Uma Introdução ao Estudo de Sistemas Dinâmicos Discretos

Tamanho: px
Começar a partir da página:

Download "Uma Introdução ao Estudo de Sistemas Dinâmicos Discretos"

Transcrição

1 Uma Introdução ao Estudo de Sistemas Dinâmicos Discretos Pryscilla dos Santos Ferreira Silva 1 Resumo Neste artigo, apresento a parte inicial da teoria dos Sistemas Dinâmicos Discretos, fornecendo a definição de iteração de funções, órbita, dentre outros temas fundamentais para o estudo da teoria. Palavras-chave Sistemas Dinâmicos Discretos, iteração, funções, órbita. Introdução O estudo de Sistemas Dinâmicos Discretos é baseado em iteração de funções, aliado a alguns conhecimentos de Cálculo Diferencial e Espaços Métricos, obtendo resultados como: a órbita de um ponto, pontos fixos e periódicos. O presente artigo tem por objetivo definir e fornecer exemplos, com o intuito de apresentar noções básicas sobre o tema. 1 Sistemas Dinâmicos Discretos A função f : R R dada por f(b) = 2b é uma regra que especifica para cada número b um número duas vezes maior. Este é um modelo matemático simples. Nós podemos imaginar que b representa a população de bactérias em um laboratório de cultura e que f(b) representa a população uma hora depois. Então a regra expressa o fato de que a população dobra a cada hora. Se a cultura tem uma população de bactérias, então depois de uma hora existirão f(10.000) = bactérias, depois de duas horas existirão f(f(10.000)) = bactérias, e assim por diante, note que a população de uma hora 1 propryscilla@gmail.com. Curso Licenciatura em Matemática. Universidade Estadual de Feira de Santana Trabalho realizado com parte da avaliação das disciplinas Orientação à Pesquisa I sob orientação do professor Cristhian Bugs, Projeto I e II sob orientação da professora Fabíola Pedreira. 1

2 depois está diretamente relacionada à população de uma hora antes. Tal situação se encaixa perfeitamente nas características de um Sistema Dinâmico Discreto. Um Sistema Dinâmico Discreto consiste de um conjunto de estados possíveis, juntamente com uma regra que determina o estado presente em termos do estado passado, cujo o estado só muda durante os instantes {t 0, t 1, t 2,...}, ou seja, o sistema faz exame do estado atual com a entrada e atualiza a situação produzindo um estado novo com a saída. Da origem do sistema, teremos em vista todas as informações necessárias assim que a regra for aplicada 2. Fazendo uma comparação da definição anterior com o exemplo já visto, podemos notar que: O objetivo do exemplo é analisar a população de bactérias (um conjunto de estados possíveis). A regra utilizada é determinada pela função f(b) = 2b. Além disso para saber qual a população após duas horas foi suficiente a composição f(f(10.000)) = , ou seja o seu estado atual (40.000) é determinado pelo seu estado inicial (10.000). Logo a regra determina o estado presente em termos do estado passado. Note que o estado do sistema só muda para os valores {b 0 = , b 1 = , b 2 = , b 3 = ,...}, em que b 0 é a população inicial, b 1 é a população após uma hora, b 2 a população após duas horas e assim por diante. Assim entre os b i, com i = 0, 1, 2, 3,..., o sistema permanece constante. Deste modo o sistema faz exame do estado atual com a entrada e atualiza a situação produzindo um estado novo com a saída 3. 2 Iteração Para compreender Sistemas Dinâmicos Discretos é necessário ter em mente o conceito de iteração. Iterar significa repetir, em Matemática essa repetição consiste em compor uma função com ela mesma várias vezes: primeiro exemplo temos que: f... f f. Utilizando o nosso 2 cf. Alligood (1996) e Villate (2007). 3 As leituras dos autores Alligood (1996) e Villate(2007) nos auxiliaram na concepção do exemplo. 2

3 Para a primeira hora teremos uma população b; Para uma hora depois teremos o dobro da população, ou seja, f(b) = 2b; Para duas horas depois teremos f(f(b)) = f 2 (b) = 2.2b = 2 2 b = 4b, e assim sucessivamente para n horas depois teremos f n (b) = 2 n.b. Tomando um ponto x 0 R, denotaremos f(x 0 ) = x 1, f(x 1 ) = x 2,..., f(x n 1 ) = x n, para facilitar a leitura de uma iteração. Assim (f... f)(x 0 ) = x n, de forma que estaremos aplicando x 0 na composição de f com ela mesma n vezes. Do mesmo modo escrevemos: f 2 (x) = (f f)(x), f 3 (x) = (f f f)(x) ou f 3 (x) = (f f 2 )(x), generalizando, f n (x) = (f f n 1 )(x) para n 1. Nós também escrevemos f 0 (x) para a identidade f 0 (x) = x. Afim de esclarecer o que foi dito, observe os exemplos 4 abaixo, considerando que as funções utilizadas são definidas de R em R. Exemplo 2.1 Se f(x) = x.(1 x), então f 2 (x) = (f f)(x) = f(x.(1 x)) = x.(1 x).[1 (x.(1 x))]. Robinson (1995), nos leva a perceber que sendo f uma função de caráter razoavelmente simples, já se torna complexo definir sua composta e conseqüentemente sua derivada, caso exista, em f 2 (x). Para iteradas cada vez maiores será cada vez mais difícil, neste momento a notação anterior é útil, nos permitindo chegar a seguinte relação : (f n ) (x 0 ) = (f) (x n 1 )...(f) (x 0 ). Exemplo 2.2 Para esclarecer vejamos o que acontece para a função do exem plo : Tomando f(x) = x(1 x) e escolhendo o ponto x 0 = 1 3 e n = 3, temos f(x 0 ) = f( 1 3 ) = 1 3 (1 1 3 ) = 2 9 = x 1 4 Os exemplos são baseados nas leituras de Robinson (1995) e Holmgren (1996). 5 cf. Robinson (1995) 3

4 f 2 (x 0 ) = f(f(x 0 )) = f(x 1 ) = f( 2 9 ) = = x 2 f (x) = 1 2x como (f n ) (x 0 ) = (f) (x n 1 )...(f) (x 0 ), segue (f 3 ) (x 0 ) = (f) (x 2 ).(f) (x 1 ).(f) (x 0 ) e então (f 3 ) ( 1 ) = ( ).( ).( ) = Observe que a praticidade do método consiste em dispensar (para o cálculo da derivada no ponto) o uso excessivo da Regra da Cadeia, desde que f seja diferenciável em {x 0, x 1,..., x n 1 }. Considere X, Y R e f : X Y x f(x) = y uma função inversível e derivável em a X X (em que X é o conjunto dos pontos de acumulação de X); f(a) = b com b 0. Então a derivada de (f 1 ) (f(a)) = 1 f (a) Sendo f 1 a inversa de f temos que, f 2 (x) = (f 2 ) 1 (x) = (f 1 ) 2 (x) e f n (x) = (f n ) 1 (x) = (f 1 ) n (x) para n < 0. Deste modo, de acordo com Robinson (1995), podemos aplicar o método anterior em compostas de funções inversas, desde que f 1, assim como f, seja diferenciável em {x 0, x 1,..., x n 1 }(grifo nosso) Pontos Periódicos Afirmamos anteriormente que o conceito de iteração é fundamental para o estudo da teoria dos Sistemas Dinâmicos Discretos.Deste momento em diante, é inevitável conhecermos as definições de órbita e pontos periódicos. f : I R R, além de f ser C 1 ou C 2. Para isso estamos considerando 6 cf. Lima (1995) 7 A diferenciabilidade é um fenômeno local, por isso esta observação se faz necessária. 4

5 Definição 3.1 Dado um ponto a e uma função f contínua, o conjunto de pontos {a, f(a), f 2 (a), f 3 (a),...} é denominado a órbita positiva de a e é denotado por ϕ + (a) = {f k (a); k 0}. Se f é inversível, o conjunto de pontos {a, f 1 (a), f 2 (a), f 3 (a),...} é denominado a órbita negativa de a e é denotada por ϕ (a) = {f k (a); k 0} 8. Exemplo 3.1 Seja f(x) = x(1 x), calculemos a órbita positiva de x = 2: x = 2 f(2) = 2(1 2) = 2 f 2 (2) = f(f(2)) = 6 f 3 (2) = f(f(f(2))) = 42 Assim, pela definição anterior teremos que: ϕ + (2) = {f k (2); k 0} = {2, f(2), f 2 (2), f 3 (2),...} = = {2, 2, 6, 42,...}. Exemplo 3.2 Dada a função j(x) = x 3, a órbita de 8 é o conjunto {8, 512,, ,...} ou seja {8, j(8), j 2 (8), j 3 (8),...}. A inversa de j é definida por j 1 (x) = 3 x, logo a órbita negativa de 8 é o conjunto {8, 2, 3 2,...} Caso queiramos observar o comportamento das iteradas negativas de um ponto para funções não inversíveis, Robinson (1995) sugere considerarmos {x 1, x 2,..., x n }, tal que f(x n ) = x n+1 (ou seja um conjunto das imagens inversas de f(x n ) ). Exemplo 3.3 Dada a função não inversível, h(x) = x 2 1 temos h(x) = 2 x 2 1 = 2 x = ± h(x) = x 2 1 = x = ± Logo h 1 ( 2) (uma vez que também pertence, 8 cf. Robinson(1995) 5

6 a escolha de é apenas por conveniência), assim como f 1 ( 1 + 2) 9. Dessa forma, podemos montar uma seqüência com os elementos do domínio, a nossa escolha, usados anteriormente : x 1 = 2; x 2 = 1 + 2; x 3 = h(x 2 ) = x 2+1 = x 1 donde h( 1 + 2) = ( 1 + 2) 2 1 = = 2 h(x 3 ) = x 3+1 = x 2 h( ) = ( ) 2 1 = = Definição 3.2 Dizemos que a é um ponto fixo de uma função f se f(a) = a. O ponto a é um ponto periódico de período n se f n (a) = a para algum n > 0 e f j (a) a, para 0 < j < n (podemos verificar que n é o menor período, pois f kn (a) = a k 1, com k N ). Isto é, se a tem período n, então a é um ponto fixo para a função f n. Além disso a órbita positiva de a, ϕ + (a), é chamada órbita periódica quando a é um ponto periódico de período n 10. Exemplo 3.4 Para a função m(x) = x 2 x o conjunto dos pontos fixos de f será dado por m(x) = x, ou seja, 9 As leituras de Robinson (1995) nos ajudaram a desenvolver este exemplo, bem como os exemplos 3.1, 3.2 e Esta definição é baseada em Holmgren (1996) e Robinson (1995), entretanto Holmgren faz alguns comentários sobre pontos periódicos de período primo o que achamos desnecessário, pois a Definição 3.2 serve para qualquer período. 6

7 x 2 x = x x 2 2x = 0 x = 0 ou x = 2 Logo x = 0 e x = 2 são pontos fixos da função m. Exemplo 3.5 A função g(x) = x 2 2x possui pelo menos um ponto periódico. De fato dada g(x), temos que o ponto x 0 = é tal que (g g)(x 0 ) = g(g( )) = g( ) = x 0. A notação que usamos para todos os pontos fixos por f n é: P er(f, n) = {x; f n (x) = x} e F ix(f) = P er(f, 1) = {x; f(x) = x} Finalmente, um ponto a é eventualmente periódico de período n, se existe um m > 0 tal que f m+n (a) = f m (a) ou f j+n (a) = f j (a) para j m e f m (a) é um ponto periódico. Exemplo 3.6 Dada v(x) = x 3 x os pontos fixos que satisfazem a equação x 3 x = x, são: x 3 2x = 0 x(x 2 2) = 0 x = 0 ou x = ± 2, para os pontos x = ±1 temos que v(1) = 1 1 = 0 v 2 (1) = v(v(1)) = v(0) = 0 v( 1) = = 0 v 2 ( 1) = v(v( 1)) = v(0) = 0. Usando a definição anterior f m (a) = f m+n (a) = f m (a) v(1) = v 1+1 (1) = 0 7

8 v( 1) = v 1+1 ( 1) = 0 Logo 1 e -1 são eventualmente periódicos 11. Conclusão Partindo de algo tão simples como a composição de funções, fornecemos importantes definições relativas à teoria dos Sistemas Dinâmicos Discretos. O comportamento das funções apresentadas nos exemplos nos levam não só a observar aspectos raramente discutidos como a indagar que outras implicações estes aspectos têm para a teoria. Referências ALLIGOOD, Rathlee T.; SAUER, Tid D.; YORKE, James A. Chaos: an introduction to Dynamical Systems. New York: Springer, HOLMGREN, Richard A.A first course in Discrete Dynamical Systems.2. ed. New York: Springer, LIMA, Elon Lages. Curso de Análise. Vol ed. Rio de janeiro: IMPA, ROBINSON, Clark. Dynamical systems : stability, symbolic dynamic, and chaos. Florida: CRC Press, VILLATE, Jaime E. Introdução aos sistemas dinâmicos: uma abordagem prática com o Máxima. Disponível em : http : //fisica.fe.up.pt/maxima/book/sistdinam 1 2.pdf. Acesso em : 01 de novembro de Os exemplos 3.5, 3.6 e 3.7 são baseados nas leituras de Robinson(1995) e Holmgren(1996). 8

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos O conjunto dos números naturais é o primeiro exemplo de conjunto infinito que aprendemos. Desde crianças, sabemos intuitivamente que tomando-se um número natural n muito

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Uma demonstração elementar de um resultado sobre a noção de diferencial em espaços normados

Uma demonstração elementar de um resultado sobre a noção de diferencial em espaços normados Uma demonstração elementar de um resultado sobre a noção de diferencial em espaços normados Cecília S. Fernandez UFF Neste trabalho vamos apresentar uma demonstração elementar de um resultado envolvendo

Leia mais

CAOS E FRACTAIS: UMA INTRODUÇÃO

CAOS E FRACTAIS: UMA INTRODUÇÃO SUGESTÃO DE DISCIPLINA CAOS E FRACTAIS: UMA INTRODUÇÃO VIA SISTEMAS DINÂMICOS DISCRETOS PRIMEIRO PERÍODO DE 2015 PROFESSOR OFERTANTE : Marcelo Domingos Marchesin CARGA HORÁRIA : 60 Horas PRÉ-REQUISITO

Leia mais

GEOMETRIA FRACTAL. Benoit Mandelbrot.

GEOMETRIA FRACTAL. Benoit Mandelbrot. GEOMETRIA FRACTAL Autor: Diego Luiz Henriques Costa. Orientador: Prof. Dr. Márcio Lima do Nascimento. As nuvens não são esferas, as montanhas não são cones, as linhas costeiras não são círculos e a casca

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Nono Ano - Fundamental. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Nono Ano - Fundamental. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Material Teórico - Módulo: Funções - Noções Básicas Exercícios Nono Ano - Fundamental Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, apresentaremos exemplos e resolveremos

Leia mais

compreendendo as funções exponenciais e logarítmicas com o auxílio do cálculo diferencial

compreendendo as funções exponenciais e logarítmicas com o auxílio do cálculo diferencial V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 compreendendo as funções exponenciais e logarítmicas com o auxílio do cálculo diferencial

Leia mais

A Projeção e seu Potencial

A Projeção e seu Potencial A Projeção e seu Potencial Rolci Cipolatti Departamento de Métodos Matemáticos Instituto de Matemática, Universidade Federal do Rio de Janeiro C.P. 68530, Rio de Janeiro, Brasil e-mail: cipolatti@im.ufrj.br

Leia mais

Considerações sobre a Condição Inicial na Construção do Diagrama de Bifurcação para o Mapa Logístico

Considerações sobre a Condição Inicial na Construção do Diagrama de Bifurcação para o Mapa Logístico Trabalho apresentado no DINCON, Natal - RN, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Considerações sobre a Condição Inicial na Construção do Diagrama de

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

Teorema Do Ponto Fixo Para Contrações 1

Teorema Do Ponto Fixo Para Contrações 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Do Ponto Fixo

Leia mais

Teorema de Sarkovsky

Teorema de Sarkovsky Teorema de Sarkovsky Yuri Lima 8 de janeiro de 2008 Resumo Provaremos um teorema, provado pelo matemático ucraniano A. Sarkovsky em [4] que, em poucas palavras, afirma que Período 3 implica Caos, no seguinte

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

DEFINIÇÃO DE DERIVADA COM AUXÍLIO DO GEOGEBRA

DEFINIÇÃO DE DERIVADA COM AUXÍLIO DO GEOGEBRA DEFINIÇÃO DE DERIVADA COM AUXÍLIO DO GEOGEBRA Rodrigo Resende Alves Mestre em Engenharia Civil pela Universidade Federal do Rio de Janeiro Docente do Centro Universitário Geraldo Di Biase UGB/FERP Dados

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Método de Newton Paulo Evandro Viana Belo Horizonte, março de 006 AOS MEUS QUERIDOS E ESTIMADOS FAMILIARES E,

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x = 88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

Modelos Biomatemáticos

Modelos Biomatemáticos Equações às diferenças de primeira ordem Modelos Biomatemáticos Alessandro Margheri Faculdade de Ciências da Universidade de Lisboa Modelos Biomatemáticos p. f : R R infinitamente diferenciável em R x

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Anotações sobre equações funcionais Rodrigo Carlos Silva de Lima Universidade Federal Fluminense - UFF-RJ rodrigo.uff.math@gmail.com 1 Sumário 1 Equacões funcionais 3 1.1 f(x + y) = f(x).f(y)..............................

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

velocidade média = distância tempo = s(t 0 + t) s(t 0 )

velocidade média = distância tempo = s(t 0 + t) s(t 0 ) Universidade do Estado do Rio de Janeiro Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 3 - Derivada Taxa de variação: Sejam f : I R e x 0 I. f(x) r x0 rx f = f(x) f(x) = =

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

3 Estabilidade dos Difeomorfismos Morse-Smale

3 Estabilidade dos Difeomorfismos Morse-Smale 3 Estabilidade dos Difeomorfismos Morse-Smale No último capítulo foi apresentado o nosso objeto de estudo (os difeomorfismos Morse-Smale) e a propriedade que estamos interessados em observar (Estabilidade

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Um Estudo da Dinâmica da Equação Logística

Um Estudo da Dinâmica da Equação Logística Um Estudo da Dinâmica da Equação Logística Conconi, T.; Silva Lima, M.F. Resumo: Equações diferenciais são adequadas para representar sistemas discretos por grandezas cujos valores variam apenas em determinados

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO.

COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO. COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO. Maicon Luiz Collovini Salatti - luizcollovini@gmail.com Universidade

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Funções

Leia mais

Tópico 4. Derivadas (Parte 1)

Tópico 4. Derivadas (Parte 1) Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Regras de Produto e Quociente

Regras de Produto e Quociente Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Notas de Aula Aula 2, 2012/2

Notas de Aula Aula 2, 2012/2 Lógica para Ciência da Computação Notas de Aula Aula 2, 2012/2 Renata de Freitas & Petrucio Viana Departamento de Análise, IME UFF 23 de janeiro de 2013 Sumário 1 Conteúdo e objetivos 1 2 Legibilidade

Leia mais

PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME

PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME 22 a 26 de outubro de 2012 PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME Anais do Congresso de Pesquisa, Ensino e Extensão- CONPEEX (2012) 9627-9631 POLINÔMIOS CICLOTÔMICOS E TEOREMA DE WEDDERBURN

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos 3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos

Leia mais

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função

Leia mais

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora

Leia mais

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA E

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA E MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA E Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

Lema 1. Seja T R n R m uma aplicação linear. Então, (a) Existe uma constante C tal que T( v) C v, para todo v em R n. Prova.

Lema 1. Seja T R n R m uma aplicação linear. Então, (a) Existe uma constante C tal que T( v) C v, para todo v em R n. Prova. MAT 216 - CÁLCULO III - IFUSP 1 SEMESTRE de 2014 Professor Oswaldo Rio Branco de Oliveira http://wwwimeuspbr/~oliveira DIFERENCIABILIDADE, REGRA DA CADEIA, MATRIZ JACOBIANA E O TEOREMA DO VALOR MÉDIO EM

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE

CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE Marcos Luiz CRISPINO 1 RESUMO: Será obtida uma condição suficiente para que a classe das componentes conexas de cada um

Leia mais

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO 1 LIVRO Funções de Varias Variáveis Reais a Valores Reais META Estudar o domínio, o gráfico e as curvas de níveis de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de domínio

Leia mais

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções.

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções. 2 LIVRO Funções META: Apresentar o conceitos de funções. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relção é uma função. Determinar a imagem direta e a imagem inversa

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

1. DiferenciabilidadeeRegradaCadeia MatrizJacobiana TeoremadoValorMédio(TVM)paracamposescalares...9

1. DiferenciabilidadeeRegradaCadeia MatrizJacobiana TeoremadoValorMédio(TVM)paracamposescalares...9 DIFERENCIABILIDADE - REGRA DA CADEIA - MATRIZ JACOBIANA - TEOREMA DO VALOR MÉDIO (TVM) e DESIGUALDADE DO VALOR MÉDIO (DVM), EM VÁRIAS VARIÁVEIS Professor Oswaldo Rio Branco de Oliveira http://www.ime.usp.br/~oliveira

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Máximos e mínimos em intervalos fechados

Máximos e mínimos em intervalos fechados Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir

Leia mais

O Teorema do Valor Médio

O Teorema do Valor Médio Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit O Teorema do Valor

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db, CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23 Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção.

A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 5 A Ideia de Continuidade Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

6.1.2 Derivada de ordem superior e derivação implícita

6.1.2 Derivada de ordem superior e derivação implícita 6.1. DERIVABILIDADE E DIFERENCIABILIDADE 111 6.1.2 Derivada de ordem superior e derivação implícita Observe que se f é derivável num subconjunto A de seu domínio D, obtemos então uma nova função g = f

Leia mais

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas.

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas. Aula 04 O CONCEITO DE GRUPO META Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. OBJETIVOS Definir e exemplificar grupos e subgrupos. Aplicar as propriedades dos grupos na

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais