Dispositivos e Circuitos de RF
|
|
|
- Vitorino Diego Martins
- 7 Há anos
- Visualizações:
Transcrição
1 Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Divisores de Potência e Acopladores Direcionais Tópicos abordados: (Páginas 4 a 8 do livro texto) Divisor de junção T Divisor resistivo
2 Divisores de Potência tipo junção T A Junção T pode ser utilizada como divisor ou combinador de sinais. Pode ser implementada em praticamente todo tipo de LT e Guia de Onda. Consideremos uma Junção T sem perdas. Isto implica que todas as portas não estarão casadas. (Uma vez que a rede é recíproca) 04/04/9 Divisores de Potência tipo junção T A Junção T é um dispositivo de três portas. Porta Porta V 0 jb Porta As portas não estão todas casadas. 04/04/9
3 Divisores de Potência tipo junção T A susceptância em paralelo esta relacionada com energia armazenada (modos superiores). Para ter a entrada casada com uma linha com imped. caract. : Y in = = jb Para uma L.T. sem perdas B = 0. No caso de uma linha com perdas é possível cancelar B com um elemento reativo. 04/04/9 Divisores de Potência tipo junção T As impedâncias e devem ser projetadas para se obter a divisão de potência desejada nas portas e. Para = 50Ω um divisor de db pode ser feito com = =00Ω. = garante que metade da potência se acople a cada saída. 00Ω é escolhido para que a impedância seja = 50Ω. (00Ω//00Ω = 50Ω) 04/04/9 4
4 Divisores de Potência tipo junção T Exemplo 7. pg.6 - Um divisor de potência tipo Junção T tem uma impedância de entrada de 50Ω. Encontre as impedâncias nas saídas para ter um divisor de potência com razão : nas saídas. Calcule os coeficientes de reflexão e os parâmetros de espalhamento. 04/04/9 5 Potência na entrada para de tensão V 0 incidindo na porta : P in = Potência nas saídas: P = P = = P in = P in 04/04/9 6
5 Substituindo P in nas duas últimas expressões: e P = P = = = = =50Ω = Z = 75Ω 0 A impedância enxergada pela porta é: = 75Ω / /50Ω = 50Ω 04/04/9 7 Impedâncias vistas pelas portas e : = / / = 50Ω / /75Ω = 0Ω = / / = 50Ω / /50Ω = 7.5Ω = 75Ω / /50Ω = 50Ω 04/04/9 8
6 Parâmetro S S = V V V =0 V =0 = Γ = = 0 (casada) Parâmetro S Parâmetro S S = V V V =0 S = V V =0 V V =0 V =0 = Γ = Z 0 50 = 0 50 = = Γ = Z = = 0. 04/04/9 9 Parâmetros S ij Para calcular os parâmetros S ij (i j) podemos usar: S ij = V i V j Vi =0 = T j j i = ( Γ j ) j i V k =0 onde: - T j é o coeficiente de transmissão da porta de entrada j; - j e i são impedâncias características das respectivas portas. Devemos usar este resultado quando as portas têm impedâncias características diferentes. 04/04/9 0
7 Parâmetros S =S S = V V V =0 V =0 Z = T 0 = ( Γ ) Substituindo = 50Ω = 50Ω e Γ =0: S = ( ) 50 ( ) 50 = S ij = Γ j j i 04/04/9 Parâmetros S =S S = V V V =0 V =0 Z = T 0 = ( Γ ) Substituindo = 75Ω = 50Ω e Γ =0: S = ( ) 50 ( ) 75 = 0.86 S ij = Γ j j i 04/04/9
