TRANSMISSÃO DE ENERGIA ELÉTRICA
|
|
|
- Benedito Bardini Bonilha
- 9 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES Aula Número: 06
2 2
3 - 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 1º Caso 15
16 2º Caso 16
17 3º Caso 17
18 Em qualquer ponto de uma LT: 18
19 Examinamos o comportamento das ondas da tensão e corrente durante o tempo em que viajem pela primeira vez do transmissor ao receptor, e o movimento e comportamento das ondas de tensão e correntes refletidas em função das condições existentes no receptor. Essas ondas refletidas se deslocam do receptor para o transmissor com a mesma velocidade com que as ondas incidentes (diretas) viajaram em sentido contrário, sobrepondo-se a estas. Num período de tempo t = l / v as ondas refletidas no receptor chegam ao transmissor, agora na qualidade de ondas incidentes. As condições aí existentes (no caso, uma fonte ideal) fazem com que elas vejam uma impedância diferente de Zo, dando origem a um novo par de ondas refletidas, que se sobrepõem às incidentes no transmissor (que são aquelas que partiram do receptor como ondas refletidas). Seus sinais e valores dependem do valor relativo da impedância da fonte. 19
20 Vemos o caráter nitidamente transitório do fenômeno com tensões e correntes variando em torno de seus valores de regime permanente, o qual no caso de linha e fontes ideais, só será atingido após um tempo infinito. No caso de linhas reais, a energia dissipada na resistência dos condutores tem o caráter de um amortecimento, reduzindo levemente os módulos das tensões e correntes e acelerando sua entrada em regime permanente. O estudo que acabamos de fazer encontra larga aplicação no estudo de surtos e sobretensões em sistemas elétricos. Para facilidade de raciocínio, empregamos uma fonte de tensão constante. 20
21 21
22 (continuação: deixar para o aluno) 22
23 23
24 24
25 Análise Quantitativa do Funcionamento da LT Um problema importante a ser considerado tanto no projeto como no funcionamento de uma LT é o da manutenção da tensão, dentro de limites especificados, nos vários pontos do sistema. Após a análise qualitativa, vamos desenvolver expressões com as quais poderemos calcular a tensão, a corrente e o fator de potência em qualquer ponto da LT, desde que esses valores sejam conhecidos em um ponto da linha. Entender um fenômeno significa associá-lo a números As expressões indicam o efeito dos diversos parâmetros da linha sobre as quedas de tensão ao longo da mesma para várias cargas. Essas também serão úteis no cálculo do rendimento da transmissão de energia, bem como no cálculo da potência limite que flui por uma LT, tanto em regime permanente como em condições transitórias 25
26 Parâmetros das Linhas de Transmissão A classificação das LT segundo sua extensão está baseada nas aproximações admitidas no uso dos parâmetros da linha A resistência, a indutância e a capacitância estão uniformemente distribuídas ao longo da linha e isso deve ser observado no cálculo rigoroso das LTs longas l > 240 km Para LTs de extensão média, no entanto, podemos considerar metade da capacitância em paralelo como concentrada em cada um dos extremos da linha 80 km > l > 240 km Para LTs curtas, a susceptância capacitiva total é tão pequena que pode ser omitida l< 80 km Nomenclatura adotada 26
27 Resistência (R) Parâmetros das Linhas de Transmissão Dissipação de potência ativa Passagem de corrente Condutância (G) Representação de correntes de fuga entre condutores e pelos isoladores (principal fonte de condutância) Depende das condições de operação da linha Umidade relativa do ar, nível de poluição, etc.) É muito variável Seu efeito é em geral desprezado (sua contribuição no comportamento geral da linha é muito pequena) Indutância (L) Deve-se aos campos magnéticos criados pela passagem das correntes Capacitância (C) Deve-se aos campos elétricos: cargas nos condutores por unidade de diferença de potencial entre eles 27
28 Parâmetros das Linhas de Transmissão Com base nestes parâmetros que representam fenômenos físicos que ocorrem na operação das LTs, pode-se obter um circuito equivalente (modelo) para a mesma, como por exemplo: 28
29 Análise Quantitativa do Funcionamento da LT Linha de Transmissão Curta (l < 80 km) Encontradas normalmente em redes de distribuição e subtransmissão em média tensão vaz pc VR VR Reg% = 100 pc V R Regulação de Tensão V V vaz R pc R = V = V S R Circuito Equivalente 29
30 Análise Quantitativa do Funcionamento da LT Linhas de Comprimento Médio (80 km > l > 240 km) A admitância em paralelo, geralmente uma capacitância pura, é incluída nos cálculos de uma LT de comprimento médio Se toda a admitância for suposta concentrada no meio do circuito representativo da LT Denominado circuito nominal T Modelo menos freqüente O modelo π é o de uso mais freqüente A admitância total em paralelo é dividida em duas partes iguais Circuito Equivalente (1) 30
31 Análise Quantitativa do Funcionamento da LT Linhas de Comprimento Médio (Cont.) Para determinar a corrente I s devemos observar que a corrente na capacitância colocada no lado do gerador é, a qual somada à corrente no ramo série fornece (2) Substituindo V s, dado pela equação (1) em (2), virá: (3) Comparação com as equações de LTs curtas 31
32 Análise Quantitativa do Funcionamento da LT As equações (1) e (3) podem ser colocadas de uma forma geral Onde: As constantes ABCD são chamadas Constantes Generalizadas da LT A e D são adimensionais B e C são ohms e mhos ou siemens, respectivamente 32
33 Análise Quantitativa do Funcionamento da LT Linhas de Comprimento Médio (Cont.) I r = 0 vaz pc VR VR Reg% = 100 pc V R V r = 0 33
34 Análise Quantitativa do Funcionamento da LT Linhas de Transmissão Longas Solução das Equações Diferenciais Para conseguir-se uma solução exata para qualquer LT bem como para se obter um alto grau de precisão no cálculo de linhas com mais de 160 km, com freqüência de 60 Hz, deve-se considerar o fato de que os parâmetros de uma linha não estão concentrados e sim uniformemente distribuídos ao longo da mesma Vamos considerar um pequeno elemento da linha e calcular as diferenças de tensões e de correntes entre seus extremos Seja V a tensão na extremidade do elemento mais próxima à carga; V será um expressão complexa do valor eficaz da tensão, cujo módulo e fase variam ao longo da linha. 34
35 Análise Quantitativa do Funcionamento da LT Linhas de Transmissão Longas Solução das Eq. Diferenciais (cont.) z = r + y = g + j x L j B Impedância Série da LT em ohms / km C Admitância shunt em mhos / km A elevação de tensão ao longo do emento dx: Substituindo (1) em (4) e (2) em (3): dv = I. z. dx (1) (3) (5) Variáveis: V e x di = V. y. dx (2) (4) (6) di: diferença entre a corrente que entra no elemento e a corrente que sai do elemento. Variáveis: I e x 35
36 Análise Quantitativa do Funcionamento da LT Linhas de Transmissão Longas Solução das Eq. Diferenciais (cont.) A solução de (5) é dada por: (7) Levando-se em conta (1) Vem que: (8) As soluções das equações diferenciais para V e I serão expressões cujas derivadas segundas em relação a x são iguais às expressões originais multiplicadas pela constante yz Condições de contorno em x = 0 nas equações (7) e (8) V = V I = I R R 36
37 Análise Quantitativa do Funcionamento da LT Linhas de Transmissão Longas Solução das Eq. Diferenciais (cont.) Fazendo e tirando os valores de A 1 e A 2 : e Denomina-se: Impedância característica Constante de propagação Substituindo-se os valores de A 1 e A 2 nas equações (7) e (8): (9) (10) As equações acima fornecem os valores eficazes de V e I, bem como suas fases em qualquer ponto da linha, em função das distâncias x contatas a partir dos terminais da carga, supondose conhecidos V r, I r e os parâmetros das linha. 37
GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA
Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA ROGÉRIO LÚCIO LIMA Sinop Novembro de 2016 Modelos
3. Elementos de Sistemas Elétricos de Potência
istemas Elétricos de Potência 3. Elementos de istemas Elétricos de Potência 3..5 Modelos de Linhas de Transmissão Professor: Dr. aphael Augusto de ouza Benedito E-mail:[email protected] disponível
TRANSITÓRIOS EM LINHAS DE TRANSMISSÃO. Prof. Jader de Alencar Vasconcelos, Me.
TRANSITÓRIOS EM LINHAS DE TRANSMISSÃO Prof. Jader de Alencar Vasconcelos, Me. OBJETIVOS Discutir aspectos gerais das linhas de transmissão : Parâmetros distribuídos das linhas; Modelagem de linhas através
Parâmetros das linhas de transmissão
Parâmetros das linhas de transmissão Parâmetros das linhas de transmissão Resistencia (R) Dissipação de potência ativa devido à passagem de corrente Condutância (G) Representação de correntes de fuga através
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNESDADE FEDEAL DE JU DE FOA Graduação em Engenharia Elétrica TANSMSSÃO DE ENEGA ELÉTA POF. FLÁO ANDESON GOMES E-mail: [email protected] Aula Número: 07 urso de Transmissão de Energia Elétrica Aula
LT como Quadripolos. Os parâmetros ABCD são conhecidos como constantes genéricas do quadripolo equivalente de uma LT de parâmetros distribuídos:
LT como Quadripolos LT como Quadripolos LT como Quadripolos Os parâmetros ABCD são conhecidos como constantes genéricas do quadripolo equivalente de uma LT de parâmetros distribuídos: LT como Quadripolos
LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Fluxos de Potência entre dois Barramentos
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Fluxos de Potência entre dois Barramentos Tópicos da Aula (parte 1) Modelos de Linhas de Transmissão Linhas Curtas: Fluxos da LT sem perdas ativas Diagrama Fasorial
Física Experimental Aula10 Propagação de sinais em cabos coaxiais
Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n
Teoria Experiência de Linhas de Transmissão
Teoria Experiência de Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância
Experiência 1. Linhas de Transmissão
Experiência 1. Linhas de Transmissão Objetivos Medir a velocidade de propagação de uma onda eletromagnética numa linha de transmissão constituída por um cabo coaxial; Estudar os efeitos da impedância de
Teoria de Eletricidade Aplicada
1/46 Teoria de Eletricidade Aplicada Conceitos Básicos Prof. Jorge Cormane Engenharia de Energia 2/46 SUMÁRIO 1. Introdução 2. Sistemas 3. Circuitos Elétricos 4. Componentes Ativos 5. Componentes Passivos
Transmissão e Distribuição de Energia Elétrica
Transmissão e Distribuição de Energia Elétrica Aula 7 Parâmetros Elétricos de uma Linha de Transmissão Prof. Asley S. Steindorff Cálculo dos Parâmetros de uma Linha de Transmissão Os Parâmetros de uma
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam
Parâmetros das linhas de transmissão
Parâmetros das linhas de transmissão Parâmetros das linhas de transmissão Resistencia (R) Dissipação de potência ativa devido à passagem de corrente Condutância (G) Representação de correntes de fuga através
Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão
Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento
Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância
Módulo II Linhas de Transmissão Carta de Smith Casamento de Impedância Casamento de impedância A máxima transferência de potência à carga em uma LT sem perdas é obtida quando a impedância de entrada da
Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita
Eletricidade Aplicada Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Conceitos Básicos Eletricidade Aplicada Função Na engenharia é usual que um fenômeno físico seja representado matematicamente através
Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais
Módulo II Linhas de Transmissão Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Linhas sem Perdas As linhas de transmissão disponíveis comercialmente
26/06/17. Ondas e Linhas
26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com
Circuito Equivalente
Um modelo mais completo de transformador deve levar em consideração os efeitos das resistências dos enrolamentos, os fluxos dispersos e a corrente de excitação. Joaquim Eloir Rocha 1 Em alguns casos, as
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1
TE045 CIRCUITOS ELÉTRICOS II
TE045 CIRCUITOS ELÉTRICOS II O QUE SÃO? Duas portas separadas para entrada e saída; Não há ligações externas; Elementos lineares; Não contém fontes independente. Dois pares de terminais funcionando como
PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ
PRESENCIAL MARINGÁ Professor 01/10/2016 1 / 51 CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10
I. Fatores a serem considerados durante o Projeto
I. Fatores a serem considerados durante o Projeto 1. Adaptação do projeto ao meio ambiente; 2. Escolha do nível de tensão; 3. Seleção dos condutores fase (tipo e tamanho); 4. Seleção dos cabos pára-raios;
ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios
ET720 Sistemas de Energia Elétrica I Capítulo 4: Transformadores de potência Exercícios 4.1 Um transformador monofásico de dois enrolamentos apresenta os seguintes valores nominais: 20 kva, 480/120 V,
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética
Corrente simétrica Corrente parcialmente assimétrica
Curto circuito nas instalações elétricas A determinação das correntes de curto circuito nas instalações elétricas de alta e baixa tensão industriais é fundamental para elaboração do projeto de proteção
Eletrotécnica Geral. Lista de Exercícios 1
ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO PE - Departamento de Engenharia de Energia e utomação Elétricas Eletrotécnica Geral Lista de Exercícios 1 1. Circuitos em corrente contínua 2. Circuitos monofásicos
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES E-mail: [email protected] Aula Número: 03 Ementa do Curso 1. Introdução
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE - PARTE - 2 QUESTÃO 50 Se aumentarmos o valor da corrente através de um fio condutor, o que acontece com o campo magnético: a. Diminui a intensidade b. Aumenta a
O que são quadripólos?
O que são quadripólos? Duas portas separadas para entrada e saída; Não há ligações externas. Dois pares de terminais funcionando como ponto de acesso; Utilização: Sistemas de comunição, de controle, de
Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues
Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais
TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA ELÉTRICA
TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA ELÉTRICA TRANSMISSÃO DE POTÊNCIA EM LINHAS DE TRANSMISSÃO II PROF. ME. JÁDER DE ALENCAR VASCONCELOS Linha de Transmissão em Vazio (continuação...) Vejamos o que acontece
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
TE 131 Proteção de Sistemas Elétricos. Capitulo 7 Proteção de Linhas de Transmissão
TE 131 Proteção de Sistemas Elétricos Capitulo 7 Proteção de Linhas de Transmissão 1. Introdução São os equipamentos do sistema elétrico de potência mais susceptíveis à incidência de defeitos; Provocados
Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62
Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo
Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua
Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém
Fluxo de Potência via Método de Newton-Raphson
Fluxo de Potência via Método de Newton-Raphson Fluxo de Potência via Método de Newton- Raphson Visão Genérica Joinville, 2 de Maio de 2013 Escopo dos Tópicos Abordados Solução do Fluxo de Potência via
Transmissão e Distribuição de Energia. Capacitância de Linhas de Transmissão Prof. M.e Jáder de Alencar Vasconcelos
Transmissão e Distribuição de Energia Capacitância de Linhas de Transmissão Prof. M.e Jáder de Alencar Vasconcelos Ao energizarmos condutores aéreos por meio de um gerador, mesmo sem alimentar nenhuma
Sistemas Elétricos de Potência 1 Lista de Exercícios No. 4
Sistemas Elétricos de Potência 1 Lista de Exercícios No. 4 1 Um transformador trifásico de distribuição de 50 KVA, 2400:240 V, 60 Hz, tem uma impedância de dispersão de 0,72 + j 0,92 Ω no enrolamento da
TE 158 Operação de sistemas elétricos de potência Lista de exercícios. Fator de Potência
TE 158 Operação de sistemas elétricos de potência Lista de exercícios Fator de Potência Cargo: Engenheiro Pleno - Eletricista Ano: 2006 Órgão: CORREIOS/DF Instituição: AOCP 1. Determine a potência ativa
F-328 Física Geral III
F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW [email protected] F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.
SVC Static VAr Compensator. Juliano Menezes Luis Gustavo Dias de Souza
SVC Static VAr Compensator Juliano Menezes Luis Gustavo Dias de Souza Introdução Excesso de reativo: Baixo FP; Aumento das correntes que percorrem os condutores, levando a maiores perdas; Punições, multas;
4 Modelo Proposto para Transformador com Tap Variável e Impacto em Estudos de Estabilidade de Tensão
4 Modelo Proposto para Transformador com Tap Variável e Impacto em Estudos de Estabilidade de Tensão A representação de equipamentos elétricos através de simples combinações de resistências e reatâncias
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS
ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia EXPERIÊNCIA: ENSAIOS EM CURTO E VAZIO DE TRANSFORMADORES
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -
AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala
AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 04 Tensão e Corrente alternada Ondas senoidais Ondas quadradas Ondas triangulares Frequência e período Amplitude e valor
Módulo II Linhas de Transmissão
Módulo II Linhas de Transmissão Linhas de Transmissão Introdução Equações do Telegrafista Modelos por Parâmetros Distribuídos Ondas harmônicas no tempo em LTs Impedância Característica Teorema de Poynting
SEL413 Telecomunicações. 1. Notação fasorial
LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os
GABARITO ESC00. Questão 1 a) O diagrama de reatâncias de sequência positiva é:
GABARITO ESC00 Questão 1 a) O diagrama de reatâncias de sequência positiva é: O diagrama de reatâncias de sequência negativa é: b) Os equivalentes de Thèvenin são: Ponto A: Ponto B: Ponto C: Ponto D: (
1299 Circuitos elétricos acoplados
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento
Lista 10. Indução Eletromagnética
Lista 10 Indução Eletromagnética Q30.1-) Considere que ao movimentar a lâmina existe variação do fluxo do campo magnético sobre a superfície da lâmina. Por outro lado a Lei de Faraday indica que algo deve
PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:
13 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 35 É característica que determina a um transformador operação com regulação máxima: a) A soma do ângulo de fator de potência interno do transformador com o
Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51
Sumário CAPÍTULO 1 A Natureza da Eletricidade 13 Estrutura do átomo 13 Carga elétrica 15 Unidade coulomb 16 Campo eletrostático 16 Diferença de potencial 17 Corrente 17 Fluxo de corrente 18 Fontes de eletricidade
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
ET720- Sistemas de energia elétrica I Capítulo 5 Linhas de transmissão
ET720- Sistemas de energia elétrica I Capítulo 5 Linhas de transmissão Exercícios 5.1 Ocondutordealumíniopuro,identificadopelonomecódigoBluebell,écompostopor37fiosde0,167 dediâmetro cada um. As tabelas
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
Aula 2 por fase e Sistema pu
Proteção de istemas Elétricos (PE) Proteção de istemas Elétricos Aula Análise por fase e istema pu Proteção de istemas Elétricos (PE) Análise por fase e diagrama unifilar No estudo do RP do EE, utiliza-se
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Análise de Redes de Micro-ondas (Páginas 165 a 178 do Livro texto) Tópicos: Tensão e corrente equivalentes em Guias de Onda Matrizes de Impedância
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 2/3 Impedância de Entrada; Coeficiente
Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro
Revisão de conceitos Aula 2 Introdução à eletrónica médica João Fermeiro Objetivos Rever as grandezas elétricas e elementos de circuito passivos. Considerações sobre resistência/indutância/capacitância
Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)
º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas
Aula 2 Circuito série de corrente contínua.
Aula 2 Circuito série de corrente contínua [email protected] Circuito em série Polaridade das quedas de tensão Potência total em circuito em série Queda de tensão por partes proporcionais Fontes de
LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE
LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE DENSIDADE DE CORRENTE E VELOCIDADE DE ARRASTE 1) A American Wire Gauge (AWG) é uma escala americana normalizada usada para padronização de fios e cabos elétricos.
Aula 5 Análise de circuitos indutivos em CA circuitos RL
Aula 5 Análise de circuitos indutivos em CA circuitos RL Objetivos Aprender analisar circuitos RL em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos,
ONDAS E LINHAS DE TRANSMISSÃO
ONDAS E LINHAS DE TRANSMISSÃO Prof. Pierre Vilar Dantas Turma: 0092-A Horário: 5N ENCONTRO DE 26/04/2018 1 Linhas de Transmissão 2 Circuito de telecomunicações Na sua forma mais elementar, um circuito
Agrupamento de Escolas da Senhora da Hora
Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Informação Prova da Disciplina de Física e Química - Módulo: 5 Circuitos eléctricos de corrente
Programa de engenharia biomédica
Programa de engenharia biomédica princípios de instrumentação biomédica COB 781 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E [email protected] Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados
Aula 6 Análise de circuitos capacitivos em CA circuitos RC
Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Cálculos de Interrupção de alta freqüência Ron Roscoe O esquema acima representa
ELETRICIDADE E ELETROMAGNETISMO
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR ELETRICIDADE E ELETROMAGNETISMO QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) t: Tempo
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a
Análise de Sistemas Elétricos de Potência 1 UNIVERSIDADE FEDERAL DE JUIZ DE FORA A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a 1. Visão Geral do Sistema
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNEDADE FEDEAL DE JU DE FOA Graduação em Engenharia Elétrica TANMÃO DE ENEGA ELÉTCA OF FLÁO ANDEON GOME E-mail: flaviogomes@ufjfedubr Aula Número: 04 Curso de Transmissão de Energia Elétrica Aula Número:
Eletricidade (EL63A) LEIS BÁSICAS
Eletricidade (EL63A) LEIS BÁSICAS Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Como determinar os valores de tensão, corrente e potência
Circuitos. ε= dw dq ( volt= J C ) Definição de fem:
Aula-7 Circuitos Circuitos Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário
10/05/17. Ondas e Linhas
10/05/17 1 Casamento de impedância (pags 234 a 240 do Pozar) Casamento de impedância com toco simples em série. Casamento de impedância com toco simples em paralelo. CASAMENTO DE IMPEDÂNCIA COM TOCO DUPLO.
Transmissão de Energia Elétrica
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Transmissão de Energia Elétrica Aula: 01 Introdução P r o f. F l á v i o V a n d e r s o n G o m e s E - m a i l : f l a v i o. g o m e s @ u f j f. e d u. b r E N
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Oscilações Eletromagnéticas e Corrente Alternada. Curso de Física Geral F328 1 o semestre, 2008
Oscilações Eletromagnéticas e orrente Alternada urso de Física Geral F38 o semestre, 008 Oscilações Introdução os dois tipos de circuito estudados até agora ( e ), vimos que a carga, a corrente e a diferença
SISTEMAS ELÉTRICOS. CURTO CIRCUITO Aula 2 Prof. Jáder de Alencar Vasconcelos
SISTEMAS ELÉTRICOS CURTO CIRCUITO Aula 2 Prof. Jáder de Alencar Vasconcelos Corrente inicial de curto circuito A corrente logo após a ocorrência de curtos circuitos tem duas componentes, uma senoidal e
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 [email protected] http://www.fap.if.usp.br/~hbarbosa Tarefas da Semana (1) Medir a impedância do capacitor fornecido em função da
Aula 01 Propriedades Gerais dos Materiais
Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Materiais Elétricos - Teoria Aula 01 Propriedades Gerais dos Materiais Clóvis Antônio Petry, professor. Florianópolis, setembro
