Reticulados, Álgebra Booleana e Formas Quadráticas Abstratas

Tamanho: px
Começar a partir da página:

Download "Reticulados, Álgebra Booleana e Formas Quadráticas Abstratas"

Transcrição

1 Reticulados, Álgebra Booleana e Formas Quadráticas Abstratas Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é introduzir formas quadráticas sobre reticulados. Demonstramos que a definição forte de isometria de formas quadráticas sobre álgebras booleanas é equivalente a definição de isometria de formas quadráticas abstratas dada por Kaplansky em [1]. Palavras Chave: Reticulados, álgebras booleanas, formas quadráticas abstratas Introdução Adaptamos a definição de formas quadráticas sobre corpos para reticulados e definimos isometria de formas quadráticas sobre reticulados. O principal resultado é que duas formas quadráticas de dimensão dois são isométricas se, e somente se, as estruturas aditiva e multiplicativa do reticulado admitem elementos neutros e a isometria é dada por um elemento do reticulado que possui complemento. Como consequência se a é um elemento do reticulado que possui complemento, então as formas quadráticas a, b e a + b, ab são isométricas. Isto leva a considerar reticulados que são álgebras booleanas, e nesta estrutura demonstramos que esta definição de isometria é equivalente a definição de isometria de formas quadráticas abstratas dada por Kaplansky em [1]. No item 1, foi desenvolvido parte da teoria já conhecida de reticulados e álgebra booleana, para os nossos objetivos. No item 2, usando as estruturas aditiva e multiplicativa usual de um reticulado derivada da ordem, introduziremos os conceitos de forma quadrática e de isometria (forte), adaptadas das definições de formas quadráticas sobre corpos, a partir das quais demonstramos nossa proposição. No item 3, caracterizamos a isometria forte de duas formas quadráticas bidimensionais sobre álgebras booleanas, o que mostra que esta definição equivale a definição dada por Kaplansky em [1] para formas quadráticas abstratas. 1 Reticulados Um conjunto não vazio R parcialmente ordenado pela relação de ordem ; (R ) é dito reticulado se para quaisquer x, y R existem o supremo e o ínfimo de {x, y}. É usual denotá-los por x y e x y, respectivamente. Trabalho realizado como parte de pesquisa sobre formas quadráticas moreira@ibilce.unesp.br. Departamento de Matemática do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista Júlio de Mesquita Filho 2

2 Por recorrência, definimos e x 1 x 2 x n := (x 1 x 2 x n 1 ) x n, n 3 x 1 x 2 x n := (x 1 x 2 x n 1 ) x n, n 3. Se existem elementos e 1 e e 2 R tais que e 1 x, x R e x e 2, x R, denotaremos e 1 por 0 R e denotaremos e 2 por 1 R. É claro que 0 R x = 0 R, 0 R x = x = 1 R x e 1 R x = 1 R. Notemos também que os elementos 0 R e 1 R podem existir independentemente. Exemplos: (1) Se a ordem (precede) atribui estrutura de reticulado em R, então a ordem dual (sucede) também atribui uma estrutura de reticulado em R dito reticulado dual (R, ). Além disso, sup{x, y} em (R, ) é igual a inf{x, y} em (R, ). O mesmo vale para inf{x, y}. Portanto, existe 1 R no reticulado (R, ) se, e somente se, existem 0 R no reticulado (R, ) e eles são iguais. O mesmo vale para 0 R no reticulado (R, ) e 1 R em (R, ). Por exemplo 0 N = 0 N no reticulado (N, ) e 1 N = 0 N no reticulado dual (N, ). Também não existe 1 N no reticulado (N, ), nem 0 N no reticulado dual (N, ). O reticulado (Z, ) não possui 0 Z nem 1 Z e, o mesmo vale para o reticulado dual (Z, ). (2) Denotemos por a relação de divisibilidade em N. Então (N, ) é um reticulado e 0 N = 1, 1 N = 0, pois 1 x, x N e x 0, x N. (3) Se (R, ) é um reticulado finito, então existem 0 R e 1 R. De fato, se R = {a 1,, a n }, n 1, então 0 R = a 1 a n e 1 R = a 1 a n. Em particular, denotando por D(n) o conjunto dos divisores positivos em Z de n N, n > 0, segue que, no reticulado (D(30), ), 0 D(30) = 1 N e 1 D(30) = 30. Algumas propriedades imediatas que serão úteis para o que vem a seguir são: Propriedades P1. Comutativa x y = y x, x y = y x. P2. Associativa { x (y z) = (x y) z, x (y z) = (x y) z. P3. Absorção { x (x y) = x, x (x y) = x. P4. Idempotência { x x = x, x x = x. Demonstração: P1 e P4 são evidentes. Para demonstrar P2, inicialmente notamos que, se x y então x z y z. De fato, como x y e (por definição) y y z, então pela propriedade transitiva x y z. Como também z y z, vem que y z é um limite superior para {x, z}. Por definição de sup, temos o resultado. Agora usemos este fato para demonstrar que (x y) z x (y z). De fato, 3

3 Como y y z vem que x y x (y z). Além disso, de z y z x (y z) vem que x (y z) é um limite superior de {x y, z}. Por definição (x y) z x (y z). Digamos que esta é a primeira parte da demonstração de P2. Para demonstrar que x (y z) (x y) z, usemos a primeira parte e a propriedade P1, como segue: x (y z) com. = (y z) x 1a P arte y (z x) com. = (z x) y 1a P arte z (x y) com. = com. = (x y) z. Consequentemente x (y z) = (x y) z. Analogamente, se demonstra que (x y) z = x (y z). Isto conclui a demonstração de P2. A demonstração de P3, segue do fato que x y x x y, x, y R. Portanto x (x y) = x e x (x y) = x. Podemos notar que se (R, ) é um reticulado, então dados x, y R, x y se, e somente se, x y = y, ou então x y se, e somente se, x y = x. A proposição que segue mostra que as propriedades acima caracterizam o reticulado, ou seja, Proposição 1 Seja R um conjunto em que se tem duas operações + e que satisfazem as propriedades comutativa, associativa, idempotência e absorção. Então a operação binária definida sobre R por: x y se x + y = y é uma relação de ordem parcial em R que torna R um reticulado com x y = x + y e x y = x.y. Demonstração: Veja Proposição 3.2.3, pg. 76 de [2] A propriedade distributiva de uma operação em relação a outra, em geral, não é verdadeira. No entanto, temos x (y z) (x y) (x z), e (x y) (x z) x (y z), x, y, z R. Vejamos } x x y = x (x y) (x z) x x z } = x (y z) (x y) (x z). y z y x y = y z (x y) (x z) y z z x z Analogamente, demonstra-se que (x y) (x z) x (y z). Portanto, as operações e são distributivas, uma em relação a outra, se forem verdadeira as relações (x y) (x z) x (y z) e x (y z) (x y) (x z). Definição 2 Um reticulado (R, ) é dito distributivo, se para quaisquer x, y, z R se verificam as igualdades: x (y z) = (x y) (x z) e x (y z) = (x y) (x z). Exemplos: (4) Se é uma ordem total sobre R, então (R, ) é um reticulado distributivo. De fato x y = max{x, y} e x y = min{x, y} e, portanto, para todos x, y, z R devemos verificar que max{x, min{y, z}} = min{max{x, y}, max{x, z}} e min{x, max{y, z}} = max{min{x, y}, min{x, z}}. Como a ordem é total, isto deve ser verificado em cada caso que segue: x y z, x z y, y x z, y z x z x y z y x. Mas como y e z desempenham o mesmo papel, estes casos se reduz à x y z, y x z e y z x. 4

4 A verificação disto é simples. (5) O reticulado (N, ) é distributivo e, consequentemente, (D(n), ) também é distributivo. De fato, para todos x, y D(n), x y = mmc(x, y) e x y = mdc(xy). Assim, o cálculo de x y e de x y se reduz ao cálculo do máximo e do mínimo dos expoentes dos fatores primos que ocorrem na decomposição de x e y e isto se reduz ao caso anterior. (6) Reticulados dos tipos 1 1 a b c y z 0 x 0 são denominados diamante e pentágono, respectivamente. Esses reticulados não são distributivos. De fato, no diamante temos: a (b c) = a 0 = a enquanto (a b) (a c) = 1 1 = 1. E no pentágono x (y z) = x 0 = x, enquanto (x y) (x z) = y 1 = y. Demonstra-se que qualquer reticulado que não é distributivo contém um desses reticulados como sub-reticulados. É o caso de reticulados de sub-espaços vetoriais de um espaço vetorial sobre um corpo F de dimensão maior ou igual a 2. Vejamos: se u e v são vetores linearmente independentes, considere U = F.u, V = F.v e W = F (u + v). Então U + (V W ) = U, enquanto (U + V ) (U + W ) = F.u + F v. Logo este reticulado contém um sub-reticulado diamante. E o reticulado (D(12), ) contém o sub-reticulado pentágono ({1, 2, 3, 4, 12}, ), ou ({1, 3, 4, 6, 12}, ). No reticulado diamante temos: a c = a b = 1 e a c = a b = 0, mas b c. No reticulado pentágono, também temos: x z = y z = 1 e x z = y z = 0 e também x y. No entanto, temos, Proposição 3 Sejam (R, ) um reticulado distributivo e x, y, z R tais que x y = x z e x y = x z. Então y = z. Demonstração: Temos: y = y (x y) hip. = y (x z) distr. = (y x) (y z) hip. = (x z) (y z) distr. = (x y) z hip. = (x z) z = z. Definição 4 (i) Seja (R, ) um reticulado que admite 0 R e 1 R. Dizemos que y R é um complementar de x R, se x y = 1 R e x y = 0 R. (ii) Dizemos que um reticulado é complementado se todos os seus elementos possuem um complementar. 5

5 Nota 5 Obviamente, se y é o complementar de x, então x é o complementar de y. Além disso, se o reticulado é distributivo e x é um elemento do reticulado que possui complementar, então pela Proposição 3 seu complementar é único. Neste caso, denotaremos o complementar de x por x. É claro que 0 = 1 e 1 = 0. Exemplo (6) O reticulado do exemplo 5 é distributivo, mas só 0 N = 1 N e 1 N = 0 N possuem complemento e 0 N = 1 N e 1 N = 0 N. Logo, este reticulado não é complementado. Mas o sub-reticulado (D(30), ) de (N, ) é complementado, e os pares {x, x} são: {1, 30}, {2, 15}, {3, 10}, {5, 6}. Definição 6 Álgebra de Boole Uma álgebra de Boole (ou álgebra booleana) é um reticulado distributivo e complementado. 1 2 Formas quadráticas sobre reticulados De agora em diante só consideraremos reticulados distributivos e vamos denotar as operações e, respectivamente, por + e, ou seja, x + y é o supremo de {x, y} e x.y o ínfimo de {x, y}. Se (R, ) um reticulado e tendo como inspiração a definição de isometria de formas quadráticas sobre corpos, dizemos que uma aplicação F : R n R n é uma isometria, se F é bijetora do tipo linear, ou seja, F (x 1,..., x n ) = (a 11 x a 1n x n,..., a n1 x a nn x n ) onde cada a ij são elementos fixados de R. Definição 7 Uma forma quadrática (n-dimensional) sobre um reticulado (R, ) é uma n-upla denotada por a 1,..., a n. Se q = a 1,..., a n é uma forma quadrática sobre R e X = (x 1, x 2,..., x n ) R n denotemos q(x) o valor a 1 x a 2x a n x 2 n R. Notemos que pela Propriedade P4 (idempotência) q(x) = a 1 x 1 + a 2 x a n x n. Neste artigo vamos explorar a seguinte definição forte de isometria. Definição 8 Duas formas quadráticas n-dimensionais q 1 e q 2 são isométricas e denotamos por q 1 q 2, se existe uma aplicação bijetora F : R n R n tal que q 1 = q 2 F R n F R n q 2 q 1 R É fácil ver que esta relação é simétrica e transitiva. No entanto, a propriedade reflexiva é explorada nos lemas que seguem, em casos particulares de formas quadráticas. Lema 9 As formas quadráticas unidimensionais a e b definidas sobre o reticulado (R, ) são isométricas se, e somente se, existe 1 R e a = b. Em particular a a se, e somente se, existe 1 R. 1 Existe uma definição alternativa de álgebra booleana: Um conjunto B junto com duas operações + e que satisfazem: (1) x+y = y+x, x.y = y.x (2) x+(y.z) = (x+y).(x+z), x.(y+z) = x.y+x.z (3) Existem 0, 1 B tais que x + 0 = x, x.0 = 0, x + 1 = 1, x.1 = x (4) x B existe x B tal que x + x = 1 e x.x = 0. Alguns autores exigem ainda as propriedades associativa e absorção, mas estas são consequência das quatro propriedades dadas. É fácil demonstrar que as duas definições são equivalentes. 6

6 Demonstração: Se existe 1 R então F : R R definida por F (x) = x é uma isometria. Portanto a = a F, ou seja a a. Reciprocamente, se a b então existe uma aplicação bijetora G : R R, G(x) = cx, tal que a = b G. Seja F : R R, F (x) = dx a inversa de G. De F G = Id R vem que dcx = x, para todo x R. Isto é equivalente a x dc, x R, ou seja, existe 1 R e 1 R = dc. Além disso, como dc d, c 1, vem que d = c = 1 R. Consequentemente, de a (x) = b (G(x)), x R segue que ax = bx, x R e para x = 1, obtemos a = b. Nota 10 Este lema é verdadeiro para um reticulado qualquer, não necessariamente distributivo. Mas no próximo lema já faremos uso da distributividade. Lema 11 Sejam q 1 = r, s, q 2 = r 1, s 1 formas quadráticas sobre o reticulado (R, ). Então q 1 q 2 se, e somente se, existem 0 R, 1 R e a R, tal que q 1 = q 2 F, onde F : R 2 R 2 é definida por F (x, y) = (ax + ay, ax + ay). Em particular, r, s r, s e r, s s, r. Temos ainda rs = r 1 s 1, r + s = r 1 + s 1. Demonstração: A recíproca segue da própria definição de isometria. Agora suponhamos que q 1 q 2 e seja F : R 2 R 2, F (x, y) = (ax + by, cx + dy), tal que q 1 = q 2 F. Como F é bijetora, seja G : R 2 R 2, G(x, y) = (a 1 x + b 1 y, c 1 x + d 1 y) a inversa de F. Sejam I = aa 1 bb 1 cc 1 dd 1 e S = a + a 1 + b + b 1 + c + c 1 + d + d 1, e vamos demonstrar que I = 0 R e S = 1 R. (A) De G ( F (x, y) ) = (x, y), (x, y) R 2, obtemos ( (aa1 + b 1 c)x + (a 1 b + b 1 d)y, (ac 1 + cd 1 )x + (bc 1 + dd 1 )y ) = ( x, y ) (2.0.1) (a) Fazendo x = S e y = I na equação 2.0.1, obtemos (aa 1 + b 1 c, ac 1 + cd 1 ) = (S, I). Logo aa 1 + b 1 c = S (2.0.2) e ac 1 + cd 1 = I. Como I ac 1, cd 1 ac 1 + cd 1 = I, obtemos ac 1 = I (2.0.3) cd 1 = I. (2.0.4) (b) Fazendo x = I e y = S na equação 2.0.1, obtemos (a 1 b + b 1 d, bc 1 + dd 1 ) = (I, S). Logo bc 1 + dd 1 = S (2.0.5) e a 1 b + b 1 d = I. Como I a 1 b, b 1 d a 1 b + b 1 d = I, obtemos (B) De F ( G(x, y) ) = (x, y), (x, y) R 2, obtemos a 1 b = I (2.0.6) b 1 d = I. (2.0.7) ( (aa1 + bc 1 )x + (ab 1 + bd 1 )y, (a 1 c + c 1 d)x + (b 1 c + dd 1 )y) = ( x, y ), (x, y) R 2. Repetindo o raciocínio anterior. fazendo x = S, y = I e depois x = I e y = S, obtemos a 1 c = I (2.0.8) 7

7 c 1 d = I (2.0.9) ab 1 = I (2.0.10) bd 1 = I (2.0.11) b 1 c + dd 1 = S. (2.0.12) (C) Agora comecemos a segunda etapa da demonstração, onde obteremos a 1, b 1, c 1 e d 1 em função de a, b, c e d. (i) (Multiplicando a equação por a), obtemos aa 1 + ab 1 c = as. Como ab 1 = I (veja a equação ), obtemos aa 1 = a. (Multiplicando a equação por a 1 ), obtemos aa 1 + a 1 b 1 c = a 1 S. Usando a equação 2.0.8, obtemos aa 1 = a 1. Logo a 1 = a. (ii) Analogamente, (multiplicando a equação por b 1 ), obtemos aa 1 b 1 +b 1 c = b 1 S ou b 1 c = b 1 (usando a equação ), e (multiplicando a equação por c), obtemos aa 1 c + b 1 c = cs ou b 1 c = c (pela equação 2.0.8). Logo b 1 = c. (iii) Analogamente, (usando a equação e multiplicando por b e depois por c 1 e usando a equação , respectivamente, equação 2.0.9), obtemos: bc 1 = b e bc 1 = c 1. Logo c 1 = b. (iv) Finalmente, (multiplicando a equação por d e por d 1 e usando equações anteriores), obtemos d 1 = d. Substituindo esses valores obtidos: a 1 = a, b 1 = c, c 1 = b e d 1 = d nas onze equações anteriores, ficamos com as seguintes equações: a + c = S (2.0.13) ac = I (2.0.14) a + b = S (2.0.15) ab = I (2.0.16) c + d = S (2.0.17) cd = I (2.0.18) b + d = S (2.0.19) bd = I (2.0.20) Agora, (multiplicando a equação por d), obtemos ad + dc = d e, usando a equação ficamos com ad = d. Por outro lado, (multiplicando a equação por a), obtemos ab + ad = a e, usando a equação , ficamos com ad = a. Portanto d = a. Analogamente, (multiplicando a equação por b e usando a equação ), ficamos com bc = b, enquanto que (multiplicando a equação por c e usando a equação ), ficamos com bc = c. Logo c = b. Consequentemente, a 1 = a = d = d 1 e b 1 = c 1 = b = c. Segue-se que I = ab, S = a + b e G(x, y) = F (x, y) = (ax + by, bx + ay). Agora de F 2 (x, y) = (x, y), obtemos ( (a + b)x + aby, abx + (a + b)y ) = (x, y), (x, y) R 2. Assim abx + (a + b)y = y. (2.0.21) Para y = x e usando a distributividade obtemos (a + b + ab)x = x, x R, ou (a + b)x = x, x R. Isto significa que x a + b qualquer que seja x R. Portanto existe 1 R e 1 R = a+b. Voltando na equação , obtemos abx+y = y, x, y R. Fazendo x = a obtemos ab + y = y, y R, o que equivale a ab y, y R. Logo existe 0 R e 0 R = ab, e por definição b = a. As funções F e sua inversa G agora se escrevem assim: F (x, y) = (ax + ay, ax + ay). Em particular, para a = 1 R e 8

8 para a = 0 R temos F (x, y) = (x, y) e, respectivamente, F (x, y) = (y, x) resultam as isometrias r, s r, s ( e r, s ) s, r. Agora, de q 1 (x, y) = q 2 F (x, y) com F (x, y) = (ax + ay, ax + ay), obtemos: rx + sy = (ar 1 + as 1 )x + (ar 1 + as 1 )y. Para x = 1 e y = 0, obtemos: Para x = 0 e y = 1 obtemos: r = ar 1 + as 1. (2.0.22) s = ar 1 + as 1. (2.0.23) Multiplicando membro a membro as igualdades das equações e , vem que rs = aar 1 + ar 1 s 1 + ar 1 s 1 + aas 1 e, como aa = 0, concluímos que rs = (a + a)r 1 s 1 = r 1 s 1 (pois a + a = 1). Também r + s = (a + a)r 1 + (a + a)s 1 = r 1 + s 1. Isto conclui a demonstração. 3 Considerações finais Um resultado fundamental sobre a teoria de formas quadráticas sobre corpos de característica distinta de dois, que caracteriza isometria de formas quadráticas de dimensões maiores ou iguais a dois, é que a, b a + b, ab(a + b), se a + b 0. Em nosso caso, esta isometria ficaria a, b a + b, ab, pois ab a + b, e este resultado é dado a seguir. Proposição 12 Seja a, b uma forma quadrática sobre o reticulado R, com elementos neutros 0 R e 1 R. Se a ou b admitem complemento, então a, b a + b, ab. Em particular, se R é uma álgebra booleana, então a, b a + b, ab, a, b R, e a, b a 1, b 1 se, e somente se, a + b = a 1 + b 1 e ab = a 1 b 1. Demonstração: Se existe a R, ( respect. b R ), a isometria entre a, b e a+b, ab é dada por F (x, y) = (ax+ay, ax+ay), ( respect. F (x, y) = (bx+by, bx+ by) ). Pelo Lema 11, resta demonstrar que, se a + b = a 1 + b 1 e ab = a 1 b 1, então a, b a 1, b 1. Mas, se temos as igualdades acima, então: a, b a + b, ab = a 1 + b 1, a 1 b 1 a 1, b 1. Referências [1] KAPLANSKY, I; SHAKER, R.J. Abstract Quadratic Forms, Canad. J. Math. 21, , [2] MIRANDA, J.G. Conjuntos Ordenados. Retículos y Álgebras de Boole jesusgm/curso Acesso em julho de

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z)

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z) Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, que é baseada em um conjunto de axiomas (ou postulados). Veremos também algumas leis ou propriedades de álgebras booleanas.

Leia mais

Reticulados, álgebra booleana e formas quadráticas abstratas Clotilzio Moreira dos Santos 2

Reticulados, álgebra booleana e formas quadráticas abstratas Clotilzio Moreira dos Santos 2 ISSN 316-9664 v. 5 - dez. 015 Sumário Reticulados, álgebra booleana e formas quadráticas abstratas Clotilzio Moreira dos Santos Campos hamiltonianos e primeiro grupo de cohomologia de De Rham Ronaldo J.

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

Reticulados e Álgebras de Boole

Reticulados e Álgebras de Boole Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente

Leia mais

Álgebras Booleanas e Aplicações

Álgebras Booleanas e Aplicações Álgebras Booleanas e Aplicações Prof. Dr. Clotilzio Moreira dos Santos IBILCE - UNESP São José do Rio Preto Outubro de 2013 Álgebras Booleanas e Aplicações Clotilzio Moreira dos Santos Sumário 1 ÁLGEBRAS

Leia mais

Hermes A. Pedroso, Juliana C. Precioso Cristiane Alexandra Lázaro, Tatiana Miguel Rodrigues de Souza...32

Hermes A. Pedroso, Juliana C. Precioso Cristiane Alexandra Lázaro, Tatiana Miguel Rodrigues de Souza...32 Volume 5 015 Reticulados, Álgebra Booleana e Formas Quadráticas Abstratas Clotilzio Moreira dos Santos...0 Campos hamiltonianos e primeiro grupo de cohomologia de De Rham Ronaldo J.S. Ferreira, Fabiano

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

3.4 Álgebra booleana, ordens parciais e reticulados

3.4 Álgebra booleana, ordens parciais e reticulados Notas de aula de MAC0329 (2003) 23 3.4 Álgebra booleana, ordens parciais e reticulados Seja A um conjunto não vazio. Uma relação binária R sobre A é um subconjunto de A A, isto é, R A A. Se (x, y) R, denotamos

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Parte 2 N Z Q R C. Não faremos a construção axiomática dos números naturais, usaremos apenas as noções intuitivas.

Parte 2 N Z Q R C. Não faremos a construção axiomática dos números naturais, usaremos apenas as noções intuitivas. Parte 2 Anéis A Matemática faz parte do nosso cotidiano e, em particular, recorremos aos números para descrever diversas situações do dia a dia. Contamos com os números naturais, repartimos um bolo usando

Leia mais

ANÉIS. Professora: Elisandra Bär de Figueiredo

ANÉIS. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo ANÉIS DEFINIÇÃO 1 Um sistema matemático (A,, ) constituído de um conjunto não vazio A e duas leis de composição interna sobre A, uma adição: (x, y) x y e uma multiplicação

Leia mais

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008 ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 e pertinência Conjunto é entendido como uma coleção de

Leia mais

Introdução aos números inteiros

Introdução aos números inteiros Introdução aos números inteiros Laura Goulart UESB 19 de Dezembro de 2017 Laura Goulart (UESB) Introdução aos números inteiros 19 de Dezembro de 2017 1 / 18 Adição Laura Goulart (UESB) Introdução aos números

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Respostas de Exercícios Propostos

Respostas de Exercícios Propostos Respostas de Exercícios Propostos Capítulo 1: 1 a) Não é associativa É comutativa ( ) x+y x + y 2 + z (x y) z z x + y + 2z 2 2 4 ( ) y + z x (y z) x x + x+y 2 2x + y + z 2 2 4 x y x + y y + x y x 2 2 b)

Leia mais

RETICULADOS: NOTAS DO SEMINÁRIO DE 7/03/03

RETICULADOS: NOTAS DO SEMINÁRIO DE 7/03/03 RETICULADOS: NOTAS DO SEMINÁRIO DE 7/03/03 PEDRO A. TONELLI 1. Introdução: o esqueleto do espírito E ainda mais remoto que o tempo em que as coisas não tinham nome, é o tempo em que as coisas nem existiam,

Leia mais

ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN

ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN No século XIX Georges Boole desenvolveu uma teoria matemática com base nas leis da lógica - a Álgebra de Boole - cuja aplicação nos circuitos digitais e computadores

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

Teoria dos anéis 1 a parte 3

Teoria dos anéis 1 a parte 3 A U L A Teoria dos anéis 1 a parte 3 Meta da aula Descrever a estrutura algébrica de anel como uma generalização de determinadas propriedades dos números inteiros. objetivos Ao final desta aula, você deverá

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016)

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016) ac COMPLEMENTOS DE MATEMÁTICA I Prof. ADRIANO CATTAI Corpos Numéricos (Atualizada em 8 de março de 2016) NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

Um polinômio com coeficientes racionais é uma escrita formal

Um polinômio com coeficientes racionais é uma escrita formal Polinômios. Um polinômio com coeficientes racionais é uma escrita formal P (X) = a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n onde a i Q para todo i {0, 1,..., n}. Isso nos dá uma função f : N Q definida

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2 Números Reais Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Números Reais p. 1/2 Corpos DEFINIÇÃO Seja K um conjunto munido de duas operações, denotadas por + e. Diz-se que (K,

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações. 4 ÁLGEBRA ELEMENTAR 4.1 Monômios e polinômios: valor numérico e operações. 4.1.1 - Introdução: As expressões algébricas que equacionam os problemas conduzem logicamente à sua solução são denominados polinômios

Leia mais

Números inteiros. Sandro Marcos Guzzo

Números inteiros. Sandro Marcos Guzzo Números inteiros Sandro Marcos Guzzo Cascavel - Pr Agosto de 2013 1 Construção do conjunto dos números inteiros O conjunto dos números inteiros, designado por Z será aqui construído a partir do conjunto

Leia mais

Apostila Minicurso SEMAT XXVII

Apostila Minicurso SEMAT XXVII Apostila Minicurso SEMAT XXVII Título do Minicurso: Estrutura algébrica dos germes de funções Autores: Amanda Monteiro, Daniel Silva costa Ferreira e Plínio Gabriel Sicuti Orientadora: Prof a. Dr a. Michelle

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

1. Operações com vetores no espaço

1. Operações com vetores no espaço Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Operações Envolvendo Vetores Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Adição de vetores Na aula anterior

Leia mais

Capítulo 1. Introdução

Capítulo 1. Introdução Capítulo 1 Introdução O objeto de estudo de Mat-1 são as funções reais de variável real. Estudaremos nesta disciplina os conceitos de limite, continuidade, derivabilidade e integrabilidade de funções reais

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Oitavo Ano

Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Oitavo Ano Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas Fatoração de Expressões Algébricas Oitavo Ano Fatoração de Expressões Algébricas 1 Exercícios Introdutórios Exercício 1. Siga o modelo e

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Leandro F. Aurichi de novembro de Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP

Leandro F. Aurichi de novembro de Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP Espaços Métricos Leandro F. Aurichi 1 30 de novembro de 2010 1 Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP 2 Sumário 1 Conceitos básicos 5 1.1 Métricas...........................................

Leia mais

Unidade 2 - Matrizes. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013

Unidade 2 - Matrizes. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 2 - Matrizes A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 9 de agosto de 2013 O dono de uma pequena frota de quatro táxis, movidos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Axioma dos inteiros. Sadao Massago

Axioma dos inteiros. Sadao Massago Axioma dos inteiros Sadao Massago setembro de 2018 Sumário 1 Os Números 2 1.1 Notação......................................... 2 1.2 Números naturais não nulos (inteiros positivos)................... 2

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

Um Curso de Nivelamento. Instituto de Matemática UFF

Um Curso de Nivelamento. Instituto de Matemática UFF Introdução à Álgebra Linear Um Curso de Nivelamento Jorge Delgado Depto. de Matemática Aplicada Katia Frensel Depto. de Geometria Instituto de Matemática UFF Março de 2005 J. Delgado - K. Frensel ii Instituto

Leia mais

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados!

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados! Álgebra: É Necessário ter Ideias para Fazer Contas? A primeira e, de longe, mais importante lição é 1. Fatoração é legal; fatoração é sua amiga 1.1. Produtos notáveis; em especial, diferença de quadrados!

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos O Exercício 8 é o exercício bônus dessa lista Exercício 1. Seja K um conjunto formado exatamente

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Notas de Aula Álgebra Linear. Elton José Figueiredo de Carvalho Escola de Ciências e Tecnologia Universidade Federal do Rio Grande do Norte

Notas de Aula Álgebra Linear. Elton José Figueiredo de Carvalho Escola de Ciências e Tecnologia Universidade Federal do Rio Grande do Norte Notas de Aula Álgebra Linear Elton José Figueiredo de Carvalho Escola de Ciências e Tecnologia Universidade Federal do Rio Grande do Norte Versão 201608221232c de 22 de agosto de 2016 Parte I Espaços vetoriais

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Lista 2 - Álgebra I para Computação - IME -USP -2011

Lista 2 - Álgebra I para Computação - IME -USP -2011 Lista 2 - Álgebra I para Computação - IME -USP -2011 (A) Relações de Equivalência e Quocientes 1. Seja N = {0, 1, 2,...} o conjunto dos números naturais e considere em X = N N a seguinte relação: (a, b)

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: sequências e matrizes 05 e 06/06/14 Sequências Def.: chama-se sequência finita ou n-upla toda aplicação f do

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

Opera»c~oes Bin arias

Opera»c~oes Bin arias 3 Opera»c~oes Bin arias Neste cap ³tulo, faremos mais preciso o conceito de opera»c~ao bin aria, (ou simplesmente opera»c~ao), e introduziremos tamb em a nomenclatura j a consolidada de propriedades not

Leia mais

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb.

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb. Ga no plano 1 GA no plano Prof. Fernando Carneiro Rio de Janeiro, Outubro de 015 1 Introdução Estudaremos as retas no plano euclidiano bidimensional e uma interessante aplicação, que recebe o nome de programação

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais