercícios sobre eletromagnetismo. Eles são baseados no livro texto: Campos & Ondas
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] * A descrição em termos da matriz de impedância [Z] estabelece a relação entre tensão [V] e corrente
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 2/3 Impedância de Entrada; Coeficiente
Pontas de prova para instrumentos
Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de
FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009
P1 FÍSICA IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P1 22 de setembro de 2009 Questão 1 Um circuito RLC em série é alimentado por uma fonte que fornece uma tensão v(t) cosωt. O valor da tensão
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - GUIAS DE ONDA 1/2 Introdução; Guia de Onda Retangular; Modos
SEL413 Telecomunicações. 1. Notação fasorial
LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os
Prova de Seleção
Área de Concentração: Prova de Seleção 2016.2 Código de Inscrição do candidato: Cada questão assinalada corretamente vale 1,0 ponto. π Questão 1. Dada a integral definida y 0 (sin t ) 2 π dt + (cos(t))
Ondas Eletromagnéticas Resumo
Ondas Eletromagnéticas Resumo SEL SEL 317 Sistemas de comunicação Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir de apoio às
Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância
Módulo II Linhas de Transmissão Carta de Smith Casamento de Impedância Casamento de impedância A máxima transferência de potência à carga em uma LT sem perdas é obtida quando a impedância de entrada da
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam
ELETROQUÍMICA. Prof a. Dr a. Carla Dalmolin
ELETROQUÍMICA Prof a. Dr a. Carla Dalmolin MÉTODOS DE IMPEDÂNCIA Espectroscopia de Impedância Eletroquímica Aplicada à caracterização de processos de eletrodo e de interfaces complexas Deve ser utilizada
CAPÍTULO 2 LINHAS DE TRANSMISSÃO
CAPÍTULO 2 LINHAS DE TRANSMISSÃO TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA 1 2.1 PORQUE LINHAS DE TRANSMISSÃO? E x = E0x cos( wt - bz) Comportamento no espaço: l Distribuição da tensão no espaço e no tempo
Física IV - FAP2204 Escola Politécnica GABARITO DA PR 2 de fevereiro de 2010
PR Física IV - FAP04 Escola Politécnica - 010 GABARITO DA PR de fevereiro de 010 Questão 1 No circuito abaixo o gerador de corrente alternada com freqüência angular ω = 500 rd/s fornece uma tensão eficaz
Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.
Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES E-mail: [email protected] Aula Número: 06 2 - 3 4 5 6 7 8 9 10
GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA
Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA ROGÉRIO LÚCIO LIMA Sinop Novembro de 2016 Modelos
Física 3. Fórmulas e Exercícios P3
Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNESDADE FEDEAL DE JU DE FOA Graduação em Engenharia Elétrica TANSMSSÃO DE ENEGA ELÉTA POF. FLÁO ANDESON GOMES E-mail: [email protected] Aula Número: 07 urso de Transmissão de Energia Elétrica Aula
Propagação Radioelétrica 2017/II Profa. Cristina
Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Ondas eletromagnéticas planas Propagação no espaço livre James Clerk Maxwell é um dos cientistas mais influentes de todos os tempos. Na foto,
3. Elementos de Sistemas Elétricos de Potência
istemas Elétricos de Potência 3. Elementos de istemas Elétricos de Potência 3..5 Modelos de Linhas de Transmissão Professor: Dr. aphael Augusto de ouza Benedito E-mail:[email protected] disponível
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre
EEC4262 Radiação e Propagação. Lista de Problemas
Lista de Problemas Parâmetros fundamentais das antenas 1) Uma antena isotrópica no espaço livre produz um campo eléctrico distante, a 100 m da antena, de 5 V/m. a) Calcule a densidade de potência radiada
1299 Circuitos elétricos acoplados
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento
Introdução à Magneto-hidrodinâmica
Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução. 2. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda.
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução.. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda. 5. Antena em anel pequeno. 6. Características das antenas. 7. Conjunto
Fluxo magnético através de um circuito
Fluxo magnético através de um circuito É sempre possível escrever o fluxo magnético através de um circuito γ percorrido por uma corrente I γ, devido ao campo gerado por essa e outras correntes I β em outros
Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62
Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo
Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão
Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão Os cálculos em linhas de transmissão ou em guias de onda utilizam as fórmulas que foram dadas anteriormente, são portanto de difícil
INTRODUÇÃO
INTRODUÇÃO INTRODUÇÃO INTRODUÇÃO INTRODUÇÃO CARACTERÍSTICAS DOS MATERIAIS CONDUTORES CARACTERÍSTICAS DOS MATERIAIS CONDUTORES Variação da resistividade com a temperatura e a frequência. o A segunda lei
EN3624 Sistemas de Micro-ondas
EN3624 Sistemas de Micro-ondas Dispositivos Passivos Dispositivos passivos em Micro-ondas Divisores e Combinadores de potência Acopladores Circuladores e Isoladores Dispositivos passivos em Micro-ondas
Física III Escola Politécnica GABARITO DA P3 6 de julho de 2017
Física III - 43303 Escola Politécnica - 017 GABARITO DA P3 6 de julho de 017 Questão 1 Um circuito com resistência R, contido no plano xy, é constituído por dois arcos de circunferência com raios r 1 e
Exercício. (Resposta: 1,1 m) Na tabela A.4, a expressão para X d é: X d = 0, 2794 log d
Exercício Uma linha monofásica de 2 km deve ser construída utilizando-se condutores ACSR Linnet. Por motivos técnicos, a indutância total não deve exceder 4 mh. Obtenha o espaçamento máximo entre condutores.
Circuitos RC e RL com Corrente Alternada
Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2
Parte A: Circuitos RC com corrente alternada
Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução
NOTAS DE AULA DE ELETROMAGNETISMO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS
Eletrônica I. Prof. Cláudio Henrique A. Rodrigues
Eletrônica I 1 2 Qual o significado de um corpo eletricamentecarregado? A Carga Elétrica é positiva (+) ou negativa(-)? 3 Um corpo apresenta-se eletricamente neutro quando o número total de prótons e de
Medição dimensional e de movimento. Dr. Evandro Leonardo Silva Teixeira Faculdade Gama
Dr. Evandro Leonardo Silva Teixeira Faculdade Gama Sensor por efeito piezo-elétrico: Funciona a partir do efeito piezo-elétrico; Fenômeno físico reversível; Fornece tensão com a deformação do elemento
CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.
MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta
Circuitos RLC com corrente alternada: ressonância e filtros passa-banda e rejeita-banda
Circuitos RLC com corrente alternada: ressonância e filtros passa-banda e rejeita-banda 8 8.1 Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de 1 kω; capacitor
a) (1.0) Calcule o vetor força resultante sobre a carga +Q e desenhe-o no gráfico (deixe o resultado em função da constante k).
P4 03//0 a Questão (.5) Três cargas puntiformes +q, -q e +Q, são mantidas fixas como representado na figura. As cargas +q e q estão localizadas sobre o eixo Y enquanto a carga de prova +Q encontra-se sobre
Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco
dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.
Comprimento de onda ( l )
Comprimento de onda ( l ) Definição Pode ser definido como a distância mínima em que um padrão temporal da onda, ou seja, quando um ciclo se repete. λ= c f Onde: c velocidade da luz no vácuo [3.10 8 m/s]
Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011
Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,
INCIDÊNCIA DE ONDAS ELETROMAGNÉTICAS EM INTERFACES PLANAS: REFLEXÃO, REFRAÇÃO E LEI DE SNELL
TE053-Ondas Eletromagnéticas INCIDÊNCIA DE ONDAS ELETROMAGNÉTICAS EM INTERFACES PLANAS: REFLEXÃO, REFRAÇÃO E LEI DE SNELL PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: [email protected] CURITIBA-PR
Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas
Definição de corrente Controle do movimento de cargas corrente elétrica{ GANDE revolução tecnológica fi eletrotécnica, eletrônica e microeletrônica (diversidade de aplicações!!) Ex. motores elétricos,
Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012
Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P2 17 de maio de 2012 Questão 1 Um capacitor de placas paralelas e área A, possui o espaço entre as placas preenchido por materiaisdielétricos
Módulo I Ondas Planas
Módulo I Ondas Planas Vetor de Poynting Transmissão de potência Em algum ponto, distante do ponto de transmissão teremos o ponto de recepção. Vetor de Poynting Em toda aplicação prática, a onda EM é gerada
INDUÇÃO MAGNÉTICA (2)
INDUÇÃO MAGNÉTICA Material Utilizado: - uma bobina de campo (l = 750 mm, n = 485 espiras / mm) (PHYWE 11006.00) - um conjunto de bobinas de indução com número de espiras N e diâmetro D diversos (N = 300
Propagação Radioelétrica 2017/II Profa. Cristina
Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Vetor de Poynting Transmissão de Potência Polarização Vetor de Poynting Em toda aplicação prática, a onda EM é gerada em algum ponto de transmissão
GABARITO ESC00. Questão 1 a) O diagrama de reatâncias de sequência positiva é:
GABARITO ESC00 Questão 1 a) O diagrama de reatâncias de sequência positiva é: O diagrama de reatâncias de sequência negativa é: b) Os equivalentes de Thèvenin são: Ponto A: Ponto B: Ponto C: Ponto D: (
Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues
Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais
Teoria dos Circuitos e Fundamentos de Electrónica
Teoria dos ircuitos e Fundamentos de Electrónica Teoria dos ircuitos Representação das Grandezas Alternadas Sinusoidais As grandezas de variação alternada sinusoidal podem representar-se na forma u(t)=u
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
INPE eprint: v João Vianei Soares Fundamentos de Radar Página nº 1. Energia
João Vianei Soares Fundamentos de Radar Página nº 1 Energia Energia é medida em Joules (ML 2 T -2 ): Caixa de luz com abertura Energia radiante deixa a caixa a uma taxa de P Joules/segundo, ou P Watts
SISTEMAS ÓPTICOS FIBRAS ÓPTICAS
MIISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIOAL E TECOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico
Acoplador Direcional. SEL 369 Micro-ondas/SEL5900 Circuitos de Alta Frequência. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP
Acoplador Direcional SEL 369 Micro-ondas/SEL59 Circuitos de Alta Frequência Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Ondas planas: Reflexão de ondas (Capítulo 12 Páginas 428 a 437) na interface entre dielétricos com incidência
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho - Eletrostática Condutividade Elétrica e Lei de Ohm na Forma Pontual (Capítulo 5 Páginas 114 a 118) Lei de Ohm na forma Pontual vs. Macroscópica Tempo de Relaxação 3 - Eletrostática Condutividade
Propagação Radioelétrica 2017/II Profa. Cristina
Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Introdução ao link budget Propagação no espaço livre Equação de Friis Introdução ao link budget O desempenho de um link de comunicações depende
Para onde vai a energia?
Para onde vai a energia? J. C. Romão, J. Dias de Deus, and P. Brogueira Departamento de Física, Instituto Superior Técnico Avenida Rovisco Pais, 9- Lisboa, Portugal I. INTRODUÇÃO Um problema interessante
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)
INTITUTO NACIONAL DE PEQUIA EPACIAI (INPE) Concurso Público - NÍVEL UPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVA PROVA
SISTEMAS ELÉCTRICOS DE ENERGIA I Funcionamento das linhas aéreas. Porquê? Agora que eu sabia...
E ENERGIA I Parâmetros das linhas Resistência linear R = ρ S ' Isto já eu aprendi! Parece-me é que falta ol mas S S ρ ρ S secção efectiva ou equivalente S - secção real do condutor Porquê? Agora que eu
Física. Resumo Eletromagnetismo
Física Resumo Eletromagnetismo Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv Força Elétrica Duas formas de calcular:
Física C Extensivo V. 4
GBITO Física C Extensivo V. Exercícios 0) F. lei de Ohm se refere a um tipo de resistor com resistência constante cuja resistência não depende nem da tensão aplicada nem da corrente elétrica. F. penas
n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.
Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.
Diodo P-I-N Aplicação em Sistema de Chaveamento
Diodo P-I-N Aplicação em Sistema de Chaveamento Utilizando dois diodos PIN é possível conseguir chaves de RF com duas posições. Quando D1 for polarizado reversamente e D2 polarizado diretamente, há transferência
Prof. Fábio de Oliveira Borges
Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)
Eletromagnetismo Aplicado
Eletromagnetismo Aplicado Unidade 2 Equações de Maxwell e Campos Eletromagnéticos Harmônicos Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Equações de Maxwell Parâmetros constitutios e suas relações