8 Parâmetros S =S S = V V V =0 V =0 Z = T = ( Γ ) Substituindo = 75Ω = 50Ω e Γ = : S = ( 0.666) 50 ( ) 75 = 0.47 S ij = Γ j j i 04/04/9 Redes de casamento de impedância Redes de casamento de impedância são utilizadas para garantir que o máximo de potência seja transferida para a carga. A rede de casamento é projetada de maneira que a impedância enxergada pela linha seja a impedância característica da linha. A rede de casamento garante que não haja reflexão de volta para o gerador e que a impedância de entrada seja independente do comprimento da linha. Tipos de rede de casamento: transf. de quarto de onda redes de elementos de parâmetros concentrados toco simples toco duplo. 04/04/9 5 Z IN = 4 REDE DE CASAMENTO Z L
9 Transformador de quarto de onda A transformação de impedância gerada por uma linha de transmissão sem perdas com impedância característica é: = Z L j tan(βl) jz L tan(βl) Se usarmos um trecho de linha com comprimento l = λ/4: ( ) = Z L Se fizermos = : = Z L 5 Transformador de quarto de onda Podemos usar um pedaço de de linha com λ/4 de comprimento para casar a impedância real de uma carga R L com uma linha de impedância. λ/4 Transformador de λ/4 Para isto basta que a impedância do transformador seja a média geométrica da impedância da carga e da linha: 04/04/9 = Z L 6
10 Transformador de quarto de onda O Transformador de quarto de onda transforma a impedânciadas das saídas para as portas e num valor desejado (normalmente ). Relação entre impedâncias de entrada e de saída: = Z out Z out Porta V 0 jb Z out Z λ/4 Porta Caso = = : Z λ/4 Z out Porta Z λ/4 = Z out ; Z λ/4 = Z out 7 Divisor resistivo 7
11 Divisor resistivo O divisor resistivo é um dispositivo simétrico onde todas as portas estão casadas. Sua desvantagem é que parte da potência a ser dividida é perdida nos resistores. A impedância Z vista do centro do divisor olhando para cada porta é: é: Z = Z = 4 0 = Z / /Z = = 8 Divisor resistivo Por ser simétrico as demais portas também estão casadas e portanto: S = S = S = 0 Observa-se que o dispositivo é recíproco (pela simetria). 0 S S S = S t = S 0 S S S 0 A tensão V no centro do divisor é: Z V = 0 / / / V = V 9
12 Divisor resistivo Tensões nas saídas (V e V ) V =V = Substituindo V da penúltima expressão: V =V = 4 V = 4 V = V Considerando novamente a simetria: S = S = S =/ S = / V = 4 V 0 Divisor resistivo Potência na entrada da linha: Potência em cada saída: ( ) P = P = V = V / = V = P 8 4 P = V Os elementos resistivos introduzem perdas.
Ondas e Linhas. Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza de Carvalho 1 Linha Fendida e Transformador de Quarto de Onda (Páginas 68 a 75 no Livro texto) Tópicos: Linha fendida (slotted line) Casamento de impedância: transformador de quarto
Módulo II Linhas de Transmissão. Carta de Smith Casamento de Impedância
Módulo II Linhas de Transmissão Carta de Smith Casamento de Impedância Casamento de impedância A máxima transferência de potência à carga em uma LT sem perdas é obtida quando a impedância de entrada da
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof Daniel Orquiza de Carvalho Análise de Redes de Micro-ondas (Páginas 74 a 88 do Livro texto) Tópicos: Matrizes de Impedância [Z] e Admitância [Y] (cont) Matrizes de Espalhamento
10/05/17. Ondas e Linhas
10/05/17 1 Casamento de impedância (pags 234 a 240 do Pozar) Casamento de impedância com toco simples em série. Casamento de impedância com toco simples em paralelo. CASAMENTO DE IMPEDÂNCIA COM TOCO DUPLO.
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E [email protected] Aula 6 .4 Carta de Smith z IN + Γ e j θ = = r L + jx L jθ Γ e * Correlação gráfica de três
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Filtros de Micro-ondas Tópicos abordados: (Capítulo 8 pgs 402 a 408 do livro texto) Aplicação do Método da Perda de inserção no: Projeto
26/06/17. Ondas e Linhas
26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com
Módulo II Linhas de Transmissão. Circuito com gerador e carga
Módulo II Linhas de Transmissão Circuito com gerador e carga Circuito com Gerador e Carga Anteriormente havíamos considerado a existência de uma descontinuidade na interface entre linha e impedância de
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Osciladores Tópicos abordados: (Capítulo 13 pgs 637 a 643 do livro texto) Propriedades de Misturador single-ended a diodo são dispositivos
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Análise de Redes de Micro-ondas (Páginas 165 a 178 do Livro texto) Tópicos: Tensão e corrente equivalentes em Guias de Onda Matrizes de Impedância
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] * A descrição em termos da matriz de impedância [Z] estabelece a relação entre tensão [V] e corrente
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3
Eletromagnetismo Aplicado Propagação de Ondas Guiadas Linhas de Transmissão - 2/3 Heric Dênis Farias [email protected] PROPAGAÇÃO DE ONDAS GUIADAS - LINHAS DE TRANSMISSÃO 2/3 Impedância de Entrada; Coeficiente
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Filtros de Micro-ondas Tópicos abordados: (Capítulo 8 pgs 48 a 415 do livro texto) Transformação de filtros Dimensionamento de frequência
EN3624 Sistemas de Micro-ondas
EN3624 Sistemas de Micro-ondas Dispositivos Passivos Dispositivos passivos em Micro-ondas Divisores e Combinadores de potência Acopladores Circuladores e Isoladores Dispositivos passivos em Micro-ondas
Diodo P-I-N Aplicação em Sistema de Chaveamento
Diodo P-I-N Aplicação em Sistema de Chaveamento Utilizando dois diodos PIN é possível conseguir chaves de RF com duas posições. Quando D1 for polarizado reversamente e D2 polarizado diretamente, há transferência
Profa. Dra. Fatima Salete Correra
Profa. Dra. Fatima Salete Correra SUMÁRIO Introdução Definições gerais de ganho de potência de redes de dois acessos Discussão de estabilidade de redes Critérios de estabilidade Círculos de estabilidade
Dispositivos e Circuitos de RF
Dispositivos e Circuitos de RF Prof. Daniel Orquiza de Carvalho Tópicos abordados: (Capítulo 12 pgs 564 a 570 do livro texto) Estabilidade de Amplificadores de micro-ondas Circulos de estabilidade Testes
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre
Matriz Espalhamento (S) Parte 1
Matriz Espalhamento (S) Parte 1 SEL 369 Micro-ondas/SEL5900 Circuitos de Alta Frequência Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado
Acoplador Direcional. SEL 369 Micro-ondas/SEL5900 Circuitos de Alta Frequência. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP
Acoplador Direcional SEL 369 Micro-ondas/SEL59 Circuitos de Alta Frequência Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir
Aula 5 Análise de circuitos indutivos em CA circuitos RL
Aula 5 Análise de circuitos indutivos em CA circuitos RL Objetivos Aprender analisar circuitos RL em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos,
Aula 6 Análise de circuitos capacitivos em CA circuitos RC
Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números
* Utilizada na solução gráfica de problemas de impedância em linhas de transmissão
.4 Carta de Smith * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão * 939 Laboratórios Bell (Philip Smith) Durante o desenvolvimento de tecnologia radar. Estabelece graficamente
Módulo II Linhas de Transmissão. Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais
Módulo II Linhas de Transmissão Linhas sem Perdas LTs Terminadas Impedância de Entrada Terminações especiais LTs com tamanhos especiais Linhas sem Perdas As linhas de transmissão disponíveis comercialmente
Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão
Resolução gráfica de problemas - 1 Carta dos coeficientes de reflexão Os cálculos em linhas de transmissão ou em guias de onda utilizam as fórmulas que foram dadas anteriormente, são portanto de difícil
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão Coef. de Reflexão e impedância de entrada (Páginas 56 a 60 no Livro texto) Objetivos: Campos eletromagnéticos em Linhas de Transmissão.
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 15 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)
INTITUTO NACIONAL DE PEQUIA EPACIAI (INPE) Concurso Público - NÍVEL UPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVA PROVA
Parâmetros distribuídos: Comprimento das estruturas > 1/10 do comprimento de onda no meio em questão
Definição de Alta frequência: Parâmetros concentrados: Impedância dos elementos parasitas: em paralelo: < 10x a do elemento principal em série: > 1/10 do elemento principal Parâmetros distribuídos: Comprimento
Casamento de Impedâncias Utilizando Stubes
UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIAS EXÁTAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA DE ELETRICIDADE DISCIPLINA DE LABORATÓRIO DE ONDAS E LINHAS PROFESSOR JONAS RIBEIRO RELATÓRIO V Casamento
Linha de Transmissão Parte 8.2 Exercícios Resolvidos via Carta de Smith
Linha de Transmissão Parte 8. Exercícios Resolvidos via Carta de Smith SEL 310/61 Ondas Eletromagnéticas Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.11 / 2.20 / 2.29 Prova P.I Capts. 1 e
CIRCUITOS ELÉTRICOS. Aula 06 POTÊNCIA EM CORRENTE ALTERNADA
CIRCUITOS ELÉTRICOS Aula 06 POTÊNCIA EM CORRENTE ALTERNADA Introdução Potência em corrente Alternada: Quando falamos em potência em circuitos de corrente alternada, temos que ser específicos sobre qual
Módulo II Linhas de Transmissão. Carta de Smith
Módulo II Linhas de Transmissão Ferramenta gráfica para resolver problemas envolvendo linhas de transmissão e casamento de impedância. Foi desenvolvida em 1939 por Phillip Smith, engenheiro do Bell Telephone
Lista de Exercícios 3 - Circuitos Elétricos II
Lista de Exercícios 3 - Circuitos Elétricos II Tópicos: Potência instantânea, Potência Média, Valor Médio e Eficaz, Potência Aparente, Potência Ativa, Potência Reativa, Fator de Potência, Potência Complexa.
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 13 Cap. 2 Teoria de linhas de transmissão Revisão Propagação da energia eletromagnética
1 Introdução às linhas de transmissão
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Ondas e Linhas Prof. Dr. Helder Alves Pereira Lista de exercícios 1 Introdução às linhas de transmissão 1.1 Notas de Aula
Capítulo 2 - Diodos para Microondas. Diodo P-I-N
Diodo P-I-N É composto por um bloco de cristal intrínseco que separa uma fina camada de cristal P + de uma fina camada de cristal N +. Como é impossível obter um cristal intrínseco 100% livre de impurezas,
5 a Aula de Exercícios
5 a Aula de Exercícios PSI3213: Circuitos Elétricos II Monitores: Daniela B. Silva ([email protected]) Rodrigo M. Rodrigues ([email protected]) Aula proposta por Flávio R. M. Pavan 09
GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA
Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas GERAÇÃO, TRANSMISSÃO E DISTRIBUIÇÃO DE ENERGIA DE ELÉTRICA ROGÉRIO LÚCIO LIMA Sinop Novembro de 2016 Modelos
3. Elementos de Sistemas Elétricos de Potência
Sistemas Elétricos de Potência 3. Elementos de Sistemas Elétricos de Potência 3..5 Transformadores Trifásicos em p.u. Professor: Dr. Raphael Augusto de Souza Benedito E-mail:[email protected]
Verificando a parte imaginária da impedância equivalente na forma complexa
Aula 7 Circuitos RLC Objetivos Aprender analisar circuitos RLC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos, forma matemática, forma de
CAPÍTULO 2 LINHAS DE TRANSMISSÃO
CAPÍTULO 2 LINHAS DE TRANSMISSÃO TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA 1 2.1 PORQUE LINHAS DE TRANSMISSÃO? E x = E0x cos( wt - bz) Comportamento no espaço: l Distribuição da tensão no espaço e no tempo
Ondas e Linhas. Prof. Daniel Orquiza Ondas e Linhas. Prof. Daniel Orquiza de Carvalho
Prof. Daniel Orquiza Prof. Daniel Orquiza de Carvalho Linhas de transmissão aspectos básicos (Páginas 48 a 56 no Livro texto) Objetivos: Discutir comportamento de L.T. Em altas frequências. Introduzir
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 40 Módulo 10 Drawing of Michael Faraday's 1831 experiment showing electromagnetic induction between coils of wire, using 19th century apparatus,
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 15 * Utilizada na solução gráfica de problemas de impedância em linhas de transmissão
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Cálculos de Interrupção de alta freqüência Ron Roscoe O esquema acima representa
Atenuadores em L (L Pads)
009 Atenuadores em ( ads) Análise e rojeto Álvaro C. de A. Neiva Eng. Eletricista, CEA 10/04/009 Atenuadores Atenuação é uma função quase tão importante quanto a de amplificação em um sistema de áudio.
PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ
PRESENCIAL MARINGÁ Professor 01/10/2016 1 / 51 CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10
Integridade de Sinais Elétricos
UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Integridade de Sinais Elétricos Prof. Dr. Marlio Bonfim 1º semestre 2014 1 UFPR-DELT Programa de Pós Graduação em Engenharia Elétrica Composição
A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a
Análise de Sistemas Elétricos de Potência 1 UNIVERSIDADE FEDERAL DE JUIZ DE FORA A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a 1. Visão Geral do Sistema
O que são quadripólos?
O que são quadripólos? Duas portas separadas para entrada e saída; Não há ligações externas. Dois pares de terminais funcionando como ponto de acesso; Utilização: Sistemas de comunição, de controle, de
LINHAS DE TRANSMISSÃO PLANARES
1 LINHAS DE TRANSMISSÃO PLANARES PSI 3483 Ondas Eletromagnéticas em Meios Guiados Profa. Dra. Fatima Salete Correra 2 Sumário Introdução Estrutras Planares PCB, MIC e MMIC Linhas de transmissão planares
Circuitos Trifásicos Aula 13 Harmônicas em Sistemas Trifásicos
Circuitos Trifásicos Aula 13 Harmônicas em Sistemas Trifásicos Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL062 tinyurl.com/profvariz 1 / 26 Harmônicas no sistema
5. Método de Load Pull
50 5. Método de Load Pull 5.1.Introdução No projeto de amplificadores de pequeno sinal, os transistores são caracterizados através de parâmetros S e uma série de círculos de coeficientes de reflexão pode
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 22 Exercícios selecionados do capítulo 2 2.1 / 2.3 / 2.8 / 2.9 / 2.11/ 2.16 / 2.20 /
3. Elementos de Sistemas Elétricos de Potência
istemas Elétricos de Potência 3. Elementos de istemas Elétricos de Potência 3..5 Modelos de Linhas de Transmissão Professor: Dr. aphael Augusto de ouza Benedito E-mail:[email protected] disponível
Divisor resistivo de tensão
Divisor resistivo de tensão Vanderlei Alves S. da Silva Sabemos que os resistores possuem a função de limitar a passagem da corrente elétrica diminuindo sua intensidade, no entanto, existem momentos onde
Lista de Exercícios 4 - Circuitos Elétricos II
Lista de Exercícios 4 - Circuitos Elétricos II Tópicos: Sistemas Polifásicos, Sistemas Monofásicos a Três Fios, Conexão Trifásica Y-Y, Conexão Triângulo, Sistemas Trifásicos. 1. Para uma determinada fonte
Aula 4 Circuitos básicos em corrente alternada continuação
Aula 4 Circuitos básicos em corrente alternada continuação Objetivos Continuar o estudo sobre circuitos básicos iniciado na aula anterior. Conhecer o capacitor e o conceito de capacitância e reatância
LABORATÓRIO DE SISTEMAS DE POTÊNCIA EXPERIÊNCIA: CURTO-CIRCUITO RELATÓRIO. Alunos: 1)... 2)... Professor:... Data:...
LABORATÓRIO DE SISTEMAS DE POTÊNCIA EXPERIÊNCIA: CURTO-CIRCUITO - 2013 RELATÓRIO NOTA... Alunos: 1)... 2)... Professor:... Data:..... 1. OBJETIVOS DA EXPERIÊNCIA Aplicação de programas de curto-circuito;
TE045 CIRCUITOS ELÉTRICOS II
TE045 CIRCUITOS ELÉTRICOS II O QUE SÃO? Duas portas separadas para entrada e saída; Não há ligações externas; Elementos lineares; Não contém fontes independente. Dois pares de terminais funcionando como
Princípios de Telecomunicações Lei de Ohm e Potência Elétrica
Princípios de Telecomunicações Lei de Ohm e Potência Elétrica Prof. Francisco de Assis S. Santos, Dr. São José, 2016. Tensão Elétrica Grandeza gerada a partir do desequilíbrio de potencial entre 2 pontos,
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Introdução aos circuitos de seleção de freqüência parte 2 Filtros passa-faixa: parâmetros 2 freqüências
O circuito elétrico em série é um divisor de tensão.
01 O circuito elétrico em série é um divisor de tensão. Como as lâmpadas são idênticas, tem-se: U 1 = U 2 = U 3 = U 4 = U = lâmpada i Assim: U 1 + U 2 + U 3 + U 4 = 220 4U = 220 U = 55 V esposta: A 1 02
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal
Dispositivos e Circuitos de RF
Dispositivos e ircuitos de RF Prof. Daniel Orquiza de arvalho Tópicos abordados: (apítulo 13 pgs 604 a 612 do livro texto) de RF Oscilador de Hartley Oscilador de olpitts são usados como fontes de sinal
Capítulo 5: Casamento de impedância e transistor em Rf
Casamento de e transistor em Rf Introdução Cir. Eletrônica Aplica. Aplicação: Prover a máxima transferência possível de potência entre fonte e carga Teorema em DC: máxima potência será transferida da fonte
