Cálculo I /01 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitores: Gabriel Sanfins & Raphael Lourenço

Tamanho: px
Começar a partir da página:

Download "Cálculo I /01 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitores: Gabriel Sanfins & Raphael Lourenço"

Transcrição

1 Cálculo I - 01/01 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitores: Gabriel Sanfins & Raphael Lourenço Lista 01 - Introdução à Matemática The curiosity and knowledge production in man often outweigh any carnal pleasure, what makes man different from any other animal. Thomas Hobbes Considerações Iniciais: Na matemática, um axioma é uma hipótese inicial de qual outros enunciados são logicamente derivados. Diferentemente de teoremas, axiomas não podem ser derivados por princípios de dedução e nem são demonstráveis por derivações formais, simplesmente porque eles são hipóteses iniciais. Partindo dos Axiomas, toda a teoria é desenvolvida e os resultados obtidos em sequência, podem (e devem ser utilizados para que outros teoremas sejam provados. Os teoremas podem ser deduzidos por uma sequência de raciocínios lógicos, a qual chamamos de Demonstração. Os tipos mais usados são: Demonstração Direta Demonstração por Contradição Demonstração por contraposição (Fazemos o uso da contrapositiva de uma afirmação A contrapositiva de uma afirmação tem o mesmo significado porém é dita de maneira reversa. Vejamos um exemplo: Se como laranjas, então gosto de frutas, a contrapositiva dessa afirmação é: Se não gosto de frutas, então não como laranjas Na realidade, o porquê desses métodos de demonstração funcionarem também é um teorema. Estranho não? Esse resultado é explicado no livro A Mathematical Introduction to Logic do Matemático Americano Herbert Enderton. Independentemente do método usado, lembre-se de sempre escrever todos os seus passos. Procure ser claro e não omita informações ainda que pareçam irrelevantes. 1. (Demonstrações por Contradição O método de demonstração por contradição é usado da seguinte forma: Suponha que o que se quer concluir é falso. Assim, uma sequência de deduções lógicas levará a uma conclusão que contradiz suas hipóteses iniciais ou a um fato que é sabidamente falso. Essa contradição implica a validade do que se queria concluir. Exemplo: Vamos mostrar que é irracional. Para isso, vamos mostrar primeiramente, um teorema que será útil durante a demonstração principal. Em geral quando precisamos mostrar um teorema para depois usa-lo em outra demonstração, damos a ele o nome de Lema. Lema: Se a é múltiplo de, então a é múltiplo de. Vamos usar a contraposição para demonstrar isso. Ou seja, iremos mostrar que se a é ímpar, então a é ímpar. Se a é impar, então, para algum p N, a p + 1. Logo, a (p + 1(p + 1 4p + 4p + 1 (p + p + 1 q + 1 com q p + p, que é um número ímpar, como queriamos demonstrar. Demonstração: Suponha que não é irracional, logo, podemos escrever a b, onde a,b N e a b é irredutível. Logo, a b ; portanto, a é múltiplo de, então a é múltiplo de e com isso podemos escrever ak, com k N. Então ficamos com 4k b k b. Logo, b é múltiplo de. Com isso, a b não é irredutível o que contradiz uma de nossas hipóteses. Logo é irracional. i. Generalize para mostrar que p sendo p um número primo, também é irracional. ii. Tente generalizar o argumento acima para n p sendo p um número primo. 1

2 iii. Agora mostre que n p m, sendo p primo e mdc(n, m 1, também é irracional. iv. Você sabe que existem infinitos números primos. Mas já parou para pensar sobre como demonstrar isso? Então, vamos lá. Suponha que o conjunto dos números primos é finito. Com isso podemos representar esse conjunto de primos (P como: P {p 1, p,... p n }. v. Então tome K p 1 p... p n +1. Chegue a uma contradição. vi. Tente provar que existem infinitos primos nas Progressões Aritméticas 4n+3 e 6n+5 com n N. A generalização disso para qualquer progressão kn + p com mdc(k, p 1 é o chamado Teorema de Dirichlet, porém a demonstração é surpreendentemente difícil.. (Utilizando a Indução Imagine uma fileira com infinitos dominós, um atrás do outro. Suponha que eles estejam de tal modo distribuídos que, uma vez que um dominó caia, o seu sucessor tambám cai. O que acontece quando derrubamos o primeiro dominó? Esperamos que, com isso, mesmo infinitos, todos os dominós caiam. Assim é o princípio da indução finita, que é um método de demonstração muito utilizado quando se quer provar teoremas válidos para os números naturais ou inteiros. Dada uma propriedade P(n que depende de um in- Teorema: Princípio da indução finita - teiro n, então: Se P (n 0, P (n 0 + 1,..., P (n 0 + m são verdadeiras para algum inteiro positivo n 0 e um inteiro não-negativo m, e se k > n 0 + m, P (j ser verdade para todo n j < k implicar que P (k é verdade, então P (n é verdadeira n n 0. Exemplo: Vamos mostrar usando indução que: Seja p um primo e n um inteiro positivo. Então n p n é um múltiplo de p. Esse resultado é conhecido como Pequeno Teorema de Fermat. O caso n1 é óbvio. Então assumamos que isso é verdade k n e vamos mostrar que isso implica a validade para o caso n + 1: (n + 1 p (n + 1 n p + n i1 ( p n j + 1 n 1 i Como ( p i nj é múltiplo de p quando 1 j p 1 e pela nossa hipótese de indução n p n é múltiplo de p, concluimos que (n + 1 p (n + 1 é múltiplo de p. Logo o teorema é valido n N. i. Mostre que n n(n+1 ii. Mostre que n n(n+1(n+1 6 iii. Mostre que n 3 [ n(n+1 ] iv. Quanto vale 1 k + k + 3 k n k? É possível dar uma fórmula fechada para essa expressão k N? v. Vamos mostrar que as funções da forma F (x cos(n arccos(x são polinômios n N. Eles são os chamados Polinômios de Tchebyshev vi. Mostre que para n 1 e para n, F é Polinômio. vii. Suponha que F é um polinômio k N tal que k n. Mostre que isso implica que F é polinômio para o caso n + 1.

3 3. (Funções Convexas e Desigualdade de Jensen Def: Uma função ξ : I R é dita convexa se a, b I, onde I R é um intervalo, vale ξ(λa + (1 λb λξ(a + (1 λξ(b λ [0, 1]. i. Pense nessa definição e em alguns exemplos de funções convexas. É importante que você à compreenda pois essa, provavelmente, é a primeira definição rigorosa de algo em matemática que você viu na vida. Procure saber por que essa definição é boa. O que seria convexidade para você? Pense em polígonos.. ii. ξ é convexa se e somente se a, b I, a b, λ ]0, 1[ vale ξ(a + λ(b a ξ(a λ(b a ξ(b ξ(a b a ξ(b ξ(a + λ(b a. (1 λ(b a iii. Se ξ é convexa e a 1,... a n I, p 1,..., p n > 0 e n k1 p k 1, mostre a Desigualdade de Jensen: ξ( n p k a k k1 n p k ξ(a k. iv. Façamos a demonstração por indução: Para n1, o caso é trivial. Para n, a validade vem da definição de função convexa. Então suponha que a desigualdade é válida k N tal que k n, e mostre que isso implica a validade para o caso n (Algumas Desigualdades legais i. Dados a 1, a,..., a n R +, temos: (1 + a 1 (1 + a... (1 + a n (1 + a 1 + a a n ii. Dados a 1, a,..., a n pertencentes aos Reais positivos, tem-se: a 1 + a a n a 1 + a a n n n iii. Sejam a 0, b 0 e c 0, mostre que: (ab + bc + ac a bc + b ac + c ab iv. Prove a Desigualdade de Bernoulli: (1 + x n 1 + nx, se n N e x 1 v. Prove a Desigualdade de Cauchy-Schwarz: a 1 b 1 + a b a n b n k1 a a n b b n 5. (Identidades Trigonométricas: Acredite, em pouco tempo você verá o quão úteis elas são. Nessa questão você deve demonstrar algumas identidades: i. sec (γ tan (γ + 1 e csc (γ cot (γ + 1 ii. Prove as seguintes igualdades: a. sin(α + sin(β sin( α+β α β b. sin(α sin(β sin( α β α+β c. cos(α + cos(β cos( α+β α β d. cos(α cos(β cos( α β α+β iii. Se x + y + z π então: tan(x + tan(y + tan(z tan(x tan(y tan(z. iv. Mostre por indução a Fórmula ou Identidade de De Moivre: (cos(x + i sin(x n cos(nx + i sin(nx 3

4 6. (Somas Infinitas ou Uma noção inicial de Limite: Comentário: É possível que somas infinitas tenham como resultado algo finito? Sim, e quando acontece dizemos que essa soma converge. Caso contrário dizemos que diverge. Um exemplo simples é: 1 3 0, 3 + 0, , Uma soma infinita na matemática é conhecida como série. i. O que você acha do seguinte Paradoxo do Filósofo Grego Zenão: Aquiles, o herói grego, e a tartaruga decidem apostar uma corrida. Como a velocidade de Aquiles é maior que a da tartaruga, esta recebe uma vantagem, começando a corrida um trecho na frente da linha de largada. Aquiles, então, nunca alcançará a tartaruga, pois terá que correr a distância que os separa, mas ao chegar a esse ponto, a tartaruga terá percorrido uma nova distancia, e assim sucessivamente. Pesquise sobre esse paradoxo e sobre as contradições levantadas por Zenão. Ele chegou a diversos argumentos contra a teoria física do movimento usando esse, e outros paradoxos que são citados na obra de Aristóteles. ii. Mostre a fórmula da soma dos termos da Progressão Aritmética de termo inicial a 1 : a 1 + a a n n(a1+an iii. Mostre a fórmula da soma dos termos da Progressão Geométrica finita de termo inicial a 1 e razão q : S n a1(qn 1 q 1 iv. Se q < 1, quanto vale : n0 aqn? Por que? v. A Soma n1 1 n, converge? vi. E essa: n1 1 n, converge? vii Procure saber se a série i1 1 p i, sendo cada p i o i-ésimo número primo, diverge. Uma bela demonstração para isso é devida a Paul Erdös, um matemático húngaro considerado o mais produtivo de toda a matemática. Um livro feito por dois alunos de Erdös chamado proofs from the book, reúne algumas das mais belas demonstrações já feitas na Matemática. 7. (Princípio da Casa dos Pombos Teorema: PCP - Se distribuirmos nk + 1 pombos em n casas, então alguma das casas contém pelo menos k + 1 pombos. Esse princípio é muito utilizado em diversos problemas, sendo necessário apenas decidir quem são os pombos e quem são as casas. Exemplo: Dados n números inteiros distintos, mostre que existem deles cuja diferença seja um múltiplo de n 1. Consideramos os n números como os pombos e as casas como os n 1 restos possíveis na divisão por n 1. Como n (n o PCP nos diz que existem dois números dentro dos n dados que tem o mesmo resto quando divididos por n 1. Então, vemos que se dois números deixam o mesmo resto na divisão por n 1, a diferença deles é um múltiplo de n 1. Usando o PCP, resolva os seguintes problemas: i. Se n, m N, então o conjunto C {m + 1, m +,..., m + n} possui algum divisor de n. ii. Prove que entre n + 1 elementos escolhidos no conjunto {1,, 3,..., n} existem dois que são primos entre si. iii. Dado qualquer conjunto A formado por 10 números naturais escolhidos entre 1 e 99, inclusos, mostre que existem dois subconjuntos disjuntos e não-vazios de A tal que a soma dos seus respectivos elementos é igual. iv. Mostre que todo poliedro convexo tem duas faces com o mesmo número de arestas. v. Escolhem-se ao acaso 9 pontos em um cubo de aresta. Mostre que pelo menos um dos segmentos que eles determinam tem comprimento menor ou igual a 3. 4

5 8. (Demonstrações Diretas, Conjuntos e algo mais... Nesta Questão veremos algumas propriedades de conjuntos e faremos suas demonstrações usando o método direto. Algo que sempre se deve ter em mente é: Nem sempre os resultados que julgamos serem fáceis, possuem uma demonstração fácil, em outras palavras, provar algo elementar, na matemática, geralmente, não é elementar. A demontração direta é aquela em que assumimos a hipótese inicial como verdadeira e através de uma série de argumentos verdadeiros e deduções lógicas concluímos a veracidade da tese. Exemplo: Quando queremos mostrar que dois conjuntos A e B são iguais, mostramos que A B e depois que B A. Logicamente, se todos os elementos do cconjunto A são elementos de B, e todos os elementos de B são elementos de A, conclui-se que A B. Vejamos um exemplo. Vamos mostrar que dados dois conjuntos A e B, se B A então A B A. Se B A, significa que x B x A. Como A A, temos que A B A. Mas, x A temos x A B e portanto A A B. Logo, se B A então A B A. i. Mostre que, dados os conjuntos A, B e C tem-se: A (B C (A B (A C ii. Mostre que A (B C (A B (A C iii. Mostre que se A B, então, B (A C (B C A, para qualquer conjunto C. iv. O que são números algébricos e números transcendentes? v. Ao número de elementos de um conjunto damos o nome de Cardinalidade. Procure saber o que são Conjuntos Enumeráveis e Conjuntos Não-Enumeráveis. Lembre-se que é seu dever sempre procurar boas fontes de informações e conhecimento. vi. Uma função f : A B é chamada injetiva (biunívoca ou injetora quando, dados x,y quaisquer em A, se f(x f(y então x y. Uma função f : A B é chamada sobrejetiva (sobrejetora quando para todo y B existe pelo menos um x A tal que f(x y. Quando f : A B é injetiva e sobrejetiva, chamamos f de bijetiva (ou bijeção. Procura alguns exemplos de funções bijetoras e verifique você mesmo se elas de fato são bijetoras. vii. Por definição, se dois conjuntos A e B possuem a mesma cardinalidade então existe uma bijeção f : A B. Tente encontrar bijeções entre N e Z. E entre N e Q. Ou seja, N, Z e Q possuem o mesmo número de elementos. Estranho não? Mas N Z Q? Pois é. É estranho mas é verdade. Isso nos leva a ver que quando falamos de coisas infinitas, nem tudo é tão simples assim. 9. (Análise Combinatória: é, você não está nem um pouco livre dela A Análise Combinatória é uma área que dá muitas ferramentas úteis para outras áreas da matemática. O supracitado Princípio da Casa dos Pombos, por exemplo, é um teorema que pertence a essa área. Portanto, saber manipular números binomiais,arranjos, permutações e etc, é algo fundamental. Mostre as seguintes identidades: i. k ( ( n n n 1 ii. ( n k k iii. ( h+m c k 1 ( n 1 ( + n 1 k k 1 h ( h m k0 k( iv. ( n k ( k( m n m v. n jk ( n m ( j k ( n+1 k+1 c k k m para 0 m k n 5

6 10. (Patologias e Sutilezas: As coisas podem ser mais delicadas e estranhas do que você pensa Em matemática, patologias são resultados que de certa maneira vão de encontro às idéias intuitivas, matematicamente falando, de um certo período da história. Um exemplo é a descoberta de que existem números irracionais, na grécia antiga. Parece bobo nos dias de hoje, mas na época foi algo que deixou os matemáticos bastante assustados. i. O que é o Axioma da Escolha? Ele faz sentido para você? Procure saber o por quê desse axioma ser tão polêmico na matemática. Procure pelo Paradoxo de Banach-Tarski. ii. Você já ouviu falar do Teorema da Incompletude de Gödel? O que diz esse teorema? iii. Pesquise sobre a Conjectura de Goldbach. iv. O que é um Fractal? Para que ele serve? v. Se um Hotel possui infinitos quartos, mas todos estão cheios, é possível esse hotel receber mais hóspedes? Pesquise sobre o Hotel de Hilbert. vi. Todas as pessoas do mundo torcem para o Mesmo Time. Vamos demonstrar por indução. Podemos observar que num conjunto que contém uma única pessoa, todas torcem pro mesmo time. Se supusermos que a proposição é verdadeira para todos os conjuntos de dimensão inferior a n e para os de dimensão n, então se houver n + 1 pessoas num conjunto, retiramos uma delas para obter um conjunto resultante com n pessoas, e pela hipótese de indução, todos as pessoas nesse conjunto torcem pro mesmo time. Devolvemos a pessoa retirada ao conjunto inicial, e retiramos outra diferente. Pela hipótese de indução, todas as n pessoas torcem pro mesmo time. Logo as n + 1 pessoas torcem pro mesmo time. Então para qualquer n N, as n pessoas torcem para o mesmo time. E agora? Isso está errado? e se estiver, onde está o erro? vii. Considere-se o conjunto M como sendo o conjunto de todos os conjuntos que não se têm a si próprios como membros. Formalmente: A é elemento de M se e somente se A não é elemento de A. Esse conjunto é membro de si próprio? Suponha que sim e depois que não. O que você conclui? viii. Será que existe o conjunto universo, isto é, um conjunto que contenha todos os conjuntos? As pessoas, em geral, pensam que a matemática é algo completamente certinho e exato, onde tudo sempre funciona e faz perfeito sentido. Bom, você acaba de ver que elas estão completamente enganadas, e que, mesmo nos dias de hoje, ainda existem diversas coisas que deixam o mundo matemático bastante intrigado. 6

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980)

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980) Cálculo Infinitesimal I V01.2016 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitor: Lucas Porto de Almeida Lista A - Introdução à matemática No. Try not. Do... or do not. There is no try.

Leia mais

Denição 1 Dados conjuntos A e B dizemos que A B se para todo a A, a B. Denição 2 Dados conjuntos A e B dizemos que A = B se A B e B A.

Denição 1 Dados conjuntos A e B dizemos que A B se para todo a A, a B. Denição 2 Dados conjuntos A e B dizemos que A = B se A B e B A. Cálculo Innitesimal I - 2015/01 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitores: Zair Henrique & Jonathas Ferreira Lista 01 - Introdução à matemática No. Try not. Do... or do not. There

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho IF Sudeste de Minas Gerais Prof: Primeiro semestre de 2014 Proposição: É uma afirmação que pode ser classificada em verdadeira ou falsa, mas que faça sentido. Exemplo: Sejam as proposições: A: A soma dos

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Exercícios de revisão para a primeira avaliação Gabaritos selecionados

Exercícios de revisão para a primeira avaliação Gabaritos selecionados UFPB/CCEN/DM Matemática Elementar I - 2011.2 Exercícios de revisão para a primeira avaliação Gabaritos selecionados 1. Sejam p, q e r proposições. Mostre que as seguintes proposições compostas são tautologias:

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais

n. 20 INDUÇÃO MATEMÁTICA

n. 20 INDUÇÃO MATEMÁTICA n. 20 INDUÇÃO MATEMÁTICA Imagine uma fila com infinitos dominós, um atrás do outro. Suponha que eles estejam de tal modo distribuídos que, uma vez que um dominó caia, o seu sucessor na fila também cai.

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos O conjunto dos números naturais é o primeiro exemplo de conjunto infinito que aprendemos. Desde crianças, sabemos intuitivamente que tomando-se um número natural n muito

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22 Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Uma curiosa propriedade com inteiros positivos

Uma curiosa propriedade com inteiros positivos Uma curiosa propriedade com inteiros positivos Fernando Neres de Oliveira 21 de junho de 2015 Resumo Neste trabalho iremos provar uma curiosa propriedade para listas de inteiros positivos da forma 1, 2,...,

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

UMA PROVA DE CONSISTÊNCIA

UMA PROVA DE CONSISTÊNCIA UMA PROVA DE CONSISTÊNCIA Felipe Sobreira Abrahão Mestrando do HCTE/UFRJ felipesabrahao@gmail.com 1. INTRODUÇÃO Demonstradas por Kurt Gödel em 1931, a incompletude da (ou teoria formal dos números ou aritmética)

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

Seminário Semanal de Álgebra. Técnicas de Demonstração

Seminário Semanal de Álgebra. Técnicas de Demonstração UNIVERSIDADE FEDERAL DE GOIÁS CÂMPUS CATALÃO Seminário Semanal de Álgebra Técnicas de Demonstração Catalão, 26/11/2013. Universidade Federal de Goiás Campus Catalão Seminário Semanal de Álgebra Orientador:

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão

Leia mais

Notas de Aula de Fundamentos de Matemática

Notas de Aula de Fundamentos de Matemática Universidade Estadual de Montes Claros Centro de Ciências Exatas e Tecnológicas Departamento de Ciências Exatas Notas de Aula de Fundamentos de Matemática Rosivaldo Antonio Gonçalves Notas de aulas que

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências.

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. LIVRO Princípio da Boa Ordem META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: Aplicar o princípio

Leia mais

Para Computação. Aula de Monitoria - Miniprova

Para Computação. Aula de Monitoria - Miniprova Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.

Leia mais

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

Lógica Matemática 1. Semana 7, 8 e 9. Material Previsto para três semanas

Lógica Matemática 1. Semana 7, 8 e 9. Material Previsto para três semanas Lógica Matemática 1 Semana 7, 8 e 9. Professor Luiz Claudio Pereira Departamento Acadêmico de Matemática Universidade Tecnológica Federal do Paraná Material Previsto para três semanas Implicação e equivalência

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM1 - Fundamentos de Análise Prof Zeca Eidam Lista 4 Supremo e ínfimo 1 Seja X R não-vazio 1 Mostre que, caso existam,

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Matemática Discreta - PROFMAT Prof. Zeca Eidam Lista Números Naturais e o Princípio de Indução. Prove que

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04 MA - Unidade Indução Matemática Semana de 04/04 a 0/04 Nesta unidade mostraremos como o Axioma da Indução, que foi apresentado na Unidade como um dos axiomas pilares dos números naturais, nos fornece um

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

3 O Teorema de Ramsey

3 O Teorema de Ramsey 3 O Teorema de Ramsey Nesse capítulo enunciamos versões finitas e a versão infinita do Teorema de Ramsey, além das versões propostas por Paris, Harrington e Bovykin, que serão tratadas no capítulos subseqüentes.

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas 1. Considere os números de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,..., onde cada termo na sequência é a soma dos dois termos anteriores. O ano mais próximo de 2018 que é número de Fibonacci foi o ano de 1597.

