Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E
|
|
|
- Antônio Aires Castelo
- 7 Há anos
- Visualizações:
Transcrição
1 Prof. Fernando Massa Fernandes Sala 5017 E [email protected]
2 Acoplador 3dB Filtros passa baixa
3 Somente o campo H possui componente na direção de propagação z: Substituindo Hz na eq. de Helmholtz => Numero de onda de corte x E = j ω μ H => = jωϵ xh E K 2c = K 2 β2 => Hz =??
4 Substituindo Hz na eq. de Helmholtz Separação de variáveis => Solução geral
5 Solução geral Aplico condições de contorno para encontrar A, B, C e D: Quais? Já vimos (aula 3) que as condições de contorno em interfaces nos fornecem a relação entre os campos elétricos e magnéticos, perpendiculares e tangenciais a interface que separa dois meios. Resposta => Campos elétricos tangenciais à interface com o metal s = 0 ( E (2)t E (1)t ) x n = M
6 Solução geral Aplico condições de contorno para encontrar A, B, C e D: s = 0 => ( E (2)t E (1)t ) x n = M * Dentro do metal (distante da interface) E (2)t = 0
7 Aplico condições de contorno para encontrar A, B, C e D: => e x ( y =0) D=0 e x ( y =b) k y = n π / b (n=1, 2, 3,...) e y ( x=0) B=0 e y ( x=a) k x = m π /a (m=1, 2, 3,...)
8 Solução geral e x ( y =0) D=0 e x ( y =b) k y = n π / b (n=1, 2, 3,...) e y ( x=0) B=0 e y ( x=a) k x = m π / a (m=1, 2, 3,...) Solução particular
9 Solução particular =>
10 Solução particular A impedância de onda no modo TE (geral) é dada por
11 Solução particular Condição para haver propagação =>
12 Solução particular Condição para haver propagação => Frequência de corte => Modo dominante TE10 (menor frequência possível) =>
13 O comprimento de onda do guia é definido como sendo a distância entre os planos de mesma fase: A velocidade de fase é dada por: Maior que a velocidade da onda plana!
14 Atenuação: jβ γ = α + jβ Const de propagação γ = α + j β = K = ω μ ϵ Sempre! K 2 c K2
15 Atenuação: jβ γ = α + jβ γ = α + jβ = 2 2 K K c α = αc + αd Perda no condutor Pl αc = (método da perturbação) 2 P0 Perda no dielétrico Dielétrico preenchendo completamente o espaço interno do guia. K 2 tg δ αd = 2β (Np/m) TE ou TM
16 Modo dominante => TE10 (m = 1, n = 0)
17 Modo dominante => TE10 (m = 1, n = 0) * Utilizado na vasta maioria das aplicações * Estável * Menor atenuação Guia de Latão (a = 2.0 cm)
18 Modo dominante => TE10 (m = 1, n = 0) Atenuação no modo dominante devido a perda no condutor: Pl αc = (método da perturbação) 2 P0
19 Modo dominante => TE10 (m = 1, n = 0)
20 Modo dominante => TE10 (m = 1, n = 0) Corrente de superfície na parede x = 0: Corrente de superfície na parede y = 0:
21 Modo dominante => TE10 (m = 1, n = 0)
22 Modo dominante => TE10 (m = 1, n = 0) Atenuação no modo dominante devido a perda no condutor:
23 Modo TM Ondas E (TMn Ez 0; Hz = 0) Somente o campo E possui componente na direção de propagação z: Substituindo Ez na eq. de Helmholtz Numero de onda de corte
24 Modo TM Ondas E (TMn Ez 0; Hz = 0) Solução geral do modo TM: Condições de contorno aplicadas para ez: Solução particular para Ez:
25 Modo TM Ondas E (TMn Ez 0; Hz = 0) Solução particular para Ez: A impedância de onda no modo TM (geral) é dada por
26 Modo TM Ondas E (TMn Ez 0; Hz = 0) Solução particular para Ez: Modo de propagação de menor ordem TM11 => E e H são nulos quando mn = 00, 10, 01, 20, 02, etc...
27
28 Guia de Latão (a = 2.0 cm)
29 Exemplo: Características de um guia de onda retangular Considere um guia de onda retangular de cobre, operando na banda-k, possuindo dimensões a = 1,07 cm e b = 0,43 cm. O guia é completamente preenchido por Teflon. i) Encontre as frequências de corte dos primeiros cinco modos de propagação. ii) Se a frequência de operação é de 15 GHz, encontre a atenuação devida às perdas no dielétrico e no condutor.
30 Exemplo: Características de um guia de onda retangular Considere um guia de onda retangular de cobre, operando na banda-k, possuindo dimensões a = 1,07 cm e b = 0,43 cm. O guia é completamente preenchido por Teflon. i) Encontre as frequências de corte dos primeiros cinco modos de propagação. ii) Se a frequência de operação é de 15 GHz, encontre a atenuação devida às perdas no dielétrico e no condutor.
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - GUIAS DE ONDA 1/2 Introdução; Guia de Onda Retangular; Modos
31/05/17. Ondas e Linhas
31/05/17 1 Guias de Onda (pags 102 a 109 do Pozar) Linhas de Transmissão de placas paralelas. Modos TEM Modos TE e TM 31/05/17 2 Linha de Transmissão de Placas Paralelas Vamos considerar os campos de uma
10/05/17. Ondas e Linhas
10/05/17 1 Guias de Onda (pags 95 a 10 do Pozar) Equações de Maxwell e equação de onda Solução geral para Modos TEM Solução geral para Modos TE e TM 10/05/17 Guias de Onda Guias de onda são estruturas
Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas
Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas (Revisão) Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS Ondas Eletromagnéticas são uma forma de transportar energia
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão aspectos básicos (Páginas 48 a 56 no Livro texto) Objetivos: Discutir comportamento de L.T. Em altas frequências. Introduzir
Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão
Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento
UFSM-CTISM. Projeto de Redes sem Fio Aula-04
UFSM-CTISM Projeto de Redes sem Fio Aula-04 Professor: Andrei Piccinini Legg Santa Maria, 2012 Ocorre quando uma onda eletromagnética em colide com um objeto que possui dimensões muito grandes em comparação
SEL413 Telecomunicações. 1. Notação fasorial
LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO
UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS SEGUNDA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO I Ondas eletromagnéticas planas 1) Uma onda de Hz percorre
Ondas Eletromagnéticas Resumo
Ondas Eletromagnéticas Resumo SEL SEL 317 Sistemas de comunicação Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir de apoio às
EN3624 Sistemas de Micro-ondas
EN3624 Sistemas de Micro-ondas Linhas de Transmissão em Micro-ondas Tipos de Linhas de Transmissão em Micro-ondas 2 ou mais condutores: Cabos coaxiais modo TEM (transversal eletromagnético) Microlinha
26/06/17. Ondas e Linhas
26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com
CAPÍTULO 1 INTRODUÇÃO
CAPÍTULO 1 INTRODUÇÃO 1 1.1 OBJETIVOS DO CURSO Objetivo principal: Fornecer ao estudante fundamentos teóricos e aspectos práticos necessários ao projeto de circuitos analógicos que operam em freqüências
Problemas sobre Ondas Electromagnéticas
Problemas sobre Ondas Electromagnéticas Parte I ÓPTICA E ELECTROMAGNETISMO MIB Maria Inês Barbosa de Carvalho Setembro de 2007 CONCEITOS FUNDAMENTAIS PROBLEMAS PROPOSTOS 1. Determine os fasores das seguintes
PROPAGAÇÃO ELETROMAGNÉTICA
PROPAGAÇÃO LTROMAGNÉTICA LONARDO GURRA D RZND GUDS PROF. DR. ONDA LTROMAGNÉTICA As ondas de rádio que se propagam entre as antenas transmissora e receptora são denominadas de ondas eletromagnéticas Transmissor
Física Experimental Aula10 Propagação de sinais em cabos coaxiais
Física Experimental Aula0 Propagação de sinais em cabos coaxiais 008-009 Lab7 - Estudo de um fenómeno de histerese num circuito eléctrico Revisão: Onda quadrada f (t) = a 0 + n= a n cos( nπt T ) + b n
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Ondas planas: Reflexão de ondas (Capítulo 12 Páginas 428 a 437) na interface entre dielétricos com incidência
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P DE ELETROMAGNETISMO 3.10.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da prova
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNESDADE FEDEAL DE JU DE FOA Graduação em Engenharia Elétrica TANSMSSÃO DE ENEGA ELÉTA POF. FLÁO ANDESON GOMES E-mail: [email protected] Aula Número: 07 urso de Transmissão de Energia Elétrica Aula
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição
Exercícios de Eletromagnetismo II
Exercícios de Eletromagnetismo II Antonio Carlos Siqueira de Lima 2014/2 Resumo Nesse documento são apresentados alguns exercícios sobre eletromagnetismo. Eles são baseados no livro texto: Campos & Ondas
Linha de transmissão
Linha de transmissão Um troço elementar de uma linha de transmissão (par simétrico ou cabo coaxial) com comprimento dz pode ser modelado por um circuito: I(z) Ldz Rdz I(z+dz) Parâmetros primários: R [Ω
INSTITUTO DE FÍSICA DA UNIVERSIDADE
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
Campo Magnético - Lei de Biot-Savart
Campo Magnético - Lei de Biot-Savart Evandro Bastos dos Santos 22 de Maio de 2017 1 Campo Magnético Na aula anterior vimos que uma carga elétrica, quando em movimento, sofre uma força devido a um campo
1- Quais das seguintes freqüências estão dentro da escala do ultrassom? 2- A velocidade média de propagação nos tecidos de partes moles é?
Exercícios de Física 1- Quais das seguintes freqüências estão dentro da escala do ultrassom? a) 15 Hz b) 15 KHz c) 15 MHz d) 17.000 Hz e) 19 KHz 2- A velocidade média de propagação nos tecidos de partes
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD PISM III- TRIÊNIO PROVA DE FÍSICA
PISM III- TRIÊNIO 008-00 Na solução da prova, use quando necessário: Aceleração da gravidade g = 0 m / s 8 ;Velocidade da luz no vácuo c = 3,0 0 m/s Permeabilidade magnética do vácuo = 7 µ T m A 0 4π 0
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES E-mail: [email protected] Aula Número: 06 2 - 3 4 5 6 7 8 9 10
8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude
Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução. 2. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda.
ANTENAS - TÓPICOS DAS AULAS - 1. Introdução.. Dipolo hertziano. 3. Antena dipolo de meia onda. 4. Antena monopolo de quarto de onda. 5. Antena em anel pequeno. 6. Características das antenas. 7. Conjunto
Prova de Seleção
Área de Concentração: Prova de Seleção 2016.2 Código de Inscrição do candidato: Cada questão assinalada corretamente vale 1,0 ponto. π Questão 1. Dada a integral definida y 0 (sin t ) 2 π dt + (cos(t))
LINHAS DE TRANSMISSÃO. Introdução - 1
Introdução - 1 A baixas frequências mesmo o circuito mais complicado pode ser descrito em termos de conceitos simples como resistência, capacidade e inductância. A estas frequências o comprimento de onda
ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto
ELETROMAGNETISMO SEL 0309 LISTA ADICIONAL DE EXERCÍCIOS SOBRE CAMPOS ELÉTRICOS E MAGNÉTICOS EM MATERIAIS Professor: Luís Fernando Costa Alberto Campo elétrico 1) O campo elétrico na passagem de um meio
Aula-6 Ondas IΙ. Física Geral IV - FIS503 1º semestre, 2017
Aula-6 Ondas IΙ Física Geral IV - FIS503 1º semestre, 2017 Interferência Duas ondas de amplitudes (A) iguais: y1 (x, t ) = Asin(kx ωt ) y2 (x, t ) = Asin(kx ωt + φ ) y(x, t ) = y1 (x, t ) + y2 (x, t )
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
Física Módulo 2 Ondas
Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,
GUIAS DE ONDA RETANGULARES PREENCHIDOS POR MÚLTIPLAS CAMADAS DE DIELÉTRICOS PARA FILTRAGEM EM MICROONDAS DE 10 À 15 GHz.
ALVARO JULIANO VICENTE GUIAS DE ONDA RETANGULARES PREENCHIDOS POR MÚLTIPLAS CAMADAS DE DIELÉTRICOS PARA FILTRAGEM EM MICROONDAS DE 0 À 5 GHz. Dissertação apresentada como requisito parcial para a obtenção
Δt, quando. R. 1 Nessas condições, a relação entre as
1. (Unesp 016) As companhias de energia elétrica nos cobram pela energia que consumimos. Essa energia é dada pela expressão E V i t, em que V é a tensão que alimenta nossa residência, a intensidade de
b) átomos do dielétrico absorvem elétrons da placa negativa para completar suas camadas eletrônicas externas;
GOIÂNIA, _28 / 10 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016 No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre
EEC4262 Radiação e Propagação. Lista de Problemas
Lista de Problemas Parâmetros fundamentais das antenas 1) Uma antena isotrópica no espaço livre produz um campo eléctrico distante, a 100 m da antena, de 5 V/m. a) Calcule a densidade de potência radiada
Aula 6 PS Prof. César Janeczko. Filtros Digitais
Aula 6 PS Prof. César Janeczko Filtros Digitais Filtros digitais são usados em geral para dois propósitos: 1 o separação de sinais que foram combinados, por exemplo, modulados; 2 o restauração de sinais
ASSINATURAS GEOFÍSICAS DE ÁREAS
ASSINATURAS GEOFÍSICAS DE ÁREAS CONTAMINADAS: GPR Geofísica para a terceira idade Universidade de São Paulo IAG Departamento de Geofísica Objetivos Aplicação do radar de penetração no solo (GPR) em estudos
Fisica 1 A B. k = 1/4πε 0 = 9, N.m 2 /C Um automóvel faz o percurso Recife-Gravatá a uma velocidade média de 50 km/h.
Fisica 1 Valores de algumas constantes físicas celeração da gravidade: 10 m/s 2 Densidade da água: 1,0 g/cm 3 Calor específico da água: 1,0 cal/g C Carga do elétron: 1,6 x 10-19 C Velocidade da luz no
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão Coef. de Reflexão e impedância de entrada (Páginas 56 a 60 no Livro texto) Objetivos: Campos eletromagnéticos em Linhas de Transmissão.
ANNE SOARES RELATÓRIO FINAL DE PROJETO MEIOS DE TRANSMISSÃO
Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática JULIE ANNE SOARES RELATÓRIO FINAL DE
Dinâmica de gases. Capítulo 04 Choques oblíquos e ondas de expansão
Dinâmica de gases Capítulo 04 Choques oblíquos e ondas de expansão 4. Introdução Choques normais são um caso especial de uma família de ondas oblíquas que ocorrem em escoamentos supersônicos. Choques oblíquos
Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012
Universidade Estadual de Santa Cruz (UESC) Programa de Pós-Graduação em Física Segunda prova de seleção para ingresso em 2012/2 Nome: Data: 13/08/2012 1 Seção A: Mecânica Clássica Uma nave espacial cilíndrica,
INPE eprint: v João Vianei Soares Fundamentos de Radar Página nº 1. Energia
João Vianei Soares Fundamentos de Radar Página nº 1 Energia Energia é medida em Joules (ML 2 T -2 ): Caixa de luz com abertura Energia radiante deixa a caixa a uma taxa de P Joules/segundo, ou P Watts
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição
INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA
INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais
1 O canal de comunicação radiomóvel
1 O canal de comunicação radiomóvel O projeto de sistemas de comunicações sem fio confiáveis e de alta taxa de transmissão continua sendo um grande desafio em função das próprias características do canal
d) calcule o potencial elétrico em qualquer ponto da superfície e do interior da esfera.
Na solução da prova, use quando necessário: 8 Velocidade da luz no vácuo c = 3, 1 m/s 7 Permeabilidade magnética do vácuo µ =4π 1 T m / A 9 2 2 Constante eletrostática no vácuo K=9 1 N m / C Questão 1
Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco
dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.
Aula 19 - Força Magnética sobre Correntes Elétricas
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 3-7, 3-8 S. 28-7, 28-8, 28-9 T. 24-1, 24-3 Aula 19
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
Avaliação de uma blindagem eletromagnética para freqüências até 1khz
CienteFico. Ano III, v. I, Salvador, janeiro-junho 2003 Avaliação de uma blindagem eletromagnética para freqüências até 1khz Hércules de Souza Resumo Com a finalidade de proteger um ambiente em um laboratório
4 Análise de Cornetas Cônicas Coaxiais 4.1. Introdução
4 Análise de Cornetas Cônicas Coaxiais 4.1. Introdução O projeto do sistema de alimentação de antenas circularmente simétricas proposto neste trabalho, envolve a associação de um conector comercial padrão
4 Métodos Assintóticos
4 Métodos Assintóticos No regime de freqüências altas, quando as propriedades do meio não variam ao longo de um comprimento de onda e as dimensões dos obstaculos envolvidos são muito maiores que o mesmo,
Lista de Exercícios. Campo Magnético e Força Magnética
Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B
Eletrônica I. Prof. Cláudio Henrique A. Rodrigues
Eletrônica I 1 2 Qual o significado de um corpo eletricamentecarregado? A Carga Elétrica é positiva (+) ou negativa(-)? 3 Um corpo apresenta-se eletricamente neutro quando o número total de prótons e de
Resolução de exercícios Parte 1
Resolução de exercícios Parte 1 Capítulo 1 (4 exercícios) 1. Uma fonte luminosa emite uma potência igual a 3mW. Se as perdas totais do sistema somam 45dB, qual deve ser a mínima potência detectável por
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-
Pontas de prova para instrumentos
Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de
INDUÇÃO MAGNÉTICA (2)
INDUÇÃO MAGNÉTICA Material Utilizado: - uma bobina de campo (l = 750 mm, n = 485 espiras / mm) (PHYWE 11006.00) - um conjunto de bobinas de indução com número de espiras N e diâmetro D diversos (N = 300
A penetração de campos em meios condutores
A penetração de campos em meios condutores I. INTRODUÇÃO Os fenômenos eletromagnéticos que variam no tempo são abordados na magnetodinâmica. A equação de maior interesse e que caracteriza o domínio da
Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO Vamos supor que existe uma carga em movimento num campo magnético. O campo magnético está entrando no plano e a velocidade da carga é perpendicular ao campo. A carga começará a se mover
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam
Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.
16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:
FORÇA MAGNÉTICA SOBRE CONDUTORES
73 11 FORÇA MAGNÉTCA SOBRE CONDUTORES 11.1 - EFETO DE UM ÍMÃ EM UM FO CONDUZNDO CORRENTE Considere o campo magnético uniforme entre os pólos de um imã permanente, como pode ser visto na figura 11.1. N
Meios físicos. Par Trançado (TP) dois fios de cobre isolados
Meios físicos bit: propaga entre pares de transmissor/receptor enlace físico: o que fica entre transmissor e receptor meio guiado: sinais se propagam em meio sólido: cobre, fibra, coaxial meio não guiado:
Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012
Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P2 17 de maio de 2012 Questão 1 Um capacitor de placas paralelas e área A, possui o espaço entre as placas preenchido por materiaisdielétricos
Data Dia Tópico Demonstrações
2016: 44 dias de aula + 3 provas = 47 dias Data Dia Tópico Demonstrações 1/8 2a 1. Introdução ao curso; revisão de identidades vetoriais 3/8 4a 2. Função delta de Dirac em 1, 2 e 3 dimensões Demonstração:
Ondas em Plasmas (Capítulo 4) Referência: F. F. Chen Introduction to Plasma Physics
Ondas em Plasmas (Capítulo 4) Referência: F. F. Chen Introduction to Plasma Physics 4-1 Representação de ondas Ondas / Oscilações Espaciais e Temporais Variação da densidade de partículas r k: vetor de
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: APLICAÇÕES DAS LEIS DE NEWTON
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: APLICAÇÕES DAS LEIS DE NEWTON Objetos em equilíbrio F = 0 (Partícula em Equilíbrio, Forma vetorial)
Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.
Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com
Ondulatória Parte 1. Física_9 EF. Profa. Kelly Pascoalino
Ondulatória Parte 1 Física_9 EF Profa. Kelly Pascoalino Nesta aula: Introdução; Ondas mecânicas; Ondas sonoras. INTRODUÇÃO Ondas de vários tipos estão presentes em nossas vidas. Lidamos com os mais diversos
Fuja do Nabo: Física II P Rogério Motisuki Ondulatória Exercícios
Fuja do Nabo: Física II P1 014 Rogério Motisuki Ondulatória Exercícios P 01) a) Basta observar o gráfico e visualmente perceber que há dois comprimentos de onda em 1m, ou seja: λ = 0,5m Fazendo o mesmo
Física e Química 11.º ano /12.º ano
ísica e Química.º ano /.º ano Proposta de Resolução icha n.º 5 Comunicação a Curtas Distâncias... Uma onda é uma propagação de uma perturbação de uma região para outra do espaço, sem que exista transporte
FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário
FÍSICA IV - FAP2204 Escola Politécnica GABARITO DA P1 22 de setembro de 2009
P1 FÍSICA IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P1 22 de setembro de 2009 Questão 1 Um circuito RLC em série é alimentado por uma fonte que fornece uma tensão v(t) cosωt. O valor da tensão
( ) Trabalho e Potencial Elétrico ( ) 1,6x10 1,6x10. = 1,0x10 ev. Gabarito Parte I: 4πε. 4 q. 3 m v. Página ,5 0,45 0,9
Trabalho e Potencial Elétrico Gabarito Parte I: a) Como os dois íons formam um sistema mecanicamente isolado (livres de ação de forças externas), ocorre conservação da quantidade de movimento do sistema
ASSUNTO: Produção e Propagação de Ondas Eletromagnéticas.
UNIDADES DE TRANSMISSÃO 1 QUESTIONÁRIO DA UNIDADE I ASSUNTO: Produção e Propagação de Ondas Eletromagnéticas. Nome: N o : Turma: Para cada período mencionado, analise seu conteúdo e marque " F " para uma