Leia mais

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos Prof. Edson de Faria 30 de Março de 2014 Observação: O objetivo desta lista é motivar uma revisão dos conceitos e fatos básicos sobre

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e y B}, então o número de elementos de C é a) 10. b) 11. c) 12. d) 13. e) 14. 2. (Ita 2017) Sejam X e Y dois conjuntos finitos

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016

Técnicas de Demonstração. Raquel de Souza Francisco Bravo   17 de novembro de 2016 Técnicas de Demonstração e-mail: raquel@ic.uff.br 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A e B dois conjuntos com 3 e 5 elementos, respectivamente. Quantas funções sobrejetivas f : B A existem? 2. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Prof. Doherty Andrade 2005- UEM Sumário 1 Seqüências 2 1.1 O Corpo dos Números Reais.......................... 2 1.2 Seqüências.................................... 5

Leia mais

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso)

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Roberto Imbuzeiro Oliveira 8 de Janeiro de 2014 1 Conjuntos e funções Neste curso procuraremos fundamentar de forma precisa os fundamentos

Leia mais

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 RICARDO SA EARP Limites e continuidade em espaços topológicos (1) (a) Assuma que Y = A B, onde A e B são subconjuntos abertos disjuntos não vazios. Deduza que A B

Leia mais

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral 4 4 13 + 1 = 53 Em que temos a fórmula geral: Exatamente um

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números MA21 (2015) - Teste - Gabarito comentado Problema 1 (OBM 2005) Na sequência de números 1, a, 2, b, c, d,... dizemos que o primeiro termo é 1, o segundo é a, o terceiro é 2, o quarto é b, o quinto é c e

Leia mais

Os números naturais. Capítulo Operações em N

Os números naturais. Capítulo Operações em N Capítulo 1 Os números naturais O conjunto dos números naturais, denotado por N, é aquele composto pelos números usados para contar. Na verdade, o mais correto seria dizer que é o conjunto dos números usados

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos.

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. Leandro Cioletti Eduardo A. Silva 12 de setembro de 2011 Resumo O objetivo deste texto é apresentar a prova do Último Teorema de Fermat

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Método de indução. José Carlos Santos

Método de indução. José Carlos Santos Método de indução José Carlos Santos O termo «indução» tem origem na Filosofia. A entrada do Dicionário de Filosofia de Simon Blackburn que lhe diz respeito começa do seguinte modo: Indução Termo usado

Leia mais

1 n s = s s s p s. ζ(s) = p

1 n s = s s s p s. ζ(s) = p Introdução A chamada série harmónica, n= n = + 2 + 3 + +... desde cedo suscitou interesse entre os 4 matemáticos. Infelizmente esta série diverge, o que se verifica por os termos termo n, apesar de tenderem

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Teoria Ingênua dos Conjuntos (naive set theory)

Teoria Ingênua dos Conjuntos (naive set theory) Teoria Ingênua dos Conjuntos (naive set theory) MAT 131-2018 II Pouya Mehdipour 5 de outubro de 2018 Pouya Mehdipour 5 de outubro de 2018 1 / 22 Referências ALENCAR FILHO, E. Iniciação à Lógica Matemática,

Leia mais

GABARITO. Prova 1.2 (points: 72/100; bonus: 16 ; time: 100 ) FMC2, (Turma N12 do Thanos) Regras: Lembre-se: Boas provas! Gabarito 08/05/2017

GABARITO. Prova 1.2 (points: 72/100; bonus: 16 ; time: 100 ) FMC2, (Turma N12 do Thanos) Regras: Lembre-se: Boas provas! Gabarito 08/05/2017 FMC2, 2017.1 (Turma N12 do Thanos) Prova 1.2 (points: 72/100; bonus: 16 ; time: 100 ) Nome: Θάνος Gabarito Regras: 08/05/2017 I. Não vires esta página antes do começo da prova. II. Nenhuma consulta de

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

Demonstrações Matemáticas Parte 2

Demonstrações Matemáticas Parte 2 Demonstrações Matemáticas Parte 2 Nessa aula, veremos aquele que, talvez, é o mais importante método de demonstração: a prova por redução ao absurdo. Também veremos um método bastante simples para desprovar

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais